1
|
Ravindran Menon D, Hammerlindl H, Gimenez G, Hammerlindl S, Zuegner E, Torrano J, Bordag N, Emran AA, Giam M, Denil S, Pavelka N, Tan AC, Sturm RA, Haass NK, Rancati G, Herlyn M, Magnes C, Eccles MR, Fujita M, Schaider H. H3K4me3 remodeling induced acquired resistance through O-GlcNAc transferase. Drug Resist Updat 2023; 71:100993. [PMID: 37639774 PMCID: PMC10719180 DOI: 10.1016/j.drup.2023.100993] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
AIMS Drivers of the drug tolerant proliferative persister (DTPP) state have not been well investigated. Histone H3 lysine-4 trimethylation (H3K4me3), an active histone mark, might enable slow cycling drug tolerant persisters (DTP) to regain proliferative capacity. This study aimed to determine H3K4me3 transcriptionally active sites identifying a key regulator of DTPPs. METHODS Deploying a model of adaptive cancer drug tolerance, H3K4me3 ChIP-Seq data of DTPPs guided identification of top transcription factor binding motifs. These suggested involvement of O-linked N-acetylglucosamine transferase (OGT), which was confirmed by metabolomics analysis and biochemical assays. OGT impact on DTPPs and adaptive resistance was explored in vitro and in vivo. RESULTS H3K4me3 remodeling was widespread in CPG island regions and DNA binding motifs associated with O-GlcNAc marked chromatin. Accordingly, we observed an upregulation of OGT, O-GlcNAc and its binding partner TET1 in chronically treated cancer cells. Inhibition of OGT led to loss of H3K4me3 and downregulation of genes contributing to drug resistance. Genetic ablation of OGT prevented acquired drug resistance in in vivo models. Upstream of OGT, we identified AMPK as an actionable target. AMPK activation by acetyl salicylic acid downregulated OGT with similar effects on delaying acquired resistance. CONCLUSION Our findings uncover a fundamental mechanism of adaptive drug resistance that governs cancer cell reprogramming towards acquired drug resistance, a process that can be exploited to improve response duration and patient outcomes.
Collapse
Affiliation(s)
- Dinoop Ravindran Menon
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Dermatology, University of Colorado Denver, Aurora, CO, USA; Department of Medical Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Heinz Hammerlindl
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Pharmaceutical Chemistry, The University of California, San Francisco, San Francisco, CA, USA
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sabrina Hammerlindl
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Pharmaceutical Chemistry, The University of California, San Francisco, San Francisco, CA, USA
| | - Elmar Zuegner
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Joachim Torrano
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Natalie Bordag
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Abdullah Al Emran
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Maybelline Giam
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | - Simon Denil
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | - Norman Pavelka
- SIgN, the Singapore Institute for Immunology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | - Aik-Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Richard A Sturm
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nikolas K Haass
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Giulia Rancati
- Institute of Medical Biology, Agency for Science, Technology and Research, Immunos Singapore, Singapore
| | | | - Christoph Magnes
- Joanneum Research Forschungsgesellschaft m.b.H., HEALTH, Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Denver, Aurora, CO, USA; Denver VA Medical Center, Denver, CO, USA; Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO, USA
| | - Helmut Schaider
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Department of Dermatology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.
| |
Collapse
|
2
|
Bao L, Yang A, Liu Z, Ma J, Pan J, Zhu Y, Tang Y, Dong P, Zhao G, Chen S. Development of a mammalian cell-based ZZ display system for IgG quantification. BMC Biotechnol 2023; 23:24. [PMID: 37507705 PMCID: PMC10375748 DOI: 10.1186/s12896-023-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Biological laboratories and companies involved in antibody development need convenient and versatile methods to detect highly active antibodies. METHODS To develop a mammalian cell-based ZZ display system for antibody quantification, the eukaryotic ZZ-displayed plasmid was constructed and transfected into CHO cells. After screening by flow cytometric sorting, the stable ZZ display cells were incubated with reference IgG and samples with unknown IgG content for 40 min at 4℃, the relative fluorescence intensity of cells was analyzed and the concentration of IgG was calculated. RESULTS By investigating the effects of different display-associated genetic elements, a eukaryotic ZZ-displaying plasmid with the highest display efficiency were constructed. After transfection and screening, almost 100% of the cells were able to display the ZZ peptide (designated CHO-ZZ cells). These stable CHO-ZZ cells were able to capture a variety of IgG, including human, rabbit, donkey and even mouse and goat. CHO-ZZ cells could be used to quantify human IgG in the range of approximately 12.5-1000 ng/mL, and to identify high-yielding engineered monoclonal cell lines. CONCLUSIONS We have established a highly efficient CHO-ZZ display system in this study, which enables the quantification of IgG from various species under physiological conditions. This system offers the advantage of eliminating the need for antibody purification and will contribute to antibody development.
Collapse
Affiliation(s)
- Lingzhi Bao
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Aizhen Yang
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Ziqing Liu
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Jie Ma
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Jiajie Pan
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Yi Zhu
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Ying Tang
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Pu Dong
- School of Public Health, Wannan Medical College, Wuhu, 241002, China
| | - Guoping Zhao
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, Wuhu, 241002, China.
| |
Collapse
|
3
|
Ling N, Liu H, Guo J, Liang Z, Zhang Y, Li H, Wu H, Xie T, Yuan Y, Li X, Peng M, Wei X, Liang L, Liu J, Wu W, Ye M. Generation of DNA Aptamers with Functional Activity in Mammalian Cells by Mimicking Retroviruses. Anal Chem 2023. [PMID: 37327388 DOI: 10.1021/acs.analchem.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
DNA aptamers are single-stranded DNA oligonucleotide sequences that bind to specific targets with high affinity. Currently, DNA aptamers can be produced only by in vitro synthesis. It is difficult for DNA aptamers to have a sustained impact on intracellular protein activity, which limits their clinical application. In this study, we developed a DNA aptamer expression system to generate DNA aptamers with functional activity in mammalian cells by mimicking retroviruses. Using this system, DNA aptamers targeting intracellular Ras (Ra1) and membrane-bound CD71 (XQ2) were successfully generated in cells. In particular, the expressed Ra1 not only specifically bound to the intracellular Ras protein but also inhibited the phosphorylation of downstream ERK1/2 and AKT. Furthermore, by inserting the DNA aptamer expression system for Ra1 into a lentivirus vector, the system can be delivered into cells and stably produce Ra1 over time, resulting in the inhibition of lung cancer cell proliferation. Therefore, our study provides a novel strategy for the intracellular generation of DNA aptamers with functional activity and opens a new avenue for the clinical application of intracellular DNA aptamers in disease treatment.
Collapse
Affiliation(s)
- Neng Ling
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Huiming Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Junxiao Guo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhouliang Liang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yibin Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Tiantian Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yijun Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiahui Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Menglan Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xianhua Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Long Liang
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wencan Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
4
|
Zhang M, Qi T, Yang L, Kolarich D, Heisterkamp N. Multi-Faceted Effects of ST6Gal1 Expression on Precursor B-Lineage Acute Lymphoblastic Leukemia. Front Oncol 2022; 12:828041. [PMID: 35371997 PMCID: PMC8967368 DOI: 10.3389/fonc.2022.828041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 12/20/2022] Open
Abstract
Normal early human B-cell development from lymphoid progenitors in the bone marrow depends on instructions from elements in that microenvironment that include stromal cells and factors secreted by these cells including the extracellular matrix. Glycosylation is thought to play a key role in such interactions. The sialyltransferase ST6Gal1, with high expression in specific hematopoietic cell types, is the only enzyme thought to catalyze the terminal addition of sialic acids in an α2-6-linkage to galactose on N-glycans in such cells. Expression of ST6Gal1 increases as B cells undergo normal B-lineage differentiation. B-cell precursor acute lymphoblastic leukemias (BCP-ALLs) with differentiation arrest at various stages of early B-cell development have widely different expression levels of ST6GAL1 at diagnosis, with high ST6Gal1 in some but not in other relapses. We analyzed the consequences of increasing ST6Gal1 expression in a diagnosis sample using lentiviral transduction. NSG mice transplanted with these BCP-ALL cells were monitored for survival. Compared to mice transplanted with leukemia cells expressing original ST6Gal1 levels, increased ST6Gal1 expression was associated with significantly reduced survival. A cohort of mice was also treated for 7 weeks with vincristine chemotherapy to induce remission and then allowed to relapse. Upon vincristine discontinuation, relapse was detected in both groups, but mice transplanted with ST6Gal1 overexpressing BCP-ALL cells had an increased leukemia burden and shorter survival than controls. The BCP-ALL cells with higher ST6Gal1 were more resistant to long-term vincristine treatment in an ex vivo tissue co-culture model with OP9 bone marrow stromal cells. Gene expression analysis using RNA-seq showed a surprisingly large number of genes with significantly differential expression, of which approximately 60% increased mRNAs, in the ST6Gal1 overexpressing BCP-ALL cells. Pathways significantly downregulated included those involved in immune cell migration. However, ST6Gal1 knockdown cells also showed increased insensitivity to chemotherapy. Our combined results point to a context-dependent effect of ST6Gal1 expression on BCP-ALL cells, which is discussed within the framework of its activity as an enzyme with many N-linked glycoprotein substrates.
Collapse
Affiliation(s)
- Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Duarte, CA, United States
| | - Tong Qi
- Department of Systems Biology, Beckman Research Institute City of Hope, Duarte, CA, United States
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute City of Hope, Duarte, CA, United States
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.,Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics, Griffith University, Gold Coast, QLD, Australia
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Duarte, CA, United States
| |
Collapse
|
5
|
Robinson H, Ruelcke JE, Lewis A, Bond CS, Fox AH, Bharti V, Wani S, Cloonan N, Lai A, Margolin D, Li L, Salomon C, Richards RS, Farrell A, Gardiner RA, Parton RG, Cristino AS, Hill MM. Caveolin-1-driven membrane remodelling regulates hnRNPK-mediated exosomal microRNA sorting in cancer. Clin Transl Med 2021; 11:e381. [PMID: 33931969 PMCID: PMC8031663 DOI: 10.1002/ctm2.381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Caveolae proteins play diverse roles in cancer development and progression. In prostate cancer, non-caveolar caveolin-1 (CAV1) promotes metastasis, while CAVIN1 attenuates CAV1-induced metastasis. Here, we unveil a novel mechanism linking CAV1 to selective loading of exosomes with metastasis-promoting microRNAs. RESULTS We identify hnRNPK as a CAV1-regulated microRNA binding protein. In the absence of CAVIN1, non-caveolar CAV1 drives localisation of hnRPNK to multi-vesicular bodies (MVBs), recruiting AsUGnA motif-containing miRNAs and causing their release within exosomes. This process is dependent on the lipid environment of membranes as shown by cholesterol depletion using methyl-β-cyclodextrin or by treatment with n-3 polyunsaturated fatty acids. Consistent with a role in bone metastasis, knockdown of hnRNPK in prostate cancer PC3 cells abolished the ability of PC3 extracellular vesicles (EV) to induce osteoclastogenesis, and biofluid EV hnRNPK is elevated in metastatic prostate and colorectal cancer. CONCLUSIONS Taken together, these results support a novel pan-cancer mechanism for CAV1-driven exosomal release of hnRNPK and associated miRNA in metastasis, which is modulated by the membrane lipid environment.
Collapse
Affiliation(s)
- Harley Robinson
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Jayde E. Ruelcke
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Amanda Lewis
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Charles S. Bond
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Archa H. Fox
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
- The Harry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsWAAustralia
| | - Vandhana Bharti
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Shivangi Wani
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Nicole Cloonan
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Andrew Lai
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - David Margolin
- Maternal‐Fetal Medicine, Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansUSA
| | - Li Li
- Maternal‐Fetal Medicine, Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansUSA
| | - Carlos Salomon
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
- Maternal‐Fetal Medicine, Department of Obstetrics and GynecologyOchsner Clinic FoundationNew OrleansUSA
- Department of Clinical Biochemistry and Immunology, Faculty of PharmacyUniversity of ConcepciónConcepciónChile
| | - Renée S. Richards
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Aine Farrell
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - Robert A. Gardiner
- University of Queensland Centre for Clinical Research, Royal Brisbane and Women's HospitalThe University of QueenslandBrisbaneQueenslandAustralia
| | - Robert G. Parton
- Institute for Molecular BioscienceThe University of QueenslandSt LuciaQueenslandAustralia
- Centre for Microscopy and MicroanalysisThe University of QueenslandSt LuciaQueenslandAustralia
| | - Alexandre S. Cristino
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
- Griffith Institute for Drug DiscoveryGriffith UniversityBrisbaneQueenslandAustralia
| | - Michelle M. Hill
- The University of Queensland Diamantina InstituteThe University of QueenslandWoolloongabbaQueenslandAustralia
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| |
Collapse
|
6
|
Kidney Mesenchymal Stem Cell-derived Extracellular Vesicles Engineered to Express Erythropoietin Improve Renal Anemia in Mice with Chronic Kidney Disease. Stem Cell Rev Rep 2021; 18:980-992. [PMID: 33651336 DOI: 10.1007/s12015-021-10141-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 12/29/2022]
Abstract
Extracellular vesicles (EVs) shed from kidney mesenchymal stem cells (KMSCs) show protective effects against acute kidney injury and progressive kidney fibrosis via mRNA transfer. Previous studies report improvement of renal anemia following administration of genetically modified MSCs or peritoneal mesothelial cells that secrete erythropoietin (EPO). Here, we determined whether EPO-secreting KMSC-derived EVs (EPO(+)-EVs) can improve renal anemia in mouse models of chronic kidney disease (CKD). The mouse CKD and renal anemia model was induced by electrocoagulation of the right renal cortex and sequential left nephrectomy. At six weeks post-nephrectomy, we observed significantly lower hemoglobin (10.4 ± 0.2 vs. 13.2 ± 0.2 g/dL) and significantly higher blood urea nitrogen and serum creatinine levels in CKD mice relative to controls (60.5 ± 0.5 and 0.37 ± 0.09 mg/dL vs. 19.9 ± 0.5 and 0.12 ± 0.02 mg/dL, respectively). Genetically engineered EPO(+)-KMSCs secreted 71 IU/mL EPO/106 cells/24 h in vitro, and EPO(+)-EVs isolated by differential ultracentrifugation expressed EPO mRNA and horizontally transferred EPO mRNA into target cells in vitro and in vivo. Furthermore, at two weeks post-injection of EPO(+)-KMSCs or EPO(+)-EVs into CKD mice with renal anemia, we observed significant increases in hemoglobin levels (11.7 ± 0.2 and 11.5 ± 0.2 vs. 10.1 ± 0.2 g/dL, respectively) and significantly lower serum creatinine levels at eight weeks in comparison to mice receiving vehicle control (0.30 ± 0.00 and 0.23 ± 0.03 vs. 0.43 ± 0.06 mg/dL, respectively). These results demonstrate that intraperitoneal administration of EPO(+)-EVs significantly increased hemoglobin levels and renal function in CKD mice, suggesting the efficacy of these genetically engineered EVs as a promising novel strategy for the treatment of renal anemia.
Collapse
|
7
|
Lee M, Kim SH, Jhee JH, Kim TY, Choi HY, Kim HJ, Park HC. Microparticles derived from human erythropoietin mRNA-transfected mesenchymal stem cells inhibit epithelial-to-mesenchymal transition and ameliorate renal interstitial fibrosis. Stem Cell Res Ther 2020; 11:422. [PMID: 32993806 PMCID: PMC7523343 DOI: 10.1186/s13287-020-01932-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Renal tubulointerstitial fibrosis (TIF) plays an important role in the progression of chronic kidney disease (CKD) and its pathogenesis involves epithelial-to-mesenchymal transition (EMT) upon renal injury. Recombinant human erythropoietin (rhEPO) has been shown to display novel cytoprotective effects, in part by inhibiting transforming growth factor (TGF)-β1-induced EMT. Here, we evaluated the inhibitory effects of microparticles (MPs) derived from human EPO gene-transfected kidney mesenchymal stem cells (hEPO-KMSCs) against TGF-β1-induced EMT in Madin-Darby canine kidney (MDCK) cells and against TIF in mouse kidneys with unilateral ureteral obstruction (UUO). Methods EMT was induced in MDCK cells by treatment with TGF-β1 (5 ng/mL) for 48 h and then inhibited by co-treatment with rhEPO (100 IU/mL), mock gene-transfected KMSC-derived MPs (MOCK-MPs), or hEPO-KMSC-derived MPs (hEPO-MPs) for a further 48 h. UUO was induced in FVB/N mice, which were then treated with rhEPO (1000 IU/kg, intraperitoneally, every other day for 1 week), MOCK-MPs, or hEPO-MPs (80 μg, intravenously). Alpha-smooth muscle actin (α-SMA), fibronectin, and E-cadherin expression were evaluated in MDCK cells and kidney tissues, and the extent of TIF in UUO kidneys was assessed by immunohistochemical staining. Results TGF-β1 treatment significantly increased α-SMA and fibronectin expression in MDCK cells and decreased that of E-cadherin, while co-treatment with rhEPO, MOCK-MPs, or hEPO-MPs markedly attenuated these changes. In addition, rhEPO and hEPO-MP treatment effectively decreased phosphorylated Smad2 and Smad3, as well as phosphorylated p38 mitogen-activated protein kinase (MAPK) expression, suggesting that rhEPO and rhEPO-MPs can inhibit TGF-β1-induced EMT via both Smad and non-Smad pathways. rhEPO and hEPO-MP treatment also significantly attenuated the extent of renal TIF after 1 week of UUO compared to MOCK-MPs, with hEPO-MPs significantly reducing myofibroblast and F4/80+ macrophage infiltration as well as EMT marker expression in UUO renal tissues in a similar manner to rhEPO. Conclusions Our results demonstrate that hEPO-MPs modulate TGF-β1-induced EMT in MDCK cells via the Smad2, Smad3, and p38 MAPK pathways and significantly attenuated renal TIF in UUO kidneys.
Collapse
Affiliation(s)
- Mirae Lee
- Graduate Program of Nano Science and Technology, Yonsei University, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Hyung Kim
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Gangwon-do, Korea
| | - Jong Hyun Jhee
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Yeon Kim
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon Young Choi
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Jong Kim
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Gyeonggi-do, Korea
| | - Hyeong Cheon Park
- Graduate Program of Nano Science and Technology, Yonsei University, Seoul, Korea. .,Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. .,Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Pavey S, Pinder A, Fernando W, D'Arcy N, Matigian N, Skalamera D, Lê Cao KA, Loo-Oey D, Hill MM, Stark M, Kimlin M, Burgess A, Cloonan N, Sturm RA, Gabrielli B. Multiple interaction nodes define the postreplication repair response to UV-induced DNA damage that is defective in melanomas and correlated with UV signature mutation load. Mol Oncol 2019; 14:22-41. [PMID: 31733171 PMCID: PMC6944116 DOI: 10.1002/1878-0261.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 01/25/2023] Open
Abstract
Ultraviolet radiation‐induced DNA mutations are a primary environmental driver of melanoma. The reason for this very high level of unrepaired DNA lesions leading to these mutations is still poorly understood. The primary DNA repair mechanism for UV‐induced lesions, that is, the nucleotide excision repair pathway, appears intact in most melanomas. We have previously reported a postreplication repair mechanism that is commonly defective in melanoma cell lines. Here we have used a genome‐wide approach to identify the components of this postreplication repair mechanism. We have used differential transcript polysome loading to identify transcripts that are associated with UV response, and then functionally assessed these to identify novel components of this repair and cell cycle checkpoint network. We have identified multiple interaction nodes, including global genomic nucleotide excision repair and homologous recombination repair, and previously unexpected MASTL pathway, as components of the response. Finally, we have used bioinformatics to assess the contribution of dysregulated expression of these pathways to the UV signature mutation load of a large melanoma cohort. We show that dysregulation of the pathway, especially the DNA damage repair components, are significant contributors to UV mutation load, and that dysregulation of the MASTL pathway appears to be a significant contributor to high UV signature mutation load.
Collapse
Affiliation(s)
- Sandra Pavey
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Alex Pinder
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Winnie Fernando
- Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas D'Arcy
- Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Nicholas Matigian
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,QFAB Bioinformatics, The University of Queensland, Brisbane, QLD, Australia
| | - Dubravka Skalamera
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kim-Anh Lê Cao
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Dorothy Loo-Oey
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Michelle M Hill
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mitchell Stark
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Michael Kimlin
- University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | | | - Nicole Cloonan
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Richard A Sturm
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| | - Brian Gabrielli
- Diamantina Institute, TRI, The University of Queensland, Woolloongabba, QLD, Australia.,Mater Research, TRI, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|
9
|
Škalamera D, Stevenson AJ, Ehmann A, Ainger SA, Lanagan C, Sturm RA, Gabrielli B. Melanoma mutations modify melanocyte dynamics in co-culture with keratinocytes or fibroblasts. J Cell Sci 2019; 132:jcs.234716. [PMID: 31767623 DOI: 10.1242/jcs.234716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022] Open
Abstract
Melanocytic cell interactions are integral to skin homeostasis, and affect the outcome of multiple diseases, including cutaneous pigmentation disorders and melanoma. By using automated-microscopy and machine-learning-assisted morphology analysis of primary human melanocytes in co-culture, we performed combinatorial interrogation of melanocyte genotypic variants and functional assessment of lentivirus-introduced mutations. Keratinocyte-induced melanocyte dendricity, an indicator of melanocyte differentiation, was reduced in the melanocortin 1 receptor (MC1R) R/R variant strain and by NRAS.Q61K and BRAF.V600E expression, while expression of CDK4.R24C and RAC1.P29S had no detectable effect. Time-lapse tracking of melanocytes in co-culture revealed dynamic interaction phenotypes and hyper-motile cell states that indicated that, in addition to the known role in activating mitogenic signalling, MEK-pathway-activating mutations may also allow melanocytes to escape keratinocyte control and increase their invasive potential. Expanding this combinatorial platform will identify other therapeutic target mutations and melanocyte genetic variants, as well as increase understanding of skin cell interactions.
Collapse
Affiliation(s)
- Dubravka Škalamera
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Alexander J Stevenson
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Anna Ehmann
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Stephen A Ainger
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Catherine Lanagan
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Brian Gabrielli
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| |
Collapse
|
10
|
Oo ZY, Proctor M, Stevenson AJ, Nazareth D, Fernando M, Daignault SM, Lanagan C, Walpole S, Bonazzi V, Škalamera D, Snell C, Haass NK, Larsen JE, Gabrielli B. Combined use of subclinical hydroxyurea and CHK1 inhibitor effectively controls melanoma and lung cancer progression, with reduced normal tissue toxicity compared to gemcitabine. Mol Oncol 2019; 13:1503-1518. [PMID: 31044505 PMCID: PMC6599846 DOI: 10.1002/1878-0261.12497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/20/2019] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
Drugs such as gemcitabine that increase replication stress are effective chemotherapeutics in a range of cancer settings. These drugs effectively block replication and promote DNA damage, triggering a cell cycle checkpoint response through the ATR–CHK1 pathway. Inhibiting this signalling pathway sensitises cells to killing by replication stress‐inducing drugs. Here, we investigated the effect of low‐level replication stress induced by low concentrations (> 0.2 mm) of the reversible ribonucleotide reductase inhibitor hydroxyurea (HU), which slows S‐phase progression but has little effect on cell viability or proliferation. We demonstrate that HU effectively synergises with CHK1, but not ATR inhibition, in > 70% of melanoma and non‐small‐cell lung cancer cells assessed, resulting in apoptosis and complete loss of proliferative potential in vitro and in vivo. Normal fibroblasts and haemopoietic cells retain viability and proliferative potential following exposure to CHK1 inhibitor plus low doses of HU, but normal cells exposed to CHK1 inhibitor combined with submicromolar concentrations of gemcitabine exhibited complete loss of proliferative potential. The effects of gemcitabine on normal tissue correlate with irreversible ATR–CHK1 pathway activation, whereas low doses of HU reversibly activate CHK1 independently of ATR. The combined use of CHK1 inhibitor and subclinical HU also triggered an inflammatory response involving the recruitment of macrophages in vivo. These data indicate that combining CHK1 inhibitor with subclinical HU is superior to combination with gemcitabine, as it provides equal anticancer efficacy but with reduced normal tissue toxicity. These data suggest a significant proportion of melanoma and lung cancer patients could benefit from treatment with this drug combination.
Collapse
Affiliation(s)
- Zay Yar Oo
- Smiling for Smiddy Research Group, Translational Research Institute, Mater Research Institute-The University of Queensland, Brisbane, Australia.,Translational Research Institute, The University of Queensland-Diamantina Institute, Brisbane, Australia
| | - Martina Proctor
- Smiling for Smiddy Research Group, Translational Research Institute, Mater Research Institute-The University of Queensland, Brisbane, Australia
| | - Alexander J Stevenson
- Smiling for Smiddy Research Group, Translational Research Institute, Mater Research Institute-The University of Queensland, Brisbane, Australia
| | - Deborah Nazareth
- Smiling for Smiddy Research Group, Translational Research Institute, Mater Research Institute-The University of Queensland, Brisbane, Australia
| | - Madushan Fernando
- Smiling for Smiddy Research Group, Translational Research Institute, Mater Research Institute-The University of Queensland, Brisbane, Australia
| | - Sheena M Daignault
- Translational Research Institute, The University of Queensland-Diamantina Institute, Brisbane, Australia
| | - Catherine Lanagan
- Smiling for Smiddy Research Group, Translational Research Institute, Mater Research Institute-The University of Queensland, Brisbane, Australia
| | - Sebastian Walpole
- Translational Research Institute, The University of Queensland-Diamantina Institute, Brisbane, Australia
| | - Vanessa Bonazzi
- Translational Research Institute, The University of Queensland-Diamantina Institute, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Dubravka Škalamera
- Smiling for Smiddy Research Group, Translational Research Institute, Mater Research Institute-The University of Queensland, Brisbane, Australia
| | - Cameron Snell
- Smiling for Smiddy Research Group, Translational Research Institute, Mater Research Institute-The University of Queensland, Brisbane, Australia.,Mater Pathology, Mater Adults Hospital, Mater Misericordiae Limited, South Brisbane, Australia
| | - Nikolas K Haass
- Translational Research Institute, The University of Queensland-Diamantina Institute, Brisbane, Australia
| | - Jill E Larsen
- QIMR-Berghofer Medical Research Institute, The University of Queensland, Brisbane, Australia.,School of Medicine, The University of Queensland, Brisbane, Australia
| | - Brian Gabrielli
- Smiling for Smiddy Research Group, Translational Research Institute, Mater Research Institute-The University of Queensland, Brisbane, Australia.,Translational Research Institute, The University of Queensland-Diamantina Institute, Brisbane, Australia
| |
Collapse
|
11
|
Zhuang L, Lawlor KT, Schlueter H, Pieterse Z, Yu Y, Kaur P. Pericytes promote skin regeneration by inducing epidermal cell polarity and planar cell divisions. Life Sci Alliance 2018; 1:e201700009. [PMID: 30456360 PMCID: PMC6238533 DOI: 10.26508/lsa.201700009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022] Open
Abstract
The cellular and molecular microenvironment of epithelial stem/progenitor cells is critical for their long-term self-renewal. We demonstrate that mesenchymal stem cell-like dermal microvascular pericytes are a critical element of the skin's microenvironment influencing human skin regeneration using organotypic models. Specifically, pericytes were capable of promoting homeostatic skin tissue renewal by conferring more planar cell divisions generating two basal cells within the proliferative compartment of the human epidermis, while ensuring complete maturation of the tissue both spatially and temporally. Moreover, we provide evidence supporting the notion that BMP-2, a secreted protein preferentially expressed by pericytes in human skin, confers cell polarity and planar divisions on epidermal cells in organotypic cultures. Our data suggest that human skin regeneration is regulated by highly conserved mechanisms at play in other rapidly renewing tissues such as the bone marrow and in lower organisms such as Drosophila. Our work also provides the means to significantly improve ex vivo skin tissue regeneration for autologous transplantation.
Collapse
Affiliation(s)
- Lizhe Zhuang
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | - Zalitha Pieterse
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Pritinder Kaur
- Peter MacCallum Cancer Centre, Melbourne, Australia.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| |
Collapse
|
12
|
Oo ZY, Stevenson AJ, Proctor M, Daignault SM, Walpole S, Lanagan C, Chen J, Škalamera D, Spoerri L, Ainger SA, Sturm RA, Haass NK, Gabrielli B. Endogenous Replication Stress Marks Melanomas Sensitive to CHEK1 Inhibitors In Vivo. Clin Cancer Res 2018. [PMID: 29535131 DOI: 10.1158/1078-0432.ccr-17-2701] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Checkpoint kinase 1 inhibitors (CHEK1i) have single-agent activity in vitro and in vivo Here, we have investigated the molecular basis of this activity.Experimental Design: We have assessed a panel of melanoma cell lines for their sensitivity to the CHEK1i GNE-323 and GDC-0575 in vitro and in vivo The effects of these compounds on responses to DNA replication stress were analyzed in the hypersensitive cell lines.Results: A subset of melanoma cell lines is hypersensitive to CHEK1i-induced cell death in vitro, and the drug effectively inhibits tumor growth in vivo In the hypersensitive cell lines, GNE-323 triggers cell death without cells entering mitosis. CHEK1i treatment triggers strong RPA2 hyperphosphorylation and increased DNA damage in only hypersensitive cells. The increased replication stress was associated with a defective S-phase cell-cycle checkpoint. The number and intensity of pRPA2 Ser4/8 foci in untreated tumors appeared to be a marker of elevated replication stress correlated with sensitivity to CHEK1i.Conclusions: CHEK1i have single-agent activity in a subset of melanomas with elevated endogenous replication stress. CHEK1i treatment strongly increased this replication stress and DNA damage, and this correlated with increased cell death. The level of endogenous replication is marked by the pRPA2Ser4/8 foci in the untreated tumors, and may be a useful marker of replication stress in vivoClin Cancer Res; 24(12); 2901-12. ©2018 AACR.
Collapse
Affiliation(s)
- Zay Yar Oo
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Alexander J Stevenson
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Martina Proctor
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Sheena M Daignault
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Sebastian Walpole
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Catherine Lanagan
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James Chen
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Dubravka Škalamera
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Loredana Spoerri
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Stephen A Ainger
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Richard A Sturm
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia. .,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| |
Collapse
|
13
|
Farwell SLN, Slee JB, Li Y, Lowe-Krentz LJ. Using a GFP-tagged TMEM184A Construct for Confirmation of Heparin Receptor Identity. J Vis Exp 2017. [PMID: 28287514 DOI: 10.3791/55053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
When novel proteins are identified through affinity-based isolation and bioinformatics analysis, they are often largely uncharacterized. Antibodies against specific peptides within the predicted sequence allow some localization experiments. However, other possible interactions with the antibodies often cannot be excluded. This situation provided an opportunity to develop a set of assays dependent on the protein sequence. Specifically, a construct containing the gene sequence coupled to the GFP coding sequence at the C-terminal end of the protein was obtained and employed for these purposes. Experiments to characterize localization, ligand affinity, and gain of function were originally designed and carried out to confirm the identification of TMEM184A as a heparin receptor1. In addition, the construct can be employed for studies addressing membrane topology questions and detailed protein-ligand interactions. The present report presents a range of experimental protocols based on the GFP-TMEM184A construct expressed in vascular cells that could easily be adapted for other novel proteins.
Collapse
Affiliation(s)
| | | | - Yaqiu Li
- Department of Biological Sciences, Lehigh University
| | | |
Collapse
|
14
|
Lee WJ, Škalamera D, Dahmer-Heath M, Shakhbazov K, Ranall MV, Fox C, Lambie D, Stevenson AJ, Yaswen P, Gonda TJ, Gabrielli B. Genome-Wide Overexpression Screen Identifies Genes Able to Bypass p16-Mediated Senescence in Melanoma. SLAS DISCOVERY 2016; 22:298-308. [PMID: 27872202 DOI: 10.1177/1087057116679592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Malignant melanomas often arise from nevi, which result from initial oncogene-induced hyperproliferation of melanocytes that are maintained in a CDKN2A/p16-mediated senescent state. Thus, genes that can bypass this senescence barrier are likely to contribute to melanoma development. We have performed a gain-of-function screen of 17,030 lentivirally expressed human open reading frames (ORFs) in a melanoma cell line containing an inducible p16 construct to identify such genes. Genes known to bypass p16-induced senescence arrest, including the human papilloma virus 18 E7 gene ( HPV18E7), and genes such as the p16-binding CDK6 with expected functions, as well as panel of novel genes, were identified, including high-mobility group box (HMGB) proteins. A number of these were further validated in two other models of p16-induced senescence. Tissue immunohistochemistry demonstrated higher levels of CDK6 in primary melanomas compared with normal skin and nevi. Reduction of CDK6 levels drove melanoma cells expressing functional p16 into senescence, demonstrating its contribution to bypass senescence.
Collapse
Affiliation(s)
- Won Jae Lee
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Dubravka Škalamera
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Mareike Dahmer-Heath
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Konstanin Shakhbazov
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Max V Ranall
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Carly Fox
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Duncan Lambie
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Alexander J Stevenson
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Paul Yaswen
- 2 Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thomas J Gonda
- 3 School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Brian Gabrielli
- 1 The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
15
|
Lin S, Luo RT, Ptasinska A, Kerry J, Assi SA, Wunderlich M, Imamura T, Kaberlein JJ, Rayes A, Althoff MJ, Anastasi J, O'Brien MM, Meetei AR, Milne TA, Bonifer C, Mulloy JC, Thirman MJ. Instructive Role of MLL-Fusion Proteins Revealed by a Model of t(4;11) Pro-B Acute Lymphoblastic Leukemia. Cancer Cell 2016; 30:737-749. [PMID: 27846391 DOI: 10.1016/j.ccell.2016.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/21/2016] [Accepted: 10/12/2016] [Indexed: 01/11/2023]
Abstract
The t(4;11)(q21;q23) fuses mixed-lineage leukemia (MLL) to AF4, the most common MLL-fusion partner. Here we show that MLL fused to murine Af4, highly conserved with human AF4, produces high-titer retrovirus permitting efficient transduction of human CD34+ cells, thereby generating a model of t(4;11) pro-B acute lymphoblastic leukemia (ALL) that fully recapitulates the immunophenotypic and molecular aspects of the disease. MLL-Af4 induces a B ALL distinct from MLL-AF9 through differential genomic target binding of the fusion proteins leading to specific gene expression patterns. MLL-Af4 cells can assume a myeloid state under environmental pressure but retain lymphoid-lineage potential. Such incongruity was also observed in t(4;11) patients in whom leukemia evaded CD19-directed therapy by undergoing myeloid-lineage switch. Our model provides a valuable tool to unravel the pathogenesis of MLL-AF4 leukemogenesis.
Collapse
Affiliation(s)
- Shan Lin
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Roger T Luo
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jon Kerry
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, Oxford OX3 9DS, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark Wunderlich
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Toshihiko Imamura
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Joseph J Kaberlein
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ahmad Rayes
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mark J Althoff
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John Anastasi
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Maureen M O'Brien
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Amom Ruhikanta Meetei
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Programme, University of Oxford, Oxford OX3 9DS, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - James C Mulloy
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Michael J Thirman
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Škalamera D, Dahmer-Heath M, Stevenson AJ, Pinto C, Shah ET, Daignault SM, Said NAB, Davis M, Haass NK, Williams ED, Hollier BG, Thompson EW, Gabrielli B, Gonda TJ. Genome-wide gain-of-function screen for genes that induce epithelial-to-mesenchymal transition in breast cancer. Oncotarget 2016; 7:61000-61020. [PMID: 27876705 PMCID: PMC5308632 DOI: 10.18632/oncotarget.11314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/27/2016] [Indexed: 01/08/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a developmental program that has been implicated in progression, metastasis and therapeutic resistance of some carcinomas. To identify genes whose overexpression drives EMT, we screened a lentiviral expression library of 17000 human open reading frames (ORFs) using high-content imaging to quantitate cytoplasmic vimentin. Hits capable of increasing vimentin in the mammary carcinoma-derived cell line MDA-MB-468 were confirmed in the non-tumorigenic breast-epithelial cell line MCF10A. When overexpressed in this model, they increased the rate of cell invasion through Matrigel™, induced mesenchymal marker expression and reduced expression of the epithelial marker E-cadherin. In gene-expression datasets derived from breast cancer patients, the expression of several novel genes correlated with expression of known EMT marker genes, indicating their in vivo relevance. As EMT-associated properties are thought to contribute in several ways to cancer progression, genes identified in this study may represent novel targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Dubravka Škalamera
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Mareike Dahmer-Heath
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Alexander J. Stevenson
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Cletus Pinto
- St Vincent's Institute of Medical Research and University of Melbourne Department of Surgery, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Esha T. Shah
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Sheena M. Daignault
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Nur Akmarina B.M. Said
- Monash Institute of Medical Research (now Hudson Institute of Medical Research), Monash University, Melbourne, VIC, Australia
- University of Malaya, Kuala Lumpur, Malaysia
| | - Melissa Davis
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Nikolas K. Haass
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
- Monash Institute of Medical Research (now Hudson Institute of Medical Research), Monash University, Melbourne, VIC, Australia
| | - Brett G. Hollier
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Erik W. Thompson
- St Vincent's Institute of Medical Research and University of Melbourne Department of Surgery, St. Vincent's Hospital, Melbourne, VIC, Australia
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Brian Gabrielli
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Thomas J. Gonda
- University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Xuan J, Chen S, Ning B, Tolleson WH, Guo L. Development of HepG2-derived cells expressing cytochrome P450s for assessing metabolism-associated drug-induced liver toxicity. Chem Biol Interact 2015; 255:63-73. [PMID: 26477383 DOI: 10.1016/j.cbi.2015.10.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 01/08/2023]
Abstract
The generation of reactive metabolites from therapeutic agents is one of the major mechanisms of drug-induced liver injury (DILI). In order to evaluate metabolism-related toxicity and improve drug efficacy and safety, we generated a battery of HepG2-derived cell lines that express 14 cytochrome P450s (CYPs) (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5 and 3A7) individually using a lentiviral expression system. The expression/production of a specific CYP in each cell line was confirmed by an increased abundance of the CYP at both mRNA and protein levels. Moreover, the enzymatic activities of representative CYPs in the corresponding cell lines were also measured. Using our CYP-expressed HepG2 cells, the toxicity of three drugs that could induce DILI (amiodarone, chlorpromazine and primaquine) was assessed, and all of them showed altered (increased or decreased) toxicity compared to the toxicity in drug-treated wild-type HepG2 cells. CYP-mediated drug toxicity examined in our cell system is consistent with previous reports, demonstrating the potential of these cells for assessing metabolism-related drug toxicity. This cell system provides a practical in vitro approach for drug metabolism screening and for early detection of drug toxicity. It is also a surrogate enzyme source for the enzymatic characterization of a particular CYP that contributes to drug-induced liver toxicity.
Collapse
Affiliation(s)
- Jiekun Xuan
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- Division of System Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - William H Tolleson
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
18
|
Ainger SA, Yong XL, Wong SS, Skalamera D, Gabrielli B, Leonard JH, Sturm RA. DCT protects human melanocytic cells from UVR and ROS damage and increases cell viability. Exp Dermatol 2015; 23:916-21. [PMID: 25346513 DOI: 10.1111/exd.12574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/25/2022]
Abstract
Dopachrome tautomerase (DCT) is involved in the formation of the photoprotective skin pigment eumelanin and has also been shown to have a role in response to apoptotic stimuli and oxidative stress. The effect of DCT on UVR DNA damage responses and survival pathways in human melanocytic cells was examined by knockdown experiments using melanoma cells, neonatal foreskin melanoblasts (MB) in monoculture and in co-culture with human keratinocytes. MB cell strains genotyped as either MC1R WT or MC1R RHC homozygotes, which are known to be deficient in DCT, were transduced with lentivirus vectors for either DCT knockdown or overexpression. We found melanoma cell survival was reduced by DCT depletion and by UVR over time. UVR-induced p53 and pp53-Ser15 levels were reduced with DCT depletion. Knockdown of DCT in MC1R WT and MC1R RHC MB cells reduced their survival after UVR exposure, whereas increased DCT protein levels enhanced survival. DCT depletion reduced p53 and pp53-Ser15 levels in WM266-4 melanoma and MC1R WT MB cells, while MC1R RHC MB cells displayed variable levels. Both MC1R WT and RHC genotypes of MB cells were responsive to UVR at 3 h with increases in both p53 and pp53-Ser15 proteins. MC1R WT MB cell strains in coculture with keratinocytes have an increased cell survival after UVR exposure when compared to those in monoculture, a protective effect which appears to be conferred by the keratinocytes.
Collapse
Affiliation(s)
- Stephen A Ainger
- Institute for Molecular Bioscience, Melanogenix Group, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Gagoski D, Mureev S, Giles N, Johnston W, Dahmer-Heath M, Škalamera D, Gonda TJ, Alexandrov K. Gateway-compatible vectors for high-throughput protein expression in pro- and eukaryotic cell-free systems. J Biotechnol 2014; 195:1-7. [PMID: 25529348 DOI: 10.1016/j.jbiotec.2014.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 12/16/2022]
Abstract
Although numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system. These vectors introduce C or N terminal EGFP and mCherry fluorescent and affinity tags, enabling direct analysis and purification of the expressed proteins. To maximize throughput and minimize the cost of protein production we combined Gateway cloning with Rolling Circle DNA Amplification. We demonstrate that as little as 0.1 ng of plasmid DNA is sufficient for template amplification and production of recombinant human protein in Leishmania tarentolae and Escherichia coli cell-free expression systems. Our experiments indicate that this approach can be applied to large gene libraries as it can be reliably performed in multi-well plates. The resulting protein expression pipeline provides a valuable new tool for applications of the post genomic era.
Collapse
Affiliation(s)
- Dejan Gagoski
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - Nichole Giles
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - Mareike Dahmer-Heath
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Dubravka Škalamera
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Thomas J Gonda
- School of Pharmacy, University of Queensland, Brisbane, Australia; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, University of Queensland, Australia.
| |
Collapse
|
20
|
Wu C, Hong SG, Winkler T, Spencer DM, Jares A, Ichwan B, Nicolae A, Guo V, Larochelle A, Dunbar CE. Development of an inducible caspase-9 safety switch for pluripotent stem cell-based therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14053. [PMID: 26052521 PMCID: PMC4448736 DOI: 10.1038/mtm.2014.53] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023]
Abstract
Induced pluripotent stem cell (iPSC) therapies offer a promising path for patient-specific regenerative medicine. However, tumor formation from residual undifferentiated iPSC or transformation of iPSC or their derivatives is a risk. Inclusion of a suicide gene is one approach to risk mitigation. We introduced a dimerizable-“inducible caspase-9” (iCasp9) suicide gene into mouse iPSC (miPSC) and rhesus iPSC (RhiPSC) via a lentivirus, driving expression from either a cytomegalovirus (CMV), elongation factor-1 α (EF1α) or pluripotency-specific EOS-C(3+) promoter. Exposure of the iPSC to the synthetic chemical dimerizer, AP1903, in vitro induced effective apoptosis in EF1α-iCasp9-expressing (EF1α)-iPSC, with less effective killing of EOS-C(3+)-iPSC and CMV-iPSC, proportional to transgene expression in these cells. AP1903 treatment of EF1α-iCasp9 miPSC in vitro delayed or prevented teratomas. AP1903 administration following subcutaneous or intravenous delivery of EF1α-iPSC resulted in delayed teratoma progression but did not ablate tumors. EF1α-iCasp9 expression was downregulated during in vitro and in vivo differentiation due to DNA methylation at CpG islands within the promoter, and methylation, and thus decreased expression, could be reversed by 5-azacytidine treatment. The level and stability of suicide gene expression will be important for the development of suicide gene strategies in iPSC regenerative medicine.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - So Gun Hong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Thomas Winkler
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | | | - Alexander Jares
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Brian Ichwan
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Alina Nicolae
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland, USA
| | - Vicky Guo
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Andre Larochelle
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| |
Collapse
|
21
|
Moon H, Lee CS, Inder KL, Sharma S, Choi E, Black DM, Lê Cao KA, Winterford C, Coward JI, Ling MT, Craik DJ, Parton RG, Russell PJ, Hill MM. PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene 2014; 33:3561-70. [PMID: 23934189 DOI: 10.1038/onc.2013.315] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 12/15/2022]
Abstract
Caveolin-1 has a complex role in prostate cancer and has been suggested to be a potential biomarker and therapeutic target. As mature caveolin-1 resides in caveolae, invaginated lipid raft domains at the plasma membrane, caveolae have been suggested as a tumor-promoting signaling platform in prostate cancer. However, caveola formation requires both caveolin-1 and cavin-1 (also known as PTRF; polymerase I and transcript release factor). Here, we examined the expression of cavin-1 in prostate epithelia and stroma using tissue microarray including normal, non-malignant and malignant prostate tissues. We found that caveolin-1 was induced without the presence of cavin-1 in advanced prostate carcinoma, an expression pattern mirrored in the PC-3 cell line. In contrast, normal prostate epithelia expressed neither caveolin-1 nor cavin-1, while prostate stroma highly expressed both caveolin-1 and cavin-1. Utilizing PC-3 cells as a suitable model for caveolin-1-positive advanced prostate cancer, we found that cavin-1 expression in PC-3 cells inhibits anchorage-independent growth, and reduces in vivo tumor growth and metastasis in an orthotopic prostate cancer xenograft mouse model. The expression of α-smooth muscle actin in stroma along with interleukin-6 (IL-6) in cancer cells was also decreased in tumors of mice bearing PC-3-cavin-1 tumor cells. To determine whether cavin-1 acts by neutralizing caveolin-1, we expressed cavin-1 in caveolin-1-negative prostate cancer LNCaP and 22Rv1 cells. Caveolin-1 but not cavin-1 expression increased anchorage-independent growth in LNCaP and 22Rv1 cells. Cavin-1 co-expression reversed caveolin-1 effects in caveolin-1-positive LNCaP cells. Taken together, these results suggest that caveolin-1 in advanced prostate cancer is present outside of caveolae, because of the lack of cavin-1 expression. Cavin-1 expression attenuates the effects of non-caveolar caveolin-1 microdomains partly via reduced IL-6 microenvironmental function. With circulating caveolin-1 as a potential biomarker for advanced prostate cancer, identification of the molecular pathways affected by cavin-1 could provide novel therapeutic targets.
Collapse
Affiliation(s)
- H Moon
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - C S Lee
- 1] Discipline of Pathology, School of Medicine and Molecular Medicine Research Group, University of Western Sydney, Sydney, New South Wales, Australia [2] Department of Anatomical Pathology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - K L Inder
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - S Sharma
- 1] Discipline of Pathology, School of Medicine and Molecular Medicine Research Group, University of Western Sydney, Sydney, New South Wales, Australia [2] Department of Anatomical Pathology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - E Choi
- 1] The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia [2] School of Veterinary Science, The University of Queensland, Brisbane, Queensland, Australia
| | - D M Black
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - K-A Lê Cao
- Queensland Facility for Advanced Bioinformatics, The University of Queensland, Brisbane, Queensland, Australia
| | - C Winterford
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - J I Coward
- Mater Research, Translational Research Institute, Brisbane, Queensland, Australia
| | - M T Ling
- Australian Prostate Cancer Research Centre-Queensland and Institute for Biomedical Health & Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - D J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - R G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - P J Russell
- Australian Prostate Cancer Research Centre-Queensland and Institute for Biomedical Health & Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - M M Hill
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Arnoldo A, Kittanakom S, Heisler LE, Mak AB, Shukalyuk AI, Torti D, Moffat J, Giaever G, Nislow C. A genome scale overexpression screen to reveal drug activity in human cells. Genome Med 2014; 6:32. [PMID: 24944581 PMCID: PMC4062067 DOI: 10.1186/gm549] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 04/22/2014] [Indexed: 02/08/2023] Open
Abstract
Target identification is a critical step in the lengthy and expensive process of drug development. Here, we describe a genome-wide screening platform that uses systematic overexpression of pooled human ORFs to understand drug mode-of-action and resistance mechanisms. We first calibrated our screen with the well-characterized drug methotrexate. We then identified new genes involved in the bioactivity of diverse drugs including antineoplastic agents and biologically active molecules. Finally, we focused on the transcription factor RHOXF2 whose overexpression conferred resistance to DNA damaging agents. This approach represents an orthogonal method for functional screening and, to our knowledge, has never been reported before.
Collapse
Affiliation(s)
- Anthony Arnoldo
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada ; Banting and Best Department of Medical Research, University of Toronto, Toronto, M5S 3E1, Canada ; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Saranya Kittanakom
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada ; Banting and Best Department of Medical Research, University of Toronto, Toronto, M5S 3E1, Canada ; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Lawrence E Heisler
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada ; Banting and Best Department of Medical Research, University of Toronto, Toronto, M5S 3E1, Canada ; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada ; Donnelly Sequencing Center, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Anthony B Mak
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada ; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Andrey I Shukalyuk
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College Street, Toronto M5S 3E3, Canada
| | - Dax Torti
- Donnelly Sequencing Center, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada ; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Guri Giaever
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada ; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada ; Department of Pharmaceutical Sciences, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada ; Department of Pharmaceutical Sciences, University of British Columbia, 6619-2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Corey Nislow
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 3E1, Canada ; Banting and Best Department of Medical Research, University of Toronto, Toronto, M5S 3E1, Canada ; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada ; Donnelly Sequencing Center, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada ; Department of Pharmaceutical Sciences, University of British Columbia, 6619-2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|