1
|
Nunes AM, Ramirez MM, Garcia-Collazo E, Jones TI, Jones PL. Muscle eosinophilia is a hallmark of chronic disease in facioscapulohumeral muscular dystrophy. Hum Mol Genet 2024; 33:872-883. [PMID: 38340007 PMCID: PMC11070135 DOI: 10.1093/hmg/ddae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy caused by the aberrant increased expression of the DUX4 retrogene in skeletal muscle cells. The DUX4 gene encodes a transcription factor that functions in zygotic genome activation and then is silenced in most adult somatic tissues. DUX4 expression in FSHD disrupts normal muscle cell function; however, the downstream pathogenic mechanisms are still unclear. Histologically, FSHD affected muscles show a characteristic dystrophic phenotype that is often accompanied by a pronounced immune cell infiltration, but the role of the immune system in FSHD is not understood. Previously, we used ACTA1;FLExDUX4 FSHD-like mouse models varying in severity as discovery tools to identify increased Interleukin 6 and microRNA-206 levels as serum biomarkers for FSHD disease severity. In this study, we use the ACTA1;FLExDUX4 chronic FSHD-like mouse model to provide insight into the immune response to DUX4 expression in skeletal muscles. We demonstrate that these FSHD-like muscles are enriched with the chemoattractant eotaxin and the cytotoxic eosinophil peroxidase, and exhibit muscle eosinophilia. We further identified muscle fibers with positive staining for eosinophil peroxidase in human FSHD muscle. Our data supports that skeletal muscle eosinophilia is a hallmark of FSHD pathology.
Collapse
Affiliation(s)
- Andreia M Nunes
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Monique M Ramirez
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Enrique Garcia-Collazo
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Takako Iida Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, United States
| |
Collapse
|
2
|
Grecco MV, Brech GC, Soares-Junior JM, Baracat EC, Greve JMD, Silva PRS. Effect of concurrent training in unilateral transtibial amputees using Paralympic athletes as a control group. Clinics (Sao Paulo) 2023; 78:100165. [PMID: 37037074 PMCID: PMC10126662 DOI: 10.1016/j.clinsp.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 04/12/2023] Open
Abstract
CONTEXT Transtibial Amputation (TA) predisposes to a sedentary lifestyle. OBJECTIVES To evaluate the efficiency of a short-term (8-week) Concurrent Training (CT) program in Unilateral Transtibial Amputees (UTA) and to compare it with the physical condition of a group of Paralympic athletes in preparation for the Rio de Janeiro Paralympics. DESIGN This was a longitudinal, prospective and controlled trial study. METHODS Thirty-four male subjects with UTA and using prostheses for six months or more were selected for this study. They were divided into two groups: Group 1 (G1) ‒ 17 non-athlete and untrained UTA and Group 2 (G2) ‒ 17 paralympic athletes with active UTA in the training phase. G1 was evaluated before and after eight weeks of CT and G2 made a single evaluation for control. All were submitted to anamnesis, clinical evaluation (blood pressure, electrocardiogram, and heart rate) and cardiopulmonary exercise testing on a lower limb cycle ergometer, and isokinetic knee dynamometry. The CT of G1 included resistance exercise and aerobic interval training on a stationary bicycle and G2 followed the training of the Paralympic teams. RESULTS Patients were retested by the same methods after CT. The two most important central dependent variables (maximal oxygen uptake and muscular strength) increased by 22% and knee extensor and flexor strength by 106% and 97%, respectively. CONCLUSION After eight weeks of CT, there was an improvement in general functional condition, muscle strength, and cardiorespiratory performance improving protection against chronic diseases and quality of life.
Collapse
Affiliation(s)
- Marcus Vinicius Grecco
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil; Sports Medicine Division, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; FIFA Medical Centre of Excellence, São Paulo, SP, Brazil
| | - Guilherme Carlos Brech
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil; Graduate Program in Aging Sciences, Universidade São Judas Tadeu (USJT), São Paulo, SP, Brazil.
| | - Jose Maria Soares-Junior
- Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Edmund Chada Baracat
- Departamento de Obstetrícia e Ginecologia, Disciplina de Ginecologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Júlia Maria D'Andrea Greve
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil; Sports Medicine Division, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; FIFA Medical Centre of Excellence, São Paulo, SP, Brazil
| | - Paulo Roberto Santos Silva
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil; Sports Medicine Division, Instituto de Ortopedia e Traumatologia do Hospital das Clínicas (IOT-HC) da Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil; FIFA Medical Centre of Excellence, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Grecco MV, Brech GC, Camargo CP, Santos-Silva PR, D'Andréa Greve JM. The eight-week concurrent training effect on functional capacity in person living with unilateral transtibial amputation: A randomized controlled trial. J Bodyw Mov Ther 2023; 33:164-170. [PMID: 36775514 DOI: 10.1016/j.jbmt.2022.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2021] [Accepted: 09/24/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The main causes of amputation include vascular diseases, trauma, cancer, and congenital limb abnormalities. The person with transtibial amputation (TA) is affected by a greater cardiorespiratory, metabolic, and muscular load to walk and perform daily activities. The sedentary lifestyle contributes to the process of chronic non-communicable diseases. The purpose of the study was to compare the effects of eight-week concurrent training (CT) for dependent variables as muscle strength, cardiorespiratory fitness, agility, and postural balance in persons with unilateral TA. METHODS A eight-week, randomized, controlled trial. Thirty-one people using prostheses for three or more months were selected. They were randomly divided into two groups: Experimental Group (EG; n = 17) - concurrent training and Control group (CG; n = 14) - no training. All patients were evaluated at the baseline and after eight weeks by the functional performance, isokinetic knee evaluation, static and dynamic posturography and cardiopulmonary test. RESULTS The patients showed improvements in all measures after training (size effect >0.80). CONCLUSION The main limitations are the sample size, related to the socioeconomic status and availability training and no comparison to other types of training. Eight weeks of CT was effective and favorably modified the dependent variables in TA patients. Therefore, CT is a good option to improve functional performance after the regular rehabilitation program discharge and decreases the metabolic and functional deficits of these patients.
Collapse
Affiliation(s)
- Marcus Vinicius Grecco
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia Do Hospital Das Clínicas (HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), SP, Brazil
| | - Guilherme Carlos Brech
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia Do Hospital Das Clínicas (HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), SP, Brazil; Graduate Program in Aging Sciences from the University São Judas Tadeu (USJT), SP, Brazil.
| | - Cristina Pires Camargo
- Division of Plastic Surgery, Laboratory of Microsurgery and Plastic Surgery (LIM-04), Medical School, HC da FMUSP, SP, Brazil
| | - Paulo Roberto Santos-Silva
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia Do Hospital Das Clínicas (HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), SP, Brazil
| | - Julia Maria D'Andréa Greve
- Laboratory Study of Movement, Instituto de Ortopedia e Traumatologia Do Hospital Das Clínicas (HC) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), SP, Brazil
| |
Collapse
|
4
|
Multiple Applications of Different Exercise Modalities with Rodents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3898710. [PMID: 34868454 PMCID: PMC8639251 DOI: 10.1155/2021/3898710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022]
Abstract
A large proportion of chronic diseases can be derived from a sedentary lifestyle. Raising physical activity awareness is indispensable, as lack of exercise is the fourth most common cause of death worldwide. Animal models in different research fields serve as important tools in the study of acute or chronic noncommunicable disorders. With the help of animal-based exercise research, exercise-mediated complex antioxidant and inflammatory pathways can be explored, which knowledge can be transferred to human studies. Whereas sustained physical activity has an enormous number of beneficial effects on many organ systems, these animal models are easily applicable in several research areas. This review is aimed at providing an overall picture of scientific research studies using animal models with a focus on different training modalities. Without wishing to be exhaustive, the most commonly used forms of exercise are presented.
Collapse
|
5
|
Macaulay TR, Peters BT, Wood SJ, Clément GR, Oddsson L, Bloomberg JJ. Developing Proprioceptive Countermeasures to Mitigate Postural and Locomotor Control Deficits After Long-Duration Spaceflight. Front Syst Neurosci 2021; 15:658985. [PMID: 33986648 PMCID: PMC8111171 DOI: 10.3389/fnsys.2021.658985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Astronauts experience post-flight disturbances in postural and locomotor control due to sensorimotor adaptations during spaceflight. These alterations may have adverse consequences if a rapid egress is required after landing. Although current exercise protocols can effectively mitigate cardiovascular and muscular deconditioning, the benefits to post-flight sensorimotor dysfunction are limited. Furthermore, some exercise capabilities like treadmill running are currently not feasible on exploration spaceflight vehicles. Thus, new in-flight operational countermeasures are needed to mitigate postural and locomotor control deficits after exploration missions. Data from spaceflight and from analog studies collectively suggest that body unloading decreases the utilization of proprioceptive input, and this adaptation strongly contributes to balance dysfunction after spaceflight. For example, on return to Earth, an astronaut's vestibular input may be compromised by adaptation to microgravity, but their proprioceptive input is compromised by body unloading. Since proprioceptive and tactile input are important for maintaining postural control, keeping these systems tuned to respond to upright balance challenges during flight may improve functional task performance after flight through dynamic reweighting of sensory input. Novel approaches are needed to compensate for the challenges of balance training in microgravity and must be tested in a body unloading environment such as head down bed rest. Here, we review insights from the literature and provide observations from our laboratory that could inform the development of an in-flight proprioceptive countermeasure.
Collapse
Affiliation(s)
| | | | - Scott J. Wood
- NASA Johnson Space Center, Houston, TX, United States
| | | | - Lars Oddsson
- RxFunction Inc., Eden Prairie, MN, United States
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
- Recaniti School for Community Health Professions, Ben Gurion University of the Negev, Beersheba, Israel
| | | |
Collapse
|
6
|
Yanai R, Nishida T, Hatano M, Uchi SH, Yamada N, Kimura K. Role of the Neurokinin-1 Receptor in the Promotion of Corneal Epithelial Wound Healing by the Peptides FGLM-NH2 and SSSR in Neurotrophic Keratopathy. Invest Ophthalmol Vis Sci 2021; 61:29. [PMID: 32697304 PMCID: PMC7425742 DOI: 10.1167/iovs.61.8.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Neurotrophic keratopathy is a corneal epitheliopathy induced by trigeminal denervation that can be treated with eyedrops containing the neuropeptide substance P (or the peptide FGLM-NH2 derived therefrom) and insulin-like growth factor 1 (or the peptide SSSR derived therefrom). Here, we examine the mechanism by which substance P (or FGLM-NH2) promotes corneal epithelial wound healing in a mouse model of neurotrophic keratopathy. Methods The left eye of mice subjected to trigeminal nerve axotomy in the right eye served as a model of neurotrophic keratopathy. Corneal epithelial wound healing was monitored by fluorescein staining and slit-lamp examination. The distribution of substance P, neurokinin-1 receptor (NK-1R), and phosphorylated Akt was examined by immunohistofluorescence analysis. Cytokine and chemokine concentrations in intraocular fluid were measured with a multiplex assay. Results Topical administration of FGLM-NH2 and SSSR promoted corneal epithelial wound healing in the neurotrophic keratopathy model in a manner sensitive to the NK-1R antagonist L-733,060. Expression of substance P and NK-1R in the superficial layer of the corneal epithelium decreased and increased, respectively, in model mice compared with healthy mice. FGLM-NH2 and SSSR treatment suppressed the production of interleukin-1α, macrophage inflammatory protein 1α (MIP-1α) and MIP-1β induced by corneal epithelial injury in the model mice. It also increased the amount of phosphorylated Akt in the corneal epithelium during wound healing in a manner sensitive to prior L-733,060 administration. Conclusions The substance P–NK-1R axis promotes corneal epithelial wound healing in a neurotrophic keratopathy model in association with upregulation of Akt signaling and attenuation of changes in the cytokine-chemokine network.
Collapse
|
7
|
Sumin AN, Oleinik PA, Bezdenezhnykh AV, Ivanova AV. Neuromuscular electrical stimulation in early rehabilitation of patients with postoperative complications after cardiovascular surgery: A randomized controlled trial. Medicine (Baltimore) 2020; 99:e22769. [PMID: 33080746 PMCID: PMC7572009 DOI: 10.1097/md.0000000000022769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To evaluate the effectiveness of neuromuscular electrical stimulation (NMES) in early rehabilitation of patients with postoperative complications after cardiovascular surgery. METHODS 37 patients (25 men and 12 women) aged 45 to 70 years with postoperative complications after cardiovascular surgery were included in the study. Eighteen patients underwent NMES daily since postoperative day 3 until discharge in addition to standard rehabilitation program (NMES group), and 19 patients underwent standard rehabilitation program only (non-NMES group). The primary outcome was the knee extensors strength at discharge in NMES group and in control. Secondary outcomes were the handgrip strength, knee flexor strength, and cross-sectional area (CSA) of the quadriceps femoris in groups at discharge. RESULTS Baseline characteristics were not different between the groups. Knee extensors strength at discharge was significantly higher in the NMES group (28.1 [23.8; 36.2] kg on the right and 27.45 [22.3; 33.1] kg on the left) than in the non-NMES group (22.3 [20.1; 27.1] and 22.5 [20.1; 25.9] kg, respectively; P < .001). Handgrip strength, knee flexor strength, quadriceps CSA, and 6 minute walk distance at discharge in the groups had no significant difference. CONCLUSIONS This pilot study shows a beneficial effect of NMES on muscle strength in patients with complications after cardiovascular surgery. The use of NMES showed no effect on strength of non-stimulated muscle, quadriceps CSA, and distance of 6-minute walk test at discharge.Further blind randomized controlled trials should be performed with emphasis on the effectiveness of NEMS in increasing muscle strength and structure in these patients.
Collapse
|
8
|
Rabello LM, van den Akker-Scheek I, Kuipers IF, Diercks RL, Brink MS, Zwerver J. Bilateral changes in tendon structure of patients diagnosed with unilateral insertional or midportion achilles tendinopathy or patellar tendinopathy. Knee Surg Sports Traumatol Arthrosc 2020; 28:1631-1638. [PMID: 30937472 PMCID: PMC7176591 DOI: 10.1007/s00167-019-05495-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/25/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Changes in tendon structure are commonly seen in patients with unilateral achilles (AT) or patellar (PT) tendinopathy but might also be present on the asymptomatic side, indicating a higher risk for developing symptoms. The aim of this study is to compare tendon structure of the symptomatic side with the asymptomatic side in AT and PT patients and control subjects. METHODS A total of 46 patients with unilateral AT (16 insertional and 30 midportion) and 38 with unilateral PT were included. For the control group, a total of 18 Achilles tendons and 25 patellar tendons were scanned. Tendon structure was assessed using ultrasound tissue characterisation (UTC), which quantifies tendon organisation dividing the structure into four different echo types (I-IV). RESULTS There were significant differences in echo types I, III, and IV between symptomatic and asymptomatic sides and controls. Additionally, there was a significant difference between the symptomatic and the asymptomatic side for all tendinopathy locations. In the insertional AT tendon portion, the symptomatic side showed a higher percentage of echo type III. For the midportion AT, the symptomatic side showed a lower percentage of echo type I and a higher percentage of echo types III and IV. For the patellar tendon, the symptomatic side showed a higher percentage of echo types III and IV. All differences were higher than the minimal detectable changes. CONCLUSION Although patients have symptoms unilaterally, the tendon structures are compromised on both sides. These results stress the importance of monitoring both symptomatic and asymptomatic tendon structures and in addition highlight that the asymptomatic side should not be used as reference in clinical practice. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Lucas Maciel Rabello
- Department of Sports and Exercise Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| | - I van den Akker-Scheek
- Department of Sports and Exercise Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Orthopedics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ireen F Kuipers
- Department of Sports and Exercise Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - R L Diercks
- Department of Orthopedics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Michel S Brink
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - J Zwerver
- Department of Sports and Exercise Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
9
|
Mastryukova V, Arnold D, Güllmar D, Guntinas-Lichius O, Volk GF. Can MRI quantify the volume changes of denervated facial muscles? Eur J Transl Myol 2020; 30:8918. [PMID: 32499901 PMCID: PMC7254417 DOI: 10.4081/ejtm.2019.8918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Could manual segmentation of magnetic resonance images be used to quantify the effects of transcutaneous electrostimulation and reinnervation of denervated facial muscle? Five patients with unilateral facial paralysis were scanned during the study while receiving a daily surface electrostimulation of the paralytic cheek region, but also after reinnervation. Their facial muscles were identified in 3D (coronal, sagittal, and axial) and segmented in magnetic resonance imaging (MRI) data for in total 28 time points over the 12 months of study. A non-significant trend of increasing muscle volume were detected after reinnervation. MRI is a valuable technique in the facial paralysis research.
Collapse
Affiliation(s)
- Valeria Mastryukova
- ENT-Department, Jena University Hospital, Jena, Germany.,Facial Nerve Center Jena, Jena University Hospital, Jena, Germany
| | - Dirk Arnold
- ENT-Department, Jena University Hospital, Jena, Germany.,Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum, Friedrich-Schiller-University Jena, Jena, Germany
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Orlando Guntinas-Lichius
- ENT-Department, Jena University Hospital, Jena, Germany.,Facial Nerve Center Jena, Jena University Hospital, Jena, Germany
| | - Gerd Fabian Volk
- ENT-Department, Jena University Hospital, Jena, Germany.,Facial Nerve Center Jena, Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. Nat Med 2019; 25:1505-1511. [PMID: 31591596 DOI: 10.1038/s41591-019-0594-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
The essential product of the Duchenne muscular dystrophy (DMD) gene is dystrophin1, a rod-like protein2 that protects striated myocytes from contraction-induced injury3,4. Dystrophin-related protein (or utrophin) retains most of the structural and protein binding elements of dystrophin5. Importantly, normal thymic expression in DMD patients6 should protect utrophin by central immunologic tolerance. We designed a codon-optimized, synthetic transgene encoding a miniaturized utrophin (µUtro), deliverable by adeno-associated virus (AAV) vectors. Here, we show that µUtro is a highly functional, non-immunogenic substitute for dystrophin, preventing the most deleterious histological and physiological aspects of muscular dystrophy in small and large animal models. Following systemic administration of an AAV-µUtro to neonatal dystrophin-deficient mdx mice, histological and biochemical markers of myonecrosis and regeneration are completely suppressed throughout growth to adult weight. In the dystrophin-deficient golden retriever model, µUtro non-toxically prevented myonecrosis, even in the most powerful muscles. In a stringent test of immunogenicity, focal expression of µUtro in the deletional-null German shorthaired pointer model produced no evidence of cell-mediated immunity, in contrast to the robust T cell response against similarly constructed µDystrophin (µDystro). These findings support a model in which utrophin-derived therapies might be used to treat clinical dystrophin deficiency, with a favorable immunologic profile and preserved function in the face of extreme miniaturization.
Collapse
|
11
|
Miller BF, Hamilton KL, Majeed ZR, Abshire SM, Confides AL, Hayek AM, Hunt ER, Shipman P, Peelor FF, Butterfield TA, Dupont‐Versteegden EE. Enhanced skeletal muscle regrowth and remodelling in massaged and contralateral non-massaged hindlimb. J Physiol 2018; 596:83-103. [PMID: 29090454 PMCID: PMC5746529 DOI: 10.1113/jp275089] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Muscle fibre cross sectional area is enhanced with massage in the form of cyclic compressive loading during regrowth after atrophy. Massage enhances protein synthesis of the myofibrillar and cytosolic, but not the mitochondrial fraction, in muscle during regrowth. Focal adhesion kinase activation and satellite cell number are elevated in muscles undergoing massage during regrowth. Muscle fibre cross sectional area and protein synthesis of the myofibrillar fraction, but not DNA synthesis, are elevated in muscle of the contralateral non-massaged limb. Massage in the form of cyclic compressive loading is a potential anabolic intervention during muscle regrowth after atrophy. ABSTRACT Massage, in the form of cyclic compressive loading (CCL), is associated with multiple health benefits, but its potential anabolic effect on atrophied muscle has not been investigated. We hypothesized that the mechanical activity associated with CCL induces an anabolic effect in skeletal muscle undergoing regrowth after a period of atrophy. Fischer-Brown Norway rats at 10 months of age were hindlimb unloaded for a period of 2 weeks. The rats were then allowed reambulation with CCL applied at a 4.5 N load at 0.5 Hz frequency for 30 min every other day for four bouts during a regrowth period of 8 days. Muscle fibre cross sectional area was enhanced by 18% with massage during regrowth compared to reloading alone, and this was accompanied by elevated myofibrillar and cytosolic protein as well as DNA synthesis. Focal adhesion kinase phosphorylation indicated that CCL increased mechanical stimulation, while a higher number of Pax7+ cells likely explains the elevated DNA synthesis. Surprisingly, the contralateral non-massaged limb exhibited a comparable 17% higher muscle fibre size compared to reloading alone, and myofibrillar protein synthesis, but not DNA synthesis, was also elevated. We conclude that massage in the form of CCL induces an anabolic response in muscles regrowing after an atrophy-inducing event. We suggest that massage can be used as an intervention to aid in the regrowth of muscle lost during immobilization.
Collapse
Affiliation(s)
- Benjamin F. Miller
- Health and Exercise ScienceColorado State UniversityFort CollinsCO80523‐1582USA
| | - Karyn L. Hamilton
- Health and Exercise ScienceColorado State UniversityFort CollinsCO80523‐1582USA
| | - Zana R. Majeed
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Sarah M. Abshire
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Amy L. Confides
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Amanda M. Hayek
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Emily R. Hunt
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Patrick Shipman
- Department of MathematicsColorado State UniversityFort CollinsCO80523‐1582USA
| | - Frederick F. Peelor
- Health and Exercise ScienceColorado State UniversityFort CollinsCO80523‐1582USA
| | - Timothy A. Butterfield
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| | - Esther E. Dupont‐Versteegden
- Department of Rehabilitation Sciences, College of Health SciencesUniversity of KentuckyLexingtonKY40536‐0200USA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKY40536‐0200USA
| |
Collapse
|
12
|
Renström L, Stål P, Song Y, Forsgren S. Bilateral muscle fiber and nerve influences by TNF-alpha in response to unilateral muscle overuse - studies on TNF receptor expressions. BMC Musculoskelet Disord 2017; 18:498. [PMID: 29183282 PMCID: PMC5706416 DOI: 10.1186/s12891-017-1796-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TNF-alpha is suggested to be involved in muscle damage and muscle inflammation (myositis). In order to evaluate whether TNF-alpha is involved in the myositis that occurs in response to muscle overuse, the aim was to examine the expression patterns of TNF receptors in this condition. METHODS A rabbit muscle overuse model leading to myositis in the soleus muscle was used. The expression patterns of the two TNF receptors Tumor Necrosis Factor Receptor type 1 (TNFR1) and Tumor Necrosis Factor Receptor type 2 (TNFR2) were investigated. In situ hybridization and immunofluorescence were utilized. Immunostainings for desmin, NK-1R and CD31 were made in parallel. RESULTS Immunoreactions (IR) for TNF receptors were clearly observed in white blood cells, fibroblasts and vessel walls, and most interestingly also in muscle fibers and nerve fascicles in the myositis muscles. There were very restricted reactions for these in the muscles of controls. The upregulation of TNF receptors was for all types of structures seen for both the experimental side and the contralateral nonexperimental side. TNF receptor expressing muscle fibers were present in myositis muscles. They can be related to attempts for reparation/regeneration, as evidenced from results of parallel stainings. Necrotic muscle fibers displayed TNFR1 mRNA and TNFR2 immunoreaction (IR) in the invading white blood cells. In myositis muscles, TNFR1 IR was observed in both axons and Schwann cells while TNFR2 IR was observed in Schwann cells. Such observations were very rarely made for control animals. CONCLUSIONS The findings suggest that there is a pronounced involvement of TNF-alpha in the developing myositis process. Attempts for reparation of the muscle tissue seem to occur via both TNFR1 and TNFR2. As the myositis process also occurs in the nonexperimental side and as TNF receptors are confined to nerve fascicles bilaterally it can be asked whether TNF-alpha is involved in the spreading of the myositis process to the contralateral side via the nervous system. Taken together, the study shows that TNF-alpha is not only associated with the inflammation process but that both the muscular and nervous systems are affected and that this occurs both on experimental and nonexperimental sides.
Collapse
Affiliation(s)
- Lina Renström
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden.
| | - Per Stål
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | - Yafeng Song
- Perelman School of Medicine & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sture Forsgren
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
El-Habta R, Kingham PJ, Backman LJ. Adipose stem cells enhance myoblast proliferation via acetylcholine and extracellular signal-regulated kinase 1/2 signaling. Muscle Nerve 2017; 57:305-311. [PMID: 28686790 PMCID: PMC5811911 DOI: 10.1002/mus.25741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/14/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022]
Abstract
Introduction: In this study we investigated the interaction between adipose tissue–derived stem cells (ASCs) and myoblasts in co‐culture experiments. Methods: Specific inductive media were used to differentiate ASCs in vitro into a Schwann cell–like phenotype (differentiated adipose tissue–derived stem cells, or dASCs) and, subsequently, the expression of acetylcholine (ACh)‐related machinery was determined. In addition, the expression of muscarinic ACh receptors was examined in denervated rat gastrocnemius muscles. Results: In contrast to undifferentiated ASCs, dASCs expressed more choline acetyltransferase and vesicular acetylcholine transporter. When co‐cultured with myoblasts, dASCs enhanced the proliferation rate, as did ACh administration alone. Western blotting and pharmacological inhibitor studies showed that phosphorylated extracellular signal–regulated kinase 1/2 signaling mediated these effects. In addition, denervated muscle showed higher expression of muscarinic ACh receptors than control muscle. Discussion: Our findings suggest that dASCs promote proliferation of myoblasts through paracrine secretion of ACh, which could explain some of their regenerative capacity in vivo. Muscle Nerve57: 305–311, 2018
Collapse
Affiliation(s)
- Roine El-Habta
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
14
|
Oliveira TR, Costa LR, Catunda JMY, Pino AV, Barbosa W, Souza MND. Time-scaling based sliding mode control for Neuromuscular Electrical Stimulation under uncertain relative degrees. Med Eng Phys 2017; 44:53-62. [PMID: 28363767 DOI: 10.1016/j.medengphy.2017.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 11/17/2022]
Abstract
This paper addresses the application of the sliding mode approach to control the arm movements by artificial recruitment of muscles using Neuromuscular Electrical Stimulation (NMES). Such a technique allows the activation of motor nerves using surface electrodes. The goal of the proposed control system is to move the upper limbs of subjects through electrical stimulation to achieve a desired elbow angular displacement. Since the human neuro-motor system has individual characteristics, being time-varying, nonlinear and subject to uncertainties, the use of advanced robust control schemes may represent a better solution than classical Proportional-Integral (PI) controllers and model-based approaches, being simpler than more sophisticated strategies using fuzzy logic or neural networks usually applied in this control problem. The objective is the introduction of a new time-scaling base sliding mode control (SMC) strategy for NMES and its experimental evaluation. The main qualitative advantages of the proposed controller via time-scaling procedure are its independence of the knowledge of the plant relative degree and the design/tuning simplicity. The developed sliding mode strategy allows for chattering alleviation due to the impact of the integrator in smoothing the control signal. In addition, no differentiator is applied to construct the sliding surface. The stability analysis of the closed-loop system is also carried out by using singular perturbation methods. Experimental results are conducted with healthy volunteers as well as stroke patients. Quantitative results show a reduction of 45% in terms of root mean square (RMS) error (from 5.9° to [Formula: see text] ) in comparison with PI control scheme, which is similar to that obtained in the literature.
Collapse
Affiliation(s)
- Tiago Roux Oliveira
- Department of Electronics and Telecommunication Engineering, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ 20550-900, Brazil.
| | - Luiz Rennó Costa
- Biomedical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), P.O. Box 68510, Rio de Janeiro, RJ 21945-970, Brazil
| | - João Marcos Yamasaki Catunda
- Biomedical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), P.O. Box 68510, Rio de Janeiro, RJ 21945-970, Brazil
| | - Alexandre Visintainer Pino
- Biomedical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), P.O. Box 68510, Rio de Janeiro, RJ 21945-970, Brazil
| | - William Barbosa
- Department of Electronics and Telecommunication Engineering, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ 20550-900, Brazil
| | - Márcio Nogueira de Souza
- Biomedical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), P.O. Box 68510, Rio de Janeiro, RJ 21945-970, Brazil
| |
Collapse
|
15
|
Song Y, Rosenblum ST, Morales L, Petrov M, Greer C, Globerman S, Stedman HH. Suite of clinically relevant functional assays to address therapeutic efficacy and disease mechanism in the dystrophic mdx mouse. J Appl Physiol (1985) 2016; 122:593-602. [PMID: 27932677 PMCID: PMC5401958 DOI: 10.1152/japplphysiol.00776.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/11/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive primary myodegenerative disease caused by a genetic deficiency of the 427-kDa cytoskeletal protein dystrophin. Despite its single-gene etiology, DMD's complex pathogenesis remains poorly understood, complicating the extrapolation from results of preclinical studies in genetic homologs to the design of informative clinical trials. Here we describe novel phenotypic assays which when applied to the mdx mouse resemble recently used primary end points for DMD clinical trials. By coupling force transduction, high-precision motion tracking, and respiratory measurements, we have achieved a suite of integrative physiological tests that provide novel insights regarding normal and pathological responses to muscular exertion. A common feature of these physiological assays is the precise tracking and analysis of volitional movement, thereby optimizing the relevance to clinical tests. Unexpectedly, the measurable biological distinction between dystrophic and control mice at early time points in the disease process is better resolved with these tests than with the majority of previously used, labor-intensive studies of individual muscle function performed ex vivo. For example, the dramatic loss of volitional movement following a novel, standardized grip test distinguishes control mice from mdx mice by a 17.4-fold difference of the means (3.5 ± 2.2 vs. 60.9 ± 12.1 units of activity, respectively; effect size 1.99). The findings have both mechanistic and translational implications of potential significance to the fields of basic myology and neuromuscular therapeutics.NEW & NOTEWORTHY This study uses novel phenotypic assays which when applied to the mdx mouse resemble recently used primary end points for DMD clinical trials. A measurable distinction between dystrophic and control mice was seen at early time points in vivo compared with invasive muscle studies performed ex vivo. These assays shed light on normal and pathological responses to muscular exertion and have significant mechanistic and translational implications for the fields of basic myology and neuromuscular therapeutics.
Collapse
Affiliation(s)
- Yafeng Song
- Perelman School of Medicine & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Shira T Rosenblum
- Perelman School of Medicine & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Leon Morales
- Perelman School of Medicine & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Mihail Petrov
- Perelman School of Medicine & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Christopher Greer
- Perelman School of Medicine & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Samantha Globerman
- Perelman School of Medicine & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Hansell H Stedman
- Perelman School of Medicine & Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania; and .,Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Electrical Impedance Myography to Detect the Effects of Electrical Muscle Stimulation in Wild Type and Mdx Mice. PLoS One 2016; 11:e0151415. [PMID: 26986564 PMCID: PMC4795734 DOI: 10.1371/journal.pone.0151415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/26/2016] [Indexed: 02/06/2023] Open
Abstract
Objective Tools to better evaluate the impact of therapy on nerve and muscle disease are needed. Electrical impedance myography (EIM) is sensitive to neuromuscular disease progression as well as to therapeutic interventions including myostatin inhibition and antisense oligonucleotide-based treatments. Whether the technique identifies the impact of electrical muscle stimulation (EMS) is unknown. Methods Ten wild-type (wt) C57B6 mice and 10 dystrophin-deficient (mdx) mice underwent 2 weeks of 20 min/day EMS on left gastrocnemius and sham stimulation on the right gastrocnemius. Multifrequency EIM data and limb girth were obtained before and at the conclusion of the protocol. Muscle weight, in situ force measurements, and muscle fiber histology were also assessed at the conclusion of the study. Results At the time of sacrifice, muscle weight was greater on the EMS-treated side than on the sham-stimulated side (p = 0.018 for wt and p = 0.007 for mdx). Similarly, in wt animals, EIM parameters changed significantly compared to baseline (resistance (p = 0.009), reactance (p = 0.0003) and phase (p = 0.002); these changes were due in part to reductions in the EIM values on the EMS-treated side and elevations on the sham-simulated side. Mdx animals showed analogous but non-significant changes (p = 0.083, p = 0.064, and p = 0.57 for resistance, reactance and phase, respectively). Maximal isometric force trended higher on the stimulated side in wt animals only (p = 0.06). Myofiber sizes in wt animals were also larger on the stimulated side than on the sham-stimulated side (p = 0.034); no significant difference was found in the mdx mice (p = 0.79). Conclusion EIM is sensitive to stimulation-induced muscle alterations in wt animals; similar trends are also present in mdx mice. The mechanisms by which these EIM changes develop, however, remains uncertain. Possible explanations include longer-term trophic effects and shorter-term osmotic effects.
Collapse
|
17
|
Frara N, Abdelmagid SM, Tytell M, Amin M, Popoff SN, Safadi FF, Barbe MF. Growth and repair factors, osteoactivin, matrix metalloproteinase and heat shock protein 72, increase with resolution of inflammation in musculotendinous tissues in a rat model of repetitive grasping. BMC Musculoskelet Disord 2016; 17:34. [PMID: 26781840 PMCID: PMC4717665 DOI: 10.1186/s12891-016-0892-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Expression of the growth factor osteoactivin (OA) increases during tissue degeneration and regeneration, fracture repair and after denervation-induced disuse atrophy, concomitant with increased matrix metalloproteinases (MMPs). However, OA's expression with repetitive overuse injuries is unknown. The aim of this study was to evaluate: 1) OA expression in an operant rat model of repetitive overuse; 2) expression of MMPs; 3) inflammatory cytokines indicative of injury or inflammation; and 4) the inducible form of heat shock protein 70 (HSPA1A/HSP72) as the latter is known to increase during metabolic stress and to be involved in cellular repair. Young adult female rats performed a high repetition negligible force (HRNF) food retrieval task for up to 6 weeks and were compared to control rats. METHODS Flexor digitorum muscles and tendons were collected from 22 young adult female rats performing a HRNF reaching task for 3 to 6 weeks, and 12 food restricted control (FRC) rats. OA mRNA levels were assessed by quantitative polymerase chain reaction (qPCR). OA, MMP-1, -2, -3, and -13 and HSP72 protein expression was assayed using Western blotting. Immunohistochemistry and image analysis was used to evaluate OA and HSP72 expression. ELISA was performed for HSP72 and inflammatory cytokines. RESULTS Flexor digitorum muscles and tendons from 6-week HRNF rats showed increased OA mRNA and protein expression compared to FRC rats. MMP-1, -2 and -3 progressively increased in muscles whereas MMP-1 and -3 increased in tendons with HRNF task performance. HSP72 increased in 6-week HRNF muscles and tendons, compared to controls, and co-localized with OA in the myofiber sarcolemma. IL-1alpha and beta increased transiently in tendons or muscles in HRNF week 3 before resolving in week 6. CONCLUSION The simultaneous increases of OA with factors involved in tissue repair (MMPs and HSP72) supports a role of OA in tissue regeneration after repetitive overuse.
Collapse
Affiliation(s)
- Nagat Frara
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Samir M Abdelmagid
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mamta Amin
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Steven N Popoff
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Li XM, Yang JT, Hou Y, Yang Y, Qin BG, Fu G, Gu LQ. Donor-side morbidity after contralateral C-7 nerve transfer: results at a minimum of 6 months after surgery. J Neurosurg 2015; 124:1434-41. [PMID: 26361282 DOI: 10.3171/2015.3.jns142213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECT Donor-side morbidity associated with contralateral C-7 (CC7) nerve transfer remains controversial. The purpose of this study was to evaluate functional deficits in the donor limb resulting from prespinal route CC7 nerve transfer. METHODS A total of 63 patients were included. Forty-one patients had undergone CC7 nerve transfer surgery at least 6 months previously and were assigned to one of 2 groups based on the duration of postoperative follow-up. Group 1 (n = 21) consisted of patients who had undergone surgery between 6 months and 2 years previously, and Group 2 (n = 20) consisted of patients who had undergone surgery more than 2 years previously. An additional 22 patients who underwent CC7 nerve transfer surgery later than those in Groups 1 and 2 were included as a control group (Group 3). Results of preoperative testing in these patients and postoperative testing in Groups 1 and 2 were compared. Testing included subjective assessments and objective examinations. An additional 3 patients had undergone surgery more than 6 months previously but had severe motor weakness and were therefore evaluated separately; these 3 patients were not included in any of the study groups. RESULTS The revised Short-Form McGill Pain Questionnaire (SF-MPQ-2) was the only subjective test that showed a significant difference between Group 3 and the other 2 groups, while no significant differences were found in objective sensory, motor, or dexterity outcomes. The interval from injury to surgery for patients with a normal SF-MPQ-2 score in Groups 1 and 2 was significantly less than for those with abnormal SF-MFQ-2 scores (2.4 ± 1.1 months vs 4.6 ± 2.9 months, p = 0.002). The 3 patients with obvious motor weakness showed a tendency to gradually recover. CONCLUSIONS Although some patients suffered from long-term sensory disturbances, resection of the C-7 nerve had little effect on the function of the donor limb. Shortening preoperative delay time can improve sensory recovery of the donor limb.
Collapse
Affiliation(s)
- Xiang-Ming Li
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong; and.,Department of Orthopedic Surgery, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Jian-Tao Yang
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong; and
| | - Yi Hou
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong; and
| | - Yi Yang
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong; and
| | - Ben-Gang Qin
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong; and
| | - Guo Fu
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong; and
| | - Li-Qiang Gu
- Department of Microsurgery and Orthopedic Trauma, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong; and
| |
Collapse
|
19
|
Willoughby CL, Fleuriet J, Walton MM, Mustari MJ, McLoon LK. Adaptability of the Immature Ocular Motor Control System: Unilateral IGF-1 Medial Rectus Treatment. Invest Ophthalmol Vis Sci 2015; 56:3484-96. [PMID: 26030103 DOI: 10.1167/iovs.15-16761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. METHODS Sustained release IGF-1 pellets were implanted unilaterally on one medial rectus muscle in normal infant monkeys during the first 2 weeks of life. Eye position was monitored using standard photographic methods. After 3 months of treatment, myofiber and neuromuscular size, myosin composition, and innervation density were quantified in all rectus muscles and compared to those in age-matched controls. RESULTS Sustained unilateral IGF-1 treatments resulted in strabismus for all treated subjects; 3 of the 4 subjects had a clinically significant strabismus of more than 10°. Both the treated medial rectus and the untreated ipsilateral antagonist lateral rectus muscles had significantly larger myofibers. No adaptation in myofiber size occurred in the contralateral functionally yoked lateral rectus or in myosin composition, neuromuscular junction size, or nerve density. CONCLUSIONS Sustained unilateral IGF-1 treatment to extraocular muscles during the sensitive period of development of orthotropic eye alignment and binocularity was sufficient to disturb ocular motor development, resulting in strabismus in infant monkeys. This could be due to altering fusion of gaze during the early sensitive period. Serial measurements of eye alignment suggested the IGF-1-treated infants received insufficient coordinated binocular experience, preventing the establishment of normal eye alignment. Our results uniquely suggest that abnormal signaling by the extraocular muscles may be a cause of strabismus.
Collapse
Affiliation(s)
- Christy L Willoughby
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jérome Fleuriet
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Mark M Walton
- Washington National Primate Research Center, Seattle, Washington, United States
| | - Michael J Mustari
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
20
|
Song Y, Forsgren S, Liu JX, Yu JG, Stål P. Unilateral muscle overuse causes bilateral changes in muscle fiber composition and vascular supply. PLoS One 2014; 9:e116455. [PMID: 25545800 PMCID: PMC4278887 DOI: 10.1371/journal.pone.0116455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/08/2014] [Indexed: 12/28/2022] Open
Abstract
Unilateral strength training can cause cross-transfer strength effects to the homologous contralateral muscles. However, the impact of the cross-over effects on the muscle tissue is unclear. To test the hypothesis that unilateral muscle overuse causes bilateral alterations in muscle fiber composition and vascular supply, we have used an experimental rabbit model with unilateral unloaded overstrain exercise via electrical muscle stimulation (E/EMS). The soleus (SOL) and gastrocnemius (GA) muscles of both exercised (E) and contralateral non-exercised (NE) legs (n = 24) were morphologically analyzed after 1 w, 3 w and 6 w of EMS. Non-exercised rabbits served as controls (n = 6). After unilateral intervention the muscles of both E and NE legs showed myositis and structural and molecular tissue changes that to various degrees mirrored each other. The fiber area was bilaterally smaller than in controls after 3 w of E/EMS in both SOL (E 4420 and NE 4333 µm2 vs. 5183 µm2, p<0.05) and GA (E 3572 and NE 2983 µm2 vs. 4697 µm2, p<0.02) muscles. After 6 w of E/EMS, the percentage of slow MyHCI fibers was lower than in controls in the NE legs of SOL (88.1% vs. 98.1%, p<0.009), while the percentage of fast MyHCIIa fibers was higher in the NE legs of GA (25.7% vs. 15.8%, p = 0.02). The number of capillaries around fibers in the E and NE legs was lower (SOL 13% and 15%, respectively, GA 25% and 23%, respectively, p<0.05) than in controls. The overall alterations were more marked in the fast GA muscle than in the slow SOL muscle, which on the other hand showed more histopathological muscle changes. We conclude that unilateral repetitive unloaded overuse exercise via EMS causes myositis and muscle changes in fiber type proportions, fiber area and fiber capillarization not only in the exercised leg, but also in the homologous muscles in the non-exercised leg.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Sture Forsgren
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Ji-Guo Yu
- Department of Surgical and Perioperative Sciences, Sports Medicine Unit, Umeå University, Umeå, Sweden
| | - Per Stål
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
21
|
Song Y, Stål PS, Yu JG, Lorentzon R, Backman C, Forsgren S. Inhibitors of endopeptidase and angiotensin-converting enzyme lead to an amplification of the morphological changes and an upregulation of the substance P system in a muscle overuse model. BMC Musculoskelet Disord 2014; 15:126. [PMID: 24725470 PMCID: PMC3992129 DOI: 10.1186/1471-2474-15-126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 04/04/2014] [Indexed: 12/16/2022] Open
Abstract
Background We have previously observed, in studies on an experimental overuse model, that the tachykinin system may be involved in the processes of muscle inflammation (myositis) and other muscle tissue alterations. To further evaluate the significance of tachykinins in these processes, we have used inhibitors of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE), substances which are known to terminate the activity of various endogenously produced substances, including tachykinins. Methods Injections of inhibitors of NEP and ACE, as well as the tachykinin substance P (SP), were given locally outside the tendon of the triceps surae muscle of rabbits subjected to marked overuse of this muscle. A control group was given NaCl injections. Evaluations were made at 1 week, a timepoint of overuse when only mild inflammation and limited changes in the muscle structure are noted in animals not treated with inhibitors. Both the soleus and gastrocnemius muscles were examined morphologically and with immunohistochemistry and enzyme immunoassay (EIA). Results A pronounced inflammation (myositis) and changes in the muscle fiber morphology, including muscle fiber necrosis, occurred in the overused muscles of animals given NEP and ACE inhibitors. The morphological changes were clearly more prominent than for animals subjected to overuse and NaCl injections (NaCl group). A marked SP-like expression, as well as a marked expression of the neurokinin-1 receptor (NK-1R) was found in the affected muscle tissue in response to injections of NEP and ACE inhibitors. The concentration of SP in the muscles was also higher than that for the NaCl group. Conclusions The observations show that the local injections of NEP and ACE inhibitors led to marked SP-like and NK-1R immunoreactions, increased SP concentrations, and an amplification of the morphological changes in the tissue. The injections of the inhibitors thus led to a more marked myositis process and an upregulation of the SP system. Endogenously produced substances, out of which the tachykinins conform to one substance family, may play a role in mediating effects in the tissue in a muscle that is subjected to pronounced overuse.
Collapse
Affiliation(s)
| | | | | | | | | | - Sture Forsgren
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
22
|
Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J. Humanized animal exercise model for clinical implication. Pflugers Arch 2014; 466:1673-87. [PMID: 24647666 DOI: 10.1007/s00424-014-1496-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 01/20/2023]
Abstract
Exercise and physical activity function as a patho-physiological process that can prevent, manage, and regulate numerous chronic conditions, including metabolic syndrome and age-related sarcopenia. Because of research ethics and technical difficulties in humans, exercise models using animals are requisite for the future development of exercise mimetics to treat such abnormalities. Moreover, the beneficial or adverse outcomes of a new regime or exercise intervention in the treatment of a specific condition should be tested prior to implementation in a clinical setting. In rodents, treadmill running (or swimming) and ladder climbing are widely used as aerobic and anaerobic exercise models, respectively. However, exercise models are not limited to these types. Indeed, there are no golden standard exercise modes or protocols for managing or improving health status since the types (aerobic vs. anaerobic), time (morning vs. evening), and duration (continuous vs. acute bouts) of exercise are the critical determinants for achieving expected beneficial effects. To provide insight into the understanding of exercise and exercise physiology, we have summarized current animal exercise models largely based on aerobic and anaerobic criteria. Additionally, specialized exercise models that have been developed for testing the effect of exercise on specific physiological conditions are presented. Finally, we provide suggestions and/or considerations for developing a new regime for an exercise model.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Department of Health Sciences and Technology, Cardiovascular and Metabolic Disease Center, Inje University, Bok Ji-Ro 75, Busanjin-Gu, Busan, 613-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
23
|
Yamaguchi T, Turhan A, Harris DL, Hu K, Prüss H, von Andrian U, Hamrah P. Bilateral nerve alterations in a unilateral experimental neurotrophic keratopathy model: a lateral conjunctival approach for trigeminal axotomy. PLoS One 2013; 8:e70908. [PMID: 23967133 PMCID: PMC3743879 DOI: 10.1371/journal.pone.0070908] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/24/2013] [Indexed: 01/11/2023] Open
Abstract
To study bilateral nerve changes in a newly developed novel mouse model for neurotrophic keratopathy by approaching the trigeminal nerve from the lateral fornix. Surgical axotomy of the ciliary nerve of the trigeminal nerve was performed in adult BALB/c mice at the posterior sclera. Axotomized, contralateral, and sham-treated corneas were excised on post-operative days 1, 3, 5, 7 and 14 and immunofluorescence histochemistry was performed with anti-β-tubulin antibody to evaluate corneal nerve density. Blink reflex was evaluated using a nylon thread. The survival rate was 100% with minimal bleeding during axotomy and a surgical time of 8±0.5 minutes. The blink reflex was diminished at day 1 after axotomy, but remained intact in the contralateral eyes in all mice. The central and peripheral subbasal nerves were not detectable in the axotomized cornea at day 1 (p<0.001), compared to normal eyes (101.3±14.8 and 69.7±12.0 mm/mm² centrally and peripherally). Interestingly, the subbasal nerve density in the contralateral non-surgical eyes also decreased significantly to 62.4±2.8 mm/mm² in the center from day 1 (p<0.001), but did not change in the periphery (77.3±11.7 mm/mm², P = 0.819). Our novel trigeminal axotomy mouse model is highly effective, less invasive, rapid, and has a high survival rate, demonstrating immediate loss of subbasal nerves in axotomized eyes and decreased subbasal nerves in contralateral eyes after unilateral axotomy. This model will allow investigating the effects of corneal nerve damage and serves as a new model for neurotrophic keratopathy.
Collapse
Affiliation(s)
- Takefumi Yamaguchi
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aslihan Turhan
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Deshea L. Harris
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kai Hu
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Harald Prüss
- Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Ulrich von Andrian
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pedram Hamrah
- Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Cornea Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
- Immune Disease Institute, Program in Cellular and Molecular Medicine at Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
Song Y, Stål PS, Yu JG, Forsgren S. Bilateral increase in expression and concentration of tachykinin in a unilateral rabbit muscle overuse model that leads to myositis. BMC Musculoskelet Disord 2013; 14:134. [PMID: 23587295 PMCID: PMC3637117 DOI: 10.1186/1471-2474-14-134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022] Open
Abstract
Background Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation. Methods The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1–6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied. Results Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides. Conclusions The observations show an up-regulation of the tachykinin system bilaterally during muscle derangement/myositis in response to pronounced unilateral muscle overuse. This up-regulation occurred in inflammatory areas and was related not only to increased tachykinin innervation but also to tachykinin expression in blood vessel walls and inflammatory cells. Importantly, the tachykinin system appears to be an important factor not only ipsilaterally but also contralaterally in these processes.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
25
|
Marked Effects of Tachykinin in Myositis Both in the Experimental Side and Contralaterally: Studies on NK-1 Receptor Expressions in an Animal Model. ISRN INFLAMMATION 2013; 2013:907821. [PMID: 24049666 PMCID: PMC3765760 DOI: 10.1155/2013/907821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/18/2012] [Indexed: 01/16/2023]
Abstract
Muscle injury and inflammation (myositis) in a rabbit model of an unilateral muscle overuse were examined. It is unknown if the tachykinin system has a functional role in this situation. In this study, therefore, the neurokinin-1 receptor (NK-1R) expression patterns were evaluated. White blood cells, nerve fascicles, fine nerve fibers, and blood vessel walls in myositis areas showed NK-1R immunoreaction. NK-1R mRNA reactions were observable for white blood cells and blood vessel walls of these areas. NK-1R immunoreaction and NK-1R mRNA reactions were also seen for muscle fibers showing degenerative and regenerative features. There were almost no NK-1R immunoreactions in normal muscle tissue. Interestingly, marked NK-1R expressions were seen for myositis areas of both the experimental side and the contralateral nonexperimental side. EIA analyses showed that the concentration of substance P in the muscle tissue was clearly increased bilaterally at the experimental end stage, as compared to the situation for normal muscle tissue. These observations show that the tachykinin system is very much involved in the processes that occur in muscle injury/myositis. The effects can be related to proinflammatory effects and/or tissue repair. The fact that there are also marked NK-1R expressions contralaterally indicate that the tachykinin system has crossover effects.
Collapse
|