1
|
Simões T, Novais SC, Natal-da-Luz T, Devreese B, de Boer T, Roelofs D, Sousa JP, van Straalen NM, Lemos MFL. Using time-lapse omics correlations to integrate toxicological pathways of a formulated fungicide in a soil invertebrate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:845-854. [PMID: 30623841 DOI: 10.1016/j.envpol.2018.12.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
The use of an integrative molecular approach can actively improve the evaluation of environmental health status and impact of chemicals, providing the knowledge to develop sentinel tools that can be integrated in risk assessment studies, since gene and protein expressions represent the first response barriers to anthropogenic stress. This work aimed to determine the mechanisms of toxic action of a widely applied fungicide formulation (chlorothalonil), following a time series approach and using a soil model arthropod, Folsomia candida. To link effects at different levels of biological organization, data were collected on reproduction, gene expression and protein levels, in a time series during exposure to a natural soil. Results showed a mechanistic mode of action for chlorothalonil, affecting pathways of detoxification and excretion, immune response, cellular respiration, protein metabolism and oxidative stress defense, causing irregular cell signaling (JNK and NOD ½ pathways), DNA damage and abnormal cell proliferation, leading to impairment in developmental features such as molting cycle and reproduction. The omics datasets presented highly significant positive correlations between the gene expression levels at a certain time-point and the corresponding protein products 2-3 days later. The integrated omics in this study has provided useful insights into pesticide mechanisms of toxicity, evidencing the relevance of such analyses in toxicological studies, and highlighting the importance of considering a time-series when integrating these datasets.
Collapse
Affiliation(s)
- Tiago Simões
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal; Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal; Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Tiago Natal-da-Luz
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - Bart Devreese
- Laboratory for Microbiology (LM-Ugent), Ghent University, Belgium
| | - Tjalf de Boer
- Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Dick Roelofs
- Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - José P Sousa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - Nico M van Straalen
- Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| |
Collapse
|
2
|
Tissue distribution and functional analysis of vitellogenin-6 of Toxocara canis. Exp Parasitol 2017; 177:22-27. [PMID: 28351684 DOI: 10.1016/j.exppara.2017.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/02/2017] [Accepted: 03/25/2017] [Indexed: 12/11/2022]
Abstract
Toxocara canis is an common intestinal nematode of canids and the principal causative agent of human toxocariasis. Vitellogenin (Vg), a source of amino acids and lipids in the eggs, are considered to play an important role in embryo development of a wide range of organisms. In the present study, the transcriptional levels of Tc-vit-6 gene in male and female adult T. canis were determined by quantitative real-time PCR, which indicated high transcription of Tc-vit-6 in the intestine, reproductive tract and body wall of male and female adult T. canis. The fragment of Tc-vit-6 encoding a vWD domain, was cloned and expressed to produce a rabbit anti-TcvWD polyclonal antibody. Tissue distribution of TcVg6 was detected by immunohistochemical assays, which showed predominant distribution of TcVg6 in the tissues of intestine, as well as reproductive tract (including some of the germ cells) and musculature of male and female adult worms. Collectively, these results indicated multiple biological roles of TcVg6 apart from that in the reproduction of T. canis.
Collapse
|
3
|
Liu X, Shen G, Xu H, He L. The fenpropathrin resistant Tetranychus cinnabarinus showed increased fecundity with high content of vitellogenin and vitellogenin receptor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 134:31-38. [PMID: 27914537 DOI: 10.1016/j.pestbp.2016.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
Carmine spider mite, Tetranychus cinnabarinus (Boisduval), an agricultural pest of economically important crops, has developed resistance to a group of pesticides. We have selected a fenpropathrin-resistant strain (FeR) of T. cinnabarinus from the isogenous and susceptible strain (SS), and found that the FeR not only showed resistance but its fecundity also increased. According to the numbers of eggs laid per day of both strains, the FeR was more fertile than SS throughout the life span. To investigate the underlying reason, the protein contents of vitellogenin (vg) and vitellogenin receptor (vgr) were detected, and the results showed both of them were significantly higher in FeR than in SS. Then, the mRNA-expressions of vg and vgr genes were compared between FeR and SS. From the transcriptome data of T. cinnabarinus, we classified two vg genes (designated as Tcvg1 and Tcvg2, respectively) and a vgr gene (designated as Tcvgr). The expressions of Tcvg1, Tcvg2 and Tcvgr were highly associated with the fecundity of the mites that their mRNAs were extremely abundant at the adult stage, but hardly detectable during the developmental period (from egg to deutonymph). In accordance with the protein content, the expression levels of the three genes were all significantly higher in FeR than they were in SS. These results suggested that after resistance selection with fenpropathrin in T. cinnabarinus, the fecundity and the expression of reproduction-related genes (vg and vgr) were significantly higher in fenpropathrin resistant strain than that in susceptible strain.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Guangmao Shen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Haoran Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Tian HF, Meng Y, Hu QM, Xiao HB. Molecular cloning, characterization and evolutionary analysis of vitellogenin in Chinese giant salamander Andrias davidianus. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Singh NK, Pakkianathan BC, Kumar M, Prasad T, Kannan M, König S, Krishnan M. Vitellogenin from the silkworm, Bombyx mori: an effective anti-bacterial agent. PLoS One 2013; 8:e73005. [PMID: 24058454 PMCID: PMC3772815 DOI: 10.1371/journal.pone.0073005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/17/2013] [Indexed: 12/04/2022] Open
Abstract
Silkworm, Bombyx mori, vitellogenin (Vg) was isolated from perivisceral fat body of day 3 of pupa. Both Vg subunits were co-purified as verified by mass spectrometry and immunoblot. Purified Vg responded to specific tests for major posttranslational modifications on native gels indicating its nature as lipo-glyco-phosphoprotein. The Vg fraction had strong antibacterial activity against Gram negative bacterium Escherichia coli and Gram positive bacterium Bacillus subtilis. Microscopic images showed binding of Vg to bacterial cells and their destruction. When infected silkworm larvae were treated with purified Vg they survived the full life cycle in contrast to untreated animals. This result showed that Vg has the ability to inhibit the proliferation of bacteria in the silkworm fluid system without disturbing the regular metabolism of the host.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | | | - Manish Kumar
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
| | - Tulika Prasad
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
| | - Mani Kannan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
| | - Simone König
- Integrated Functional Genomics, Interdisciplinary Center for Clinical Research, University of Münster, Münster, Germany
| | - Muthukalingan Krishnan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, India
- * E-mail:
| |
Collapse
|