1
|
Zajec Ž, Dernovšek J, Cingl J, Ogris I, Gedgaudas M, Zubrienė A, Mitrović A, Golič Grdadolnik S, Gobec M, Tomašič T. New Class of Hsp90 C-Terminal Domain Inhibitors with Anti-tumor Properties against Triple-Negative Breast Cancer. J Med Chem 2024; 67:12984-13018. [PMID: 39042910 PMCID: PMC11320583 DOI: 10.1021/acs.jmedchem.4c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Triple-negative breast cancer (TNBC) remains a treatment challenge and requires innovative therapies. Hsp90, crucial for the stability of numerous oncogenic proteins, has emerged as a promising therapeutic target. In this study, we present the optimization of the Hsp90 C-terminal domain (CTD) inhibitor TVS21. Biochemical methods, NMR binding studies, and molecular modeling were employed to investigate the binding of representative analogs to Hsp90. The newly synthesized analogs showed increased antiproliferative activity in breast cancer cell lines, including the MDA-MB-231 TNBC cell line. Compounds 89 and 104 proved to be the most effective, inducing apoptosis, slowing proliferation, and degrading key oncogenic proteins without inducing a heat shock response. In vivo, compound 89 showed comparable efficacy to the clinical candidate AUY922 and a better safety profile in a TNBC xenograft model. These results highlight the promise of Hsp90 CTD inhibitors for TNBC therapy, potentially filling a significant treatment gap.
Collapse
Affiliation(s)
- Živa Zajec
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Jaka Dernovšek
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Jernej Cingl
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Iza Ogris
- Laboratory
for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Marius Gedgaudas
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Asta Zubrienė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology,
Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Ana Mitrović
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
- Department
of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Simona Golič Grdadolnik
- Laboratory
for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Martina Gobec
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Gaur V, Bera S. Recent developments on UDP-N-acetylmuramoyl-L-alanine-D-gutamate ligase (Mur D) enzyme for antimicrobial drug development: An emphasis on in-silico approaches. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100137. [PMID: 36568273 PMCID: PMC9780078 DOI: 10.1016/j.crphar.2022.100137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction The rapid emergence of antibiotic resistance among various bacterial pathogens has been one of the major concerns of health organizations across the world. In this context, for the development of novel inhibitors against antibiotic-resistant bacterial pathogens, UDP-N-Acetylmuramoyl-L-Alanine-D-Glutamate Ligase (MurD) enzyme represents one of the most apposite targets. Body The present review focuses on updated advancements on MurD-targeted inhibitors in recent years along with genetic regulation, structural and functional characteristics of the MurD enzyme from various bacterial pathogens. A concise account of various crystal structures of MurD enzyme, submitted into Protein Data Bank is also discussed. Discussion MurD, an ATP dependent cytoplasmic enzyme is an important target for drug discovery. The genetic organization of MurD enzyme is well elucidated and many crystal structures of MurD enzyme are submitted into Protein Data bank. Various inhibitors against MurD enzyme have been developed so far with an increase in the use of in-silico methods in the recent past. But cell permeability barriers and conformational changes of MurD enzyme during catalytic reaction need to be addressed for effective drug development. So, a combination of in-silico methods along with experimental work is proposed to counter the catalytic machinery of MurD enzyme.
Collapse
Key Words
- Antibiotic resistance
- HTS, High Throughput Screening
- In-silico
- MD, Molecular Dynamics
- MIC, Minimum Inhibitory Concentration
- MurD
- PDB, Protein Data Bank
- PEP, Phosphoenolpyruvate
- PG, Peptidoglycan
- Peptidoglycan
- SAR, Structural Activity Relationship
- UDP-GlcNAc, UDP-N-acetylglucosamine
- UDP-Mpp, UDP-N-acetylmuramylpentapeptide
- UDP-MurNAc, UDP-N-acetylmuramicacid
- UMA, UDP N-acetylmuramoyl-l-alanine
- UNAG, UDP- N-acetylglucosamine
Collapse
|
3
|
In Silico Molecular Analysis and Docking of Potent Antimicrobial Peptides Against MurE Enzyme of Methicillin Resistant Staphylococcus Aureus. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Azam MA, Jupudi S. MurD inhibitors as antibacterial agents: a review. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Miyachiro MM, Granato D, Trindade DM, Ebel C, Paes Leme AF, Dessen A. Complex Formation between Mur Enzymes from Streptococcus pneumoniae. Biochemistry 2019; 58:3314-3324. [DOI: 10.1021/acs.biochem.9b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mayara M. Miyachiro
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Daniela Granato
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | - Daniel Maragno Trindade
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
| | - Christine Ebel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | | | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas 13084-971, São Paulo, Brazil
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| |
Collapse
|
6
|
Hrast M, Rožman K, Ogris I, Škedelj V, Patin D, Sova M, Barreteau H, Gobec S, Grdadolnik SG, Zega A. Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. J Enzyme Inhib Med Chem 2019; 34:1010-1017. [PMID: 31072165 PMCID: PMC6522912 DOI: 10.1080/14756366.2019.1608981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
The Mur ligases form a series of consecutive enzymes that participate in the intracellular steps of bacterial peptidoglycan biosynthesis. They therefore represent interesting targets for antibacterial drug discovery. MurC, D, E and F are all ATP-dependent ligases. Accordingly, with the aim being to find multiple inhibitors of these enzymes, we screened a collection of ATP-competitive kinase inhibitors, on Escherichia coli MurC, D and F, and identified five promising scaffolds that inhibited at least two of these ligases. Compounds 1, 2, 4 and 5 are multiple inhibitors of the whole MurC to MurF cascade that act in the micromolar range (IC50, 32-368 µM). NMR-assisted binding studies and steady-state kinetics studies performed on aza-stilbene derivative 1 showed, surprisingly, that it acts as a competitive inhibitor of MurD activity towards D-glutamic acid, and additionally, that its binding to the D-glutamic acid binding site is independent of the enzyme closure promoted by ATP.
Collapse
Affiliation(s)
- Martina Hrast
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Kaja Rožman
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia.,b Department of Medicinal Chemistry , University of Minnesota , Minneapolis , MN , USA
| | - Iza Ogris
- c Molecular Structural Dynamics, Theory Department , National Institute of Chemistry , Ljubljana , Slovenia
| | - Veronika Škedelj
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Delphine Patin
- d Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , Gif-Sur-Yvette Cedex , France
| | - Matej Sova
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Hélène Barreteau
- d Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , Gif-Sur-Yvette Cedex , France
| | - Stanislav Gobec
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Simona Golič Grdadolnik
- c Molecular Structural Dynamics, Theory Department , National Institute of Chemistry , Ljubljana , Slovenia
| | - Anamarija Zega
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
7
|
Ahmad S, Murtaza UA, Raza S, Azam SS. Blocking the catalytic mechanism of MurC ligase enzyme from Acinetobacter baumannii: An in Silico guided study towards the discovery of natural antibiotics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Shingare RM, Patil YS, Sangshetti JN, Patil RB, Rajani DP, Madje BR. Synthesis, biological evaluation and docking study of some novel isoxazole clubbed 1,3,4-oxadiazoles derivatives. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2148-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Extra precision docking, free energy calculation and molecular dynamics studies on glutamic acid derivatives as MurD inhibitors. Comput Biol Chem 2017; 69:55-63. [DOI: 10.1016/j.compbiolchem.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 04/18/2017] [Accepted: 05/20/2017] [Indexed: 01/28/2023]
|
10
|
Šink R, Kotnik M, Zega A, Barreteau H, Gobec S, Blanot D, Dessen A, Contreras-Martel C. Crystallographic Study of Peptidoglycan Biosynthesis Enzyme MurD: Domain Movement Revisited. PLoS One 2016; 11:e0152075. [PMID: 27031227 PMCID: PMC4816537 DOI: 10.1371/journal.pone.0152075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/08/2016] [Indexed: 11/30/2022] Open
Abstract
The biosynthetic pathway of peptidoglycan, an essential component of bacterial cell wall, is a well-recognized target for antibiotic development. Peptidoglycan precursors are synthesized in the bacterial cytosol by various enzymes including the ATP-hydrolyzing Mur ligases, which catalyze the stepwise addition of amino acids to a UDP-MurNAc precursor to yield UDP-MurNAc-pentapeptide. MurD catalyzes the addition of D-glutamic acid to UDP-MurNAc-L-Ala in the presence of ATP; structural and biochemical studies have suggested the binding of the substrates with an ordered kinetic mechanism in which ligand binding inevitably closes the active site. In this work, we challenge this assumption by reporting the crystal structures of intermediate forms of MurD either in the absence of ligands or in the presence of small molecules. A detailed analysis provides insight into the events that lead to the closure of MurD and reveals that minor structural modifications contribute to major overall conformation alterations. These novel insights will be instrumental in the development of new potential antibiotics designed to target the peptidoglycan biosynthetic pathway.
Collapse
Affiliation(s)
- Roman Šink
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana, Slovenia
| | - Miha Kotnik
- Lek Pharmaceuticals d. d., Verovškova 57, Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana, Slovenia
| | - Hélène Barreteau
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, Ljubljana, Slovenia
| | - Didier Blanot
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Andréa Dessen
- Univ. Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | - Carlos Contreras-Martel
- Univ. Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France
- CNRS, IBS, Grenoble, France
- CEA, IBS, Grenoble, France
- * E-mail:
| |
Collapse
|
11
|
Kouidmi I, Levesque RC, Paradis-Bleau C. The biology of Mur ligases as an antibacterial target. Mol Microbiol 2014; 94:242-53. [DOI: 10.1111/mmi.12758] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Imène Kouidmi
- Department of Microbiology, Infectiology and Immunology; Université de Montreal; Montreal Quebec Canada
| | - Roger C. Levesque
- Institut de biologie intégrative et des systèmes; Université Laval; Montreal Quebec Canada
| | - Catherine Paradis-Bleau
- Department of Microbiology, Infectiology and Immunology; Université de Montreal; Montreal Quebec Canada
| |
Collapse
|
12
|
A novel 2-oxoindolinylidene inhibitor of bacterial MurD ligase: Enzyme kinetics, protein-inhibitor binding by NMR and a molecular dynamics study. Eur J Med Chem 2014; 83:92-101. [PMID: 24952377 DOI: 10.1016/j.ejmech.2014.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 11/24/2022]
Abstract
N-(5-(5-nitro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)4-oxo-2-thioxo-1,3-thiazolidin-3-yl)nicotinamide, a 2-oxoindolinylidene derivative with novel structure scaffold, was evaluated for inhibition potency against the MurD enzyme from Escherichia coli using an enzyme steady-state kinetics study. The compound exerted competitive inhibition with respect to UMA, a MurD substrate, and affected bacterial growth. Furthermore, we isolated and purified (13)C selectively labeled MurD enzyme from E. coli and evaluated the binding interactions of the new compound using the (1)H/(13)C-HSQC 2D NMR method. Molecular dynamics calculations showed stable structure for the MurD-inhibitor complex. The binding mode of novel inhibitor was determined and compared to naphthalene-N-sulfonamide-d-Glu derivatives, transition state mimicking inhibitors, UMA and AMP-PCP, an ATP analog. It binds to the UDP/MurNAc binding region. In contrast to transition state mimicking inhibitors, it does not interact with the enzyme's C-terminal domain, which can be beneficial for ligand binding. A pharmacophore pattern was established for the design of novel drugs having a propensity to inhibit a broad spectrum of Mur enzymes.
Collapse
|