1
|
Abstract
After fusion, HIV delivers its conical capsid into the cytoplasm. To release the contained reverse-transcribing viral genome, the capsid must disassemble in a process termed uncoating. Defining the kinetics, dynamics, and cellular location of uncoating of virions leading to infection has been confounded by defective, noninfectious particles and the stochastic minefield blocking access to host DNA. We used live-cell fluorescent imaging of intravirion fluid phase markers to monitor HIV-1 uncoating at the individual particle level. We find that HIV-1 uncoating of particles leading to infection is a cytoplasmic process that occurs ∼30 min postfusion. Most, but not all, of the capsid protein is rapidly shed in tissue culture and primary target cells, independent of entry pathway. Extended time-lapse imaging with less than one virion per cell allows identification of infected cells by Gag-GFP expression and directly links individual particle behavior to infectivity, providing unprecedented insights into the biology of HIV infection.
Collapse
|
2
|
Gijsbers EF, Feenstra KA, van Nuenen AC, Navis M, Heringa J, Schuitemaker H, Kootstra NA. HIV-1 replication fitness of HLA-B*57/58:01 CTL escape variants is restored by the accumulation of compensatory mutations in gag. PLoS One 2013; 8:e81235. [PMID: 24339913 PMCID: PMC3855271 DOI: 10.1371/journal.pone.0081235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/10/2013] [Indexed: 11/30/2022] Open
Abstract
Expression of HLA-B*57 and the closely related HLA-B*58:01 are associated with prolonged survival after HIV-1 infection. However, large differences in disease course are observed among HLA-B*57/58:01 patients. Escape mutations in CTL epitopes restricted by these HLA alleles come at a fitness cost and particularly the T242N mutation in the TW10 CTL epitope in Gag has been demonstrated to decrease the viral replication capacity. Additional mutations within or flanking this CTL epitope can partially restore replication fitness of CTL escape variants. Five HLA-B*57/58:01 progressors and 5 HLA-B*57/58:01 long-term nonprogressors (LTNPs) were followed longitudinally and we studied which compensatory mutations were involved in the restoration of the viral fitness of variants that escaped from HLA-B*57/58:01-restricted CTL pressure. The Sequence Harmony algorithm was used to detect homology in amino acid composition by comparing longitudinal Gag sequences obtained from HIV-1 patients positive and negative for HLA-B*57/58:01 and from HLA-B*57/58:01 progressors and LTNPs. Although virus isolates from HLA-B*57/58:01 individuals contained multiple CTL escape mutations, these escape mutations were not associated with disease progression. In sequences from HLA-B*57/58:01 progressors, 5 additional mutations in Gag were observed: S126N, L215T, H219Q, M228I and N252H. The combination of these mutations restored the replication fitness of CTL escape HIV-1 variants. Furthermore, we observed a positive correlation between the number of escape and compensatory mutations in Gag and the replication fitness of biological HIV-1 variants isolated from HLA-B*57/58:01 patients, suggesting that the replication fitness of HLA-B*57/58:01 escape variants is restored by accumulation of compensatory mutations.
Collapse
Affiliation(s)
- Esther F. Gijsbers
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - K. Anton Feenstra
- Centre for Integrative Bioinformatics (IBIVU) and Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University, Amsterdam, The Netherlands
- Netherlands Bioinformatics Centre (NBIC), Nijmegen, The Netherlands
| | - Ad C. van Nuenen
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjon Navis
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Heringa
- Centre for Integrative Bioinformatics (IBIVU) and Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU University, Amsterdam, The Netherlands
- Netherlands Bioinformatics Centre (NBIC), Nijmegen, The Netherlands
| | - Hanneke Schuitemaker
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, and Center for Infectious Diseases and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|