1
|
Al-Eitan L, Khair I, Shakhatreh Z, Almahdawi D, Alahmad S. Epidemiology, biosafety, and biosecurity of Avian Influenza: Insights from the East Mediterranean region. Rev Med Virol 2024; 34:e2559. [PMID: 38886173 DOI: 10.1002/rmv.2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The World Organization for Animal Health defines Avian Influenza Virus as a highly infectious disease caused by diverse subtypes that continue to evolve rapidly, impacting poultry species, pet birds, wild birds, non-human mammals, and occasionally humans. The effects of Avian influenza viruses have been recognised as a precursor for serious health concerns among affected birds, poultry, and human populations in the Middle East. Furthermore, low and high pathogenic avian influenza viruses lead to respiratory illness with varying severity, depending on the virus subtype (e.g., H5, H7, H9, etc.). Possible future outbreaks and endemics of newly emerging subtypes are expected to occur, as many studies have reported the emergence of novel mutations and viral subtypes. However, proper surveillance programs and biosecurity applications should be developed, and countries with incapacitated defences against such outbreaks should be encouraged to undergo complete reinstation and reinforcement in their health and research sectors. Public education regarding biosafety and virus prevention is necessary to ensure minimal spread of avian influenza endemic.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Iliya Khair
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Zaid Shakhatreh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Diana Almahdawi
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Saif Alahmad
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
2
|
Larbi I, Arbi M, Souiai O, Tougorti H, Butcher GD, Nsiri J, Badr C, Behi IE, Lachhab J, Ghram A. Phylogeographic Dynamics of H9N2 Avian Influenza Viruses in Tunisia. Virus Res 2024; 344:199348. [PMID: 38467378 PMCID: PMC10995884 DOI: 10.1016/j.virusres.2024.199348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Avian influenza virus subtype H9N2 is endemic in commercial poultry in Tunisia. This subtype affects poultry and wild birds in Tunisia and poses a potential zoonotic risk. Tunisian H9N2 strains carry, in their hemagglutinins, the human-like marker 226 L that is most influential in avian-to-human viral transmission. For a better understanding of how ecological aspects of the H9N2 virus and its circulation in poultry, migratory birds and environment shapes the spread of the dissemination of H9N2 in Tunisia, herein, we investigate the epidemiological, evolutionary and zoonotic potential of seven H9N2 poultry isolates and sequence their whole genome. Phylogeographic and phylodymanic analysis were used to examine viral spread within and among wild birds, poultry and environment at geographical scales. Genetic evolution results showed that the eight gene sequences of Tunisian H9N2 AIV were characterized by molecular markers involved with virulence and mammalian infections. The geographical distribution of avian influenza virus appears as a network interconnecting countries in Europe, Asia, North Africa and West Africa. The spatiotemporal dynamics analysis showed that the H9N2 virus was transmitted from Tunisia to neighboring countries notably Libya and Algeria. Interestingly, this study also revealed, for the first time, that there was a virus transmission between Tunisia and Morocco. Bayesian analysis showed exchanges between H9N2 strains of Tunisia and those of the Middle Eastern countries, analysis of host traits showed that duck, wild birds and environment were ancestry related to chicken. The subtypes phylodynamic showed that PB1 segment was under multiple inter-subtype reassortment events with H10N7, H12N5, H5N2 and H6N1 and that PB2 was also a subject of inter-subtype reassortment with H10N4.
Collapse
Affiliation(s)
- Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia.
| | - Marwa Arbi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Halima Tougorti
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Gary David Butcher
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Chaima Badr
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Imen El Behi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Jihene Lachhab
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur-BP74, Tunis, Belvédère 1002, Tunisia
| |
Collapse
|
3
|
Arbani O, Ducatez MF, Mahmoudi S, Salamat F, Khayi S, Mouahid M, Selim KM, Kichou F, Ouchhour I, El Houadfi M, Fellahi S. Low Pathogenic Avian Influenza H9N2 Viruses in Morocco: Antigenic and Molecular Evolution from 2021 to 2023. Viruses 2023; 15:2355. [PMID: 38140596 PMCID: PMC10747644 DOI: 10.3390/v15122355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
Avian influenza viruses pose significant threats to both the poultry industry and public health worldwide. Among them, the H9N2 subtype has gained substantial attention due to its high prevalence, especially in Asia, the Middle East, and Africa; its ability to reassort with other influenza viruses; and its potential to infect humans. This study presents a comprehensive phylogenetic and molecular analysis of H9N2 avian influenza viruses circulating in Morocco from 2021 to 2023. Through an active epidemiological survey, a total of 1140 samples (trachea and lungs) and oropharyngeal swabs pooled into 283 pools, collected from 205 farms located in 7 regions of Morocco known for having a high density of poultry farms, were analyzed. Various poultry farms were investigated (159 broiler farms, 24 layer farms, 10 breeder farms, and 12 turkey breeder farms). A total of 21 AI H9N2 strains were isolated, and in order to understand the molecular evolution of the H9N2 avian influenza virus, their genetic sequences were determined using the Sanger sequencing technique. Phylogenetic analysis was performed using a dataset comprising global H9N2 sequences to determine the genetic relatedness and evolutionary dynamics of the Moroccan strains. The results revealed the continued circulation and diversification of H9N2 avian influenza viruses in Morocco during the study period. Real-time RT-PCR showed a positivity rate of 35.6% (73/205), with cycle threshold values ranging from 19.2 to 34.9. The phylogenetic analysis indicated that all Moroccan strains belonged to a G1-like lineage and regrouped into two distinct clusters. Our newly detected isolates aggregated distinctly from the genotypes previously isolated in Morocco, North and West Africa, and the Middle East. This indicats the potential of virus evolution resulting from both national circulation and cross-border transmission. A high genetic diversity at both nucleotide and amino-acid levels was observed among all the strains isolated in this study, as compared to H9N2 strains isolated in Morocco since 2016, which suggests the co-circulation of genetically diverse H9N2 variants. Newly discovered mutations were detected in hemagglutinin positions 226, 227, and 193 (H3 numbering), which highlights the genetic evolution of the H9N2 AIVs. These findings contribute to our understanding of the evolution and epidemiology of H9N2 in the region and provide valuable insights for the development of effective prevention and control strategies against this emerging avian influenza subtype.
Collapse
Affiliation(s)
- Oumayma Arbani
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Mariette F. Ducatez
- Laboratoire Interactions Hôtes-Agents Pathogènes (IHAP), Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
| | - Salma Mahmoudi
- Laboratory of Microbiology and Molecular Biology, Department of Biology, Faculty of Sciences, Mohamed V University in Rabat, 4 Avenue Ibn Battouta, Rabat 10106, Morocco;
| | - Faiçal Salamat
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Slimane Khayi
- Biotechnology Research Unit, CRRA-Rabat, National Institute of Agricultural Research, Rabat 10101, Morocco;
| | | | - Karim M. Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Agriculture Research Center, Animal Health Research Institute, Giza 12618, Egypt;
| | - Faouzi Kichou
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Ikram Ouchhour
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Mohammed El Houadfi
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| | - Siham Fellahi
- Department of Veterinary Pathology and Public Health, Institut Agronomique et Vétérinaire Hassan II, Rabat 10000, Morocco; (F.S.); (F.K.); (I.O.); (M.E.H.)
| |
Collapse
|
4
|
Larbi I, Ghedira K, Arbi M, Butcher GD, Rego N, Naya H, Tougorti H, Lachhab J, Behi IE, Nsiri J, Ghram A. Phylogenetic analysis and assessment of the pathogenic potential of the first H9N2 avian influenza viruses isolated from wild birds and Lagoon water in Tunisia. Virus Res 2022; 322:198929. [PMID: 36126884 DOI: 10.1016/j.virusres.2022.198929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
H9N2 avian influenza virus (AIV) has been isolated from various species of wild birds and domestic poultry worldwide. It has been reported since the late 1990s, that H9N2 AIV has infected humans as reported in some Asian and North African countries. This subtype has already been circulating and constituting a serious threat to the poultry industry in Tunisia back in 2009. To investigate zoonotic potential and pathogenicity of H9N2 AIV in chickens and mice in Tunisia, five strains have been isolated during the period from 2014 to 2018. Samples were withdrawn from several wild bird species and environment (Lagoon water) of Maamoura and Korba Lagoons as well as Kuriat Island. Phylogenetic analyzes demonstrated that the isolated H9N2 strains belonged to the G1-like sublineage and were close to AIV H9N2 poultry viruses from North Africa, West Africa and the Middle East. All strains carried in their hemagglutinin the residue 226 L, which is an important marker for avian-to-human viral transmission. The hemagglutinin cleavage site has several motifs: PSKSSR/G, PARSSR/G and HARSSR/G. The neuraminidase showed S372A and R403W substitutions that have been previously detected in H3N2 and H2N2 viruses that were reported in human pandemics. Many mutations associated with mammalian infections have been detected in internal proteins. Pathogenicity evaluation in chickens showed that GF/14 replicates effectively in the lungs, tracheas, spleens, kidneys and brains and that it was transmitted among contact chickens. However, GHG/18 replicates poorly in chickens and has not an efficient transmission in contact chickens. GF/14 and GHG/18 could not kill mice though they replicated in their respiratory tract and caused a significant body weight loss (p < 0.05). This study highlights the importance of H9N2 AIV monitoring in both migratory birds and the environment to prevent virus transmission to humans.
Collapse
Affiliation(s)
- Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Marwa Arbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Gary David Butcher
- College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo, Montevideo, Uruguay
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo, Montevideo, Uruguay; Departmento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Uruguay
| | - Halima Tougorti
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Lachhab
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imen El Behi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
5
|
Risk Factors Associated with Avian Influenza Subtype H9 Outbreaks in Poultry Farms of Central Lowland Nepal. Infect Dis Rep 2022; 14:525-536. [PMID: 35893475 PMCID: PMC9326661 DOI: 10.3390/idr14040056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
Low pathogenic avian influenza (LPAI) of subtype H9 outbreaks have been frequently occurring in major commercial hubs of Nepal including Chitwan, a central lowland area, causing substantial economic losses to the farmers. However, the risk factors associated with these outbreaks have been poorly understood, and hence, this case-control study was conducted in Chitwan, Nawalpur, and Makawanpur districts of Nepal from October 2019 to March 2020. A total of 102 farms were selected in which 51 were case farms, and 51 were controls. Case farms were avian influenza (AI)-subtype-H9-confirmed farms through polymerase chain reaction (PCR) assays on poultry samples. Control farms included farms that were AI-negative in the antigen test brought to the National Avian Disease Investigation Laboratory, Chitwan, for diagnosis during the study period. Each farm was visited to collect information using a semi-structured questionnaire. A total of 25 variables representing farm characteristics and biosecurity measures were considered as potential risk factors. The final multivariable model showed that distance of less than 0.5 km from the main road (OR = 4.04, 95% CI = 1.20–13.56, p = 0.023), distance of less than 1 km from a nearest infected farm (OR = 76.42, 95% CI = 7.17–814.06, p = 0.0003), and wild birds coming around the farm (OR = 6.12, 95% CI = 1.99–18.79, p = 0.0015) were risk factors for avian influenza type H9, whereas using apron or separate cloth inside the shed (OR = 0.109, 95% CI = 0.020–0.577, p = 0.0092) was shown to reduce the risk of farms being positive for AI subtype H9. These findings suggest that due consideration should be given to site selection while establishing the farms and the importance of implementing appropriate biosecurity measures, such as using separate cloth inside the shed and preventing the entry of wild birds inside the farm to reduce the potential risk of introduction of avian influenza type H9 to their poultry farms.
Collapse
|
6
|
Sikht FZ, Ducatez M, Touzani CD, Rubrum A, Webby R, El Houadfi M, Tligui NS, Camus C, Fellahi S. Avian Influenza a H9N2 Viruses in Morocco, 2018–2019. Viruses 2022; 14:v14030529. [PMID: 35336936 PMCID: PMC8954086 DOI: 10.3390/v14030529] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Low pathogenic H9N2 avian influenza (LPAI H9N2) is considered one of the most important diseases found in poultry (broiler, laying hens, breeding chickens, and turkeys). This infection causes considerable economic losses. The objective of this work was to monitor and assess the presence of avian influenza virus (AIV) H9N2 in eight different regions of Morocco using real-time RT-PCR, and to assess the phylogenetic and molecular evolution of the H9N2 viruses between 2016 and 2019. Field samples were collected from 108 farms suspected of being infected with LPAI H9N2 virus. Samples were analyzed using H9N2-specific real-time RT-PCR. Highly positive samples were subjected to virus isolation and seven isolates were fully sequenced. Low pathogenic H9N2 avian influenza virus was introduced in Morocco in 2016. We show that in 2018–2019, the virus was still present irrespective of vaccination status. Phylogenetic and molecular analyses showed mutations related to virulence, although our viruses were related to 2016 Moroccan viruses and grouped in the G1 lineage. Specific amino acid substitutions were identified in Moroccan H9N2 viruses that are believed to lead to increased resistance to antiviral drugs.
Collapse
Affiliation(s)
- Fatima-Zohra Sikht
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
- IHAP, Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
| | | | - Charifa Drissi Touzani
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.W.)
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (A.R.); (R.W.)
| | - Mohammed El Houadfi
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| | - Nour-Said Tligui
- Anatomo-Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco;
| | - Christelle Camus
- IHAP, Toulouse University, INRAE, ENVT, 31300 Toulouse, France;
- Correspondence: ; Tel.: +33-5-61-19-38-80
| | - Siham Fellahi
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco; (F.-Z.S.); (C.D.T.); (M.E.H.); (S.F.)
| |
Collapse
|
7
|
Rahman MA, Belgrad JP, Sayeed MA, Abdullah MS, Barua S, Chisty NN, Mohsin MAS, Foysal M, Hossain ME, Islam A, Akwar H, Hoque MA. Prevalence and risk factors of Avian Influenza Viruses among household ducks in Chattogram, Bangladesh. Vet Res Commun 2022; 46:471-480. [PMID: 35022959 DOI: 10.1007/s11259-021-09874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
Avian influenza viruses (AIV) increase commercial and backyard poultry mortality and morbidity, reduces egg production, and elevates public health risk. Household ducks propagate and transmit HPAI and LPAI viruses between domesticated and wild birds in Southeast Asian countries, including Bangladesh. This study was conducted to identify epidemiological factors associated with AIV infection among household ducks at Chattogram, Bangladesh. We randomly selected and collected blood and oropharyngeal swab samples from 281 households ducks. We evaluated the serum for AIV antibody using cELISA and tested for H5 and H9 subtypes using the HI test. We tested the swabs with real-time reverse transcriptase PCR (rRT-PCR) for M gene, and H5, H9 subtypes. In the duck populations, the household level AIV sero-prevalence was 57.7% (95% CI: 51.6-63.3) and RNA prevalence was 2.4% (95% CI: 1.0-5.0). H5 and H9 subtype sero-prevalence was 31.5% (95% CI: 22.2-42.0) and 23.9% (95% CI: 15.6-33.9). H5 and H9 subtype RNA prevalence were 0% (95% CI: 0.0-1.3) and 2.4% (95% CI: 1.0-5.0). We determined household-level OR (Odds Ratios) for the "combined (mixed materials-mud and concrete or metallic)" category was 2.2 (95% CI: 1.1-4.2) compared with "wooden/bamboo" category (p = 0.02); 2.8 (95% CI: 1.2-6.6) in households with duck plague vaccine coverage compared with no coverage (p = 0.01); and 2.4 (95% CI: 0.6-9.7) in households that threw dead birds in bushes and the roadside compared with households that buried or threw dead birds in garbage pits (p = 0.21). M gene phylogenetic analysis compared M gene sequences to previously reported Bangladeshi H9N2 isolates. The evidence presented here shows AIV circulation in the Chattogram, Bangladesh study areas. AIV reduction can be achieved through farmer education of proper farm management practices.
Collapse
Affiliation(s)
- Md Ashiqur Rahman
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Joseph P Belgrad
- Tufts Cummings School of Veterinary Medicine, 200 Westboro Rd., North Grafton, MA, 01536, USA
| | - Md Abu Sayeed
- Institute of Epidemiology Disease Control and Research, Dhaka, 1212, Bangladesh
- EcoHealth Alliance, New York, NY, USA
| | - Md Sadeque Abdullah
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Shanta Barua
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Nurun Nahar Chisty
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Md Abu Shoieb Mohsin
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Mohammad Foysal
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh
| | - Mohammad Enayet Hossain
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ariful Islam
- EcoHealth Alliance, New York, NY, USA
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Holy Akwar
- Food and Agriculture Organization, Rome, Italy
| | - Md Ahasanul Hoque
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chattogram, 4225, Bangladesh.
| |
Collapse
|
8
|
Aslam HB, Alarcon P, Yaqub T, Iqbal M, Häsler B. A Value Chain Approach to Characterize the Chicken Sub-sector in Pakistan. Front Vet Sci 2020; 7:361. [PMID: 32714948 PMCID: PMC7351015 DOI: 10.3389/fvets.2020.00361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
The chicken industry of Pakistan is a major livestock sub-sector, playing a pivotal role in economic growth and rural development. This study aimed to characterize and map the structure of broiler and layer production systems, associated value chains, and chicken disease management in Pakistan. Qualitative data were collected in 23 key informant interviews and one focus group discussion on the types of production systems, inputs, outputs, value addition, market dynamics, and disease management. Quantitative data on proportions of commodity flows were also obtained. Value chain maps were generated to illustrate stakeholder groups and their linkages, as well as flows of birds and products. Thematic analysis was conducted to explain the functionality of the processes, governance, and disease management. Major chicken production systems were: (1) Environmentally controlled production (97-98%) and (2) Open-sided house production (2-3%). Broiler management systems were classified as (I) Independent broiler production; (II) Partially integrated broiler production; and (III) Fully integrated broiler production, accounting for 65-75, 15-20, and 10-15% of commercial broiler meat supply, respectively. The management systems for layers were classified as (I) Partially integrated layer production and (II) Independent layer production, accounting for 10 and 80-85% in the egg production, respectively. The share of backyard birds for meat and eggs was 10-15%. Independent, and integrated systems for chicken production could be categorized in terms of value chain management, dominance of actors, type of finished product and target customers involved. Integrated systems predominantly targeted high-income customers and used formal infrastructure. Numerous informal chains were identified in independent and some partially integrated systems, with middlemen playing a key role in the distribution of finished birds and eggs. Structural deficiencies in terms of poor farm management, lack of regulations for ensuring good farming practices and price fixing of products were key themes identified. Both private and public stakeholders were found to have essential roles in passive disease surveillance, strategy development and provision of health consultancies. This study provides a foundation for policy-makers and stakeholders to investigate disease transmission, its impact and control and the structural deficiencies identified could inform interventions to improve performance of the poultry sector in Pakistan.
Collapse
Affiliation(s)
- Hassaan Bin Aslam
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), London, United Kingdom
- Avian Influenza Virus Group, The Pirbright Institute, Woking, United Kingdom
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Pablo Alarcon
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), London, United Kingdom
| | - Tahir Yaqub
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Munir Iqbal
- Avian Influenza Virus Group, The Pirbright Institute, Woking, United Kingdom
| | - Barbara Häsler
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), London, United Kingdom
| |
Collapse
|
9
|
Arbi M, Souiai O, Rego N, Larbi I, Naya H, Ghram A, Houimel M. Historical origins and zoonotic potential of avian influenza virus H9N2 in Tunisia revealed by Bayesian analysis and molecular characterization. Arch Virol 2020; 165:1527-1540. [PMID: 32335769 DOI: 10.1007/s00705-020-04624-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/24/2020] [Indexed: 01/08/2023]
Abstract
During 2009-2012, several outbreaks of avian influenza virus H9N2 were reported in Tunisian poultry. The circulating strains carried in their hemagglutinins the human-like marker 226L, which is known to be important for avian-to-human viral transmission. To investigate the origins and zoonotic potential of the Tunisian H9N2 viruses, five new isolates were identified during 2012-2016 and their whole genomes were sequenced. Bayesian-based phylogeny showed that the HA, NA, M and NP segments belong to the G1-like lineage. The PB1, PB2, PA and NS segments appeared to have undergone multiple intersubtype reassortments and to be only distantly related to all of the Eurasian lineages (G1-like, Y280-like and Korean-like). The spatiotemporal dynamic of virus spread revealed that the H9N2 virus was transferred to Tunisia from the UAE through Asian and European pathways. As indicated by Bayesian analysis of host traits, ducks and terrestrial birds played an important role in virus transmission to Tunisia. The subtype phylodynamics showed that the history of the PB1 and PB2 segments was marked by intersubtype reassortments with H4N6, H10N4 and H2N2 subtypes. Most of these transitions between locations, hosts and subtypes were statistically supported (BF > 3) and not influenced by sampling bias. Evidence of genetic evolution was observed in the predicted amino acid sequences of the viral proteins of recent Tunisian H9N2 viruses, which were characterized by the acquisition of new mutations involved in virus adaptation to avian and mammalian hosts and amantadine resistance. This study is the first comprehensive analysis of the evolutionary history of Tunisian H9N2 viruses and highlights the zoonotic risk associated with their circulation in poultry, indicating the need for continuous surveillance of their molecular evolution.
Collapse
Affiliation(s)
- Marwa Arbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Oussema Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics, LR16IPT09, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
- Departmento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Av. Gral. Eugenio Garzón 780, 12900, Montevideo, Uruguay
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia
| | - Mehdi Houimel
- Laboratory of Epidemiology and Veterinary Microbiology, LR19IPT03, Institut Pasteur de Tunis, University Tunis El Manar, 13, Place Pasteur, BP74, 1002, Tunis, Belvedere, Tunisia.
| |
Collapse
|
10
|
Gompo TR, Shah BR, Karki S, Koirala P, Maharjan M, Bhatt DD. Risk factors associated with Avian Influenza subtype H9 outbreaks in poultry farms in Kathmandu valley, Nepal. PLoS One 2020; 15:e0223550. [PMID: 32240166 PMCID: PMC7117692 DOI: 10.1371/journal.pone.0223550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/16/2020] [Indexed: 11/18/2022] Open
Abstract
The poultry sector contributes four percent to the national GDP of Nepal. However, this sector is under threat with periodic outbreaks of Avian Influenza (AI) subtypes H5 and H9 since 2009. This has been both a public health threat and an economic issue. Since the past few years, outbreaks of AI subtype H9 have caused huge economic losses in major poultry producing areas of Nepal. However, the risk factors associated with these outbreaks have not been assessed. A retrospective case-control study was conducted from April 2018 to May 2019 to understand the risk factors associated with AI subtype H9 outbreaks in Kathmandu valley. Out of 100 farms selected, 50 were “case” farms, confirmed positive to H9 at Central Veterinary Laboratory, Kathmandu, and another 50 farms were “control” farms, matched for farm size and locality within a radius of three km from the case farm. Each farm was visited to collect information using a semi-structured questionnaire. Twelve potential risk factors were included in the questionnaire under the broad categories: birds and farm characteristics, and management and biosecurity status of the farms. Univariable and multivariable logistic regression analysis was conducted and corresponding odds ratios were calculated. Risk factors, associated with AI subtype H9 outbreaks in Kathmandu valley, identified in the final multivariable model were: “farms that have flock size greater than median flock size of study farms (>1500)” (OR = 4.41, 95% CI: 1.53–12.71, p = 0.006), “farms that did not apply rules to wear boots for visitors inside the farms” (OR = 4.32, 95% CI: 1.52–12.29, p = 0.006) and “other commercial farms located within one km periphery” (OR = 10, 95% CI: 1.8–50, p = 0.007). This study showed that outbreaks of AI subtype H9 in Kathmandu valley were associated with a higher population of birds in the farm, poor management practices, and weak biosecurity measures in poultry farms. We suggest improving management practices and increase biosecurity in the farms to reduce incidences of AI subtype H9 outbreaks in Kathmandu valley.
Collapse
Affiliation(s)
- Tulsi Ram Gompo
- Department of Livestock Services, Central Veterinary Laboratory, Kathmandu, Nepal
- * E-mail:
| | - Bikas Raj Shah
- Institute of Agriculture and Animal Science, Tribhuvan University, Kathmandu, Nepal
| | - Surendra Karki
- Himalayan College of Agricultural Sciences and Technology, Kathmandu, Nepal
| | - Pragya Koirala
- Department of Livestock Services, Central Veterinary Laboratory, Kathmandu, Nepal
| | - Manju Maharjan
- Department of Livestock Services, Central Veterinary Laboratory, Kathmandu, Nepal
| | - Diker Dev Bhatt
- Department of Livestock Services, Central Veterinary Laboratory, Kathmandu, Nepal
| |
Collapse
|
11
|
Aslam HB, Alarcon P, Yaqub T, Iqbal M, Häsler B. A Value Chain Approach to Characterize the Chicken Sub-sector in Pakistan. Front Vet Sci 2020. [PMID: 32714948 DOI: 10.3389/fvets.2020.0036110.3389/fvets.2020.00361.s00110.3389/fvets.2020.00361.s002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The chicken industry of Pakistan is a major livestock sub-sector, playing a pivotal role in economic growth and rural development. This study aimed to characterize and map the structure of broiler and layer production systems, associated value chains, and chicken disease management in Pakistan. Qualitative data were collected in 23 key informant interviews and one focus group discussion on the types of production systems, inputs, outputs, value addition, market dynamics, and disease management. Quantitative data on proportions of commodity flows were also obtained. Value chain maps were generated to illustrate stakeholder groups and their linkages, as well as flows of birds and products. Thematic analysis was conducted to explain the functionality of the processes, governance, and disease management. Major chicken production systems were: (1) Environmentally controlled production (97-98%) and (2) Open-sided house production (2-3%). Broiler management systems were classified as (I) Independent broiler production; (II) Partially integrated broiler production; and (III) Fully integrated broiler production, accounting for 65-75, 15-20, and 10-15% of commercial broiler meat supply, respectively. The management systems for layers were classified as (I) Partially integrated layer production and (II) Independent layer production, accounting for 10 and 80-85% in the egg production, respectively. The share of backyard birds for meat and eggs was 10-15%. Independent, and integrated systems for chicken production could be categorized in terms of value chain management, dominance of actors, type of finished product and target customers involved. Integrated systems predominantly targeted high-income customers and used formal infrastructure. Numerous informal chains were identified in independent and some partially integrated systems, with middlemen playing a key role in the distribution of finished birds and eggs. Structural deficiencies in terms of poor farm management, lack of regulations for ensuring good farming practices and price fixing of products were key themes identified. Both private and public stakeholders were found to have essential roles in passive disease surveillance, strategy development and provision of health consultancies. This study provides a foundation for policy-makers and stakeholders to investigate disease transmission, its impact and control and the structural deficiencies identified could inform interventions to improve performance of the poultry sector in Pakistan.
Collapse
Affiliation(s)
- Hassaan Bin Aslam
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), London, United Kingdom
- Avian Influenza Virus Group, The Pirbright Institute, Woking, United Kingdom
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Pablo Alarcon
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), London, United Kingdom
| | - Tahir Yaqub
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Munir Iqbal
- Avian Influenza Virus Group, The Pirbright Institute, Woking, United Kingdom
| | - Barbara Häsler
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), London, United Kingdom
| |
Collapse
|
12
|
La Sala LF, Burgos JM, Blanco DE, Stevens KB, Fernández AR, Capobianco G, Tohmé F, Pérez AM. Spatial modelling for low pathogenicity avian influenza virus at the interface of wild birds and backyard poultry. Transbound Emerg Dis 2019; 66:1493-1505. [PMID: 30698918 DOI: 10.1111/tbed.13136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 11/28/2022]
Abstract
Low pathogenicity avian influenza virus (LPAIV) is endemic in wild birds and poultry in Argentina, and active surveillance has been in place to prevent any eventual virus mutation into a highly pathogenic avian influenza virus (HPAIV), which is exotic in this country. Risk mapping can contribute effectively to disease surveillance and control systems, but it has proven a very challenging task in the absence of disease data. We used a combination of expert opinion elicitation, multicriteria decision analysis (MCDA) and ecological niche modelling (ENM) to identify the most suitable areas for the occurrence of LPAIV at the interface between backyard domestic poultry and wild birds in Argentina. This was achieved by calculating a spatially explicit risk index. As evidenced by the validation and sensitivity analyses, our model was successful in identifying high-risk areas for LPAIV occurrence. Also, we show that the risk for virus occurrence is significantly higher in areas closer to commercial poultry farms. Although the active surveillance systems have been successful in detecting LPAIV-positive backyard farms and wild birds in Argentina, our predictions suggest that surveillance efforts in those compartments could be improved by including high-risk areas identified by our model. Our research provides a tool to guide surveillance activities in the future, and presents a mixed methodological approach which could be implemented in areas where the disease is exotic or rare and a knowledge-driven modelling method is necessary.
Collapse
Affiliation(s)
- Luciano F La Sala
- Instituto de Ciencias Biológicas y Biomédicas del Sur (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Julián M Burgos
- Marine and Freshwater Research Institute, Reykjavík, Iceland
| | - Daniel E Blanco
- Wetlands International/Fundación Humedales, Buenos Aires, Argentina
| | - Kim B Stevens
- Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, London, UK
| | - Andrea R Fernández
- Departamento de Ciencias de la Administración, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Guillermo Capobianco
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina.,Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Fernando Tohmé
- Instituto de Matemática de Bahía Blanca (CONICET - Universidad Nacional del Sur), Bahía Blanca, Argentina
| | - Andrés M Pérez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
13
|
Boumart Z, Bamouh Z, Jazouli M, Zecchin B, Fusaro A, Salviato A, Monne I, Tadlaoui KO, Harrak ME. Pathogenicity and Full Genome Sequencing of the Avian Influenza H9N2 Moroccan Isolate 2016. Avian Dis 2019; 63:24-30. [PMID: 31251516 DOI: 10.1637/11941-080418-reg.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 11/05/2022]
Abstract
In Morocco in early 2016, a low pathogenic avian influenza virus serotype H9N2 caused large economic losses to the poultry industry, with specific clinical symptoms and high mortality rates on infected farms. Subsequent to the H9N2 outbreak, the causal agent was successfully isolated from chicken flocks with high morbidity and mortality rates, propagated on embryonated eggs, and fully sequenced. The phylogenetic analysis suggested that the Moroccan isolate could have derived from the Middle East isolate A/chicken/Dubai/D2506.A/2015. This study was designed to assess the pathogenicity of the Moroccan isolate H9N2 in experimentally infected broiler and specific-pathogen-free (SPF) chickens. At 22 days of age, one broiler and two SPF chicken groups were inoculated by dropping 0.2 ml of the H9N2 isolate (107.5 EID50/ml) in both nostrils and eyes. Clinically inoculated chickens with H9N2 displayed mild lesions, low mortality rates, and an absence of clinical signs. The H9N2 virus was more pathogenic in broiler chickens and produced more severe tissue lesions compared to SPF chickens. The viral shedding was detected up to 6 days postinoculation (pi) in oropharyngeal and cloacal swabs in infected birds with a maximum shedding in the oropharynges of the broiler group. All experimental chickens seroconverted and registered high hemagglutination inhibition titers as early as day 7 pi. The present study indicates that the H9N2 virus isolated from a natural outbreak was of low pathogenicity under experimental conditions. However, under field conditions infection with other pathogens might have aggravated the disease.
Collapse
Affiliation(s)
- Zineb Boumart
- Research and Development Department, Multi-Chemical Industry, Lot 157, Z I, Sud-Ouest (ERAC) B. P. 278, Mohammedia 28810, Morocco,
| | - Zahra Bamouh
- Research and Development Department, Multi-Chemical Industry, Lot 157, Z I, Sud-Ouest (ERAC) B. P. 278, Mohammedia 28810, Morocco
| | - Mohammed Jazouli
- Research and Development Department, Multi-Chemical Industry, Lot 157, Z I, Sud-Ouest (ERAC) B. P. 278, Mohammedia 28810, Morocco
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | | | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie, Padua, Italy
| | - Khalid Omari Tadlaoui
- Research and Development Department, Multi-Chemical Industry, Lot 157, Z I, Sud-Ouest (ERAC) B. P. 278, Mohammedia 28810, Morocco
| | - Mehdi El Harrak
- Research and Development Department, Multi-Chemical Industry, Lot 157, Z I, Sud-Ouest (ERAC) B. P. 278, Mohammedia 28810, Morocco
| |
Collapse
|
14
|
Abubakar A, Melhem N, Malik M, Dbaibo G, Khan WM, Zaraket H. Seasonal influenza vaccination policies in the Eastern Mediterranean Region: Current status and the way forward. Vaccine 2019; 37:1601-1607. [PMID: 30795940 DOI: 10.1016/j.vaccine.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND The World Health Organization recommends annual influenza vaccination, especially in high-risk groups. Little is known about the adoption and implementation of influenza vaccination policies in the Eastern Mediterranean Region. METHODS A survey was distributed to country representatives at the ministries of health of the 22 countries of the Region between December 2016 and February 2017 to capture data on influenza immunization policies, recommendations, and practices in place. RESULTS Of the 20 countries that responded to the survey, 14 reported having influenza immunization policies during the 2015/2016 influenza season. All countries with an influenza immunization policy recommended vaccination for people with chronic medical conditions, healthcare workers and pilgrims. Two of the 20 countries did not target pregnant women. Eight countries used the northern hemisphere formulation, one used the southern hemisphere formulation and nine used both. Vaccination coverage was not monitored by all countries and for all target groups. Where reported, coverage of a number of target groups (healthcare workers, children) was generally low. Data on the burden of influenza and vaccine protection are scarce in the Region. CONCLUSIONS Despite widespread policy recommendations on influenza vaccination, attaining high coverage rates remains a challenge in the Eastern Mediterranean Region. Tackling disparities in influenza vaccine accessibility and strengthening surveillance systems may increase influenza vaccine introduction and use.
Collapse
Affiliation(s)
- Abdinasir Abubakar
- Infectious Hazard Management, Department of WHO Health Emergencies Programme, WHO Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Nada Melhem
- American University of Beirut, Faculty of Health Sciences, Medical Laboratory Sciences Program, 11-0236 Riad El Solh, 1107-2020 Beirut, Lebanon; American University of Beirut, Faculty of Medicine, Center for Infectious Diseases Research, 11-0236 Riad El Solh, 1107-2020 Beirut, Lebanon
| | - Mamunur Malik
- Infectious Hazard Management, Department of WHO Health Emergencies Programme, WHO Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Ghassan Dbaibo
- American University of Beirut, Faculty of Medicine, Center for Infectious Diseases Research, 11-0236 Riad El Solh, 1107-2020 Beirut, Lebanon; American University of Beirut, Faculty of Medicine, Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, 11-0236 Riad El Solh, 1107-2020 Beirut, Lebanon
| | - Wasiq Mehmood Khan
- Infectious Hazard Management, Department of WHO Health Emergencies Programme, WHO Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Hassan Zaraket
- American University of Beirut, Faculty of Medicine, Center for Infectious Diseases Research, 11-0236 Riad El Solh, 1107-2020 Beirut, Lebanon; American University of Beirut, Faculty of Medicine, Department of Experimental Pathology, Immunology & Microbiology, 11-0236 Riad El Solh, 1107-2020 Beirut, Lebanon.
| |
Collapse
|
15
|
Feng B, Zhang Q, Wang J, Dong H, Mu X, Hu G, Zhang T. IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells. Mol Cells 2018; 41:271-281. [PMID: 29629559 PMCID: PMC5935096 DOI: 10.14348/molcells.2018.2091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/09/2017] [Accepted: 01/07/2018] [Indexed: 12/25/2022] Open
Abstract
IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection.
Collapse
Affiliation(s)
- Bo Feng
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Qian Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
- Department of Pathophysiology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | - Jianfang Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Xiang Mu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Ge Hu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, P.R. China
| |
Collapse
|
16
|
Kim WH, An JU, Kim J, Moon OK, Bae SH, Bender JB, Cho S. Risk factors associated with highly pathogenic avian influenza subtype H5N8 outbreaks on broiler duck farms in South Korea. Transbound Emerg Dis 2018; 65:1329-1338. [PMID: 29673109 DOI: 10.1111/tbed.12882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Indexed: 11/29/2022]
Abstract
Highly Pathogenic Avian Influenza (HPAI) subtype H5N8 outbreaks occurred in poultry farms in South Korea in 2014 resulting in significant damage to the poultry industry. Between 2014 and 2016, the pandemic disease caused significant economic loss and social disruption. To evaluate the risk factors for HPAI infection in broiler duck farms, we conducted a retrospective case-control study on broiler duck farms. Forty-three farms with confirmed laboratories on premises were selected as the case group, and 43 HPAI-negative farms were designated as the control group. Control farms were matched based on farm location and were within a 3-km radius from the case premises. Spatial and environmental factors were characterized by site visit and plotted through a geographic information system (GIS). Univariable and multivariable logistic regression models were developed to assess possible risk factors associated with HPAI broiler duck farm infection. Four final variables were identified as risk factors in a final multivariable logistic model: "Farms with ≥7 flocks" (odds ratio [OR] = 6.99, 95% confidence interval [CI] 1.34-37.04), "Farm owner with ≥15 years of raising poultry career" (OR = 7.91, 95% CI 1.69-37.14), "Presence of any poultry farms located within 500 m of the farm" (OR = 6.30, 95% CI 1.08-36.93) and "Not using a faecal removal service" (OR = 27.78, 95% CI 3.89-198.80). This highlights that the HPAI H5N8 outbreaks in South Korea were associated with farm owner education, number of flocks and facilities and farm biosecurity. Awareness of these factors may help to reduce the spread of HPAI H5N8 across broiler duck farms in Korea during epidemics. Greater understanding of the risk factors for H5N8 may improve farm vulnerability to HPAI and other subtypes and help to establish policies to prevent re-occurrence. These findings are relevant to global prevention recommendations and intervention protocols.
Collapse
Affiliation(s)
- W-H Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - J-U An
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - J Kim
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - O-K Moon
- Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - S H Bae
- Department of Geography Education, Kangwon National University, Chuncheon, Korea
| | - J B Bender
- Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - S Cho
- BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
17
|
A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa. Epidemiol Infect 2017; 145:3320-3333. [PMID: 29168447 DOI: 10.1017/s0950268817002576] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
H9N2 is the most widespread avian influenza virus subtype in poultry worldwide. It infects a broad spectrum of host species including birds and mammals. Infections in poultry and humans vary from silent to fatal. Importantly, all AIV, which are fatal in humans (e.g. H5N1, H7N9) acquired their 'internal' gene segments from H9N2 viruses. Although H9N2 is endemic in the Middle East (ME) and North Africa since the late 1990s, little is known about its epidemiology and genetics on a regional level. In this review, we summarised the epidemiological situation of H9N2 in poultry and mammals in Iran, Iraq, Kuwait, Qatar, United Arab Emirates, Oman, Bahrain, Yemen, Saudi Arabia, Jordan, Palestine, Israel, Syria, Lebanon, Turkey, Egypt, Sudan, Libya, Tunisia, Algeria and Morocco. The virus has been isolated from humans in Egypt and serosurveys indicated widespread infection particularly among poultry workers and pigs in some countries. Some isolates replicated well in experimentally inoculated dogs, mice, hamsters and ferrets. Insufficient protection of immunised poultry was frequently reported most likely due to concurrent viral or bacterial infections and antigenic drift of the field viruses from outdated vaccine strains. Genetic analysis indicated several distinct phylogroups including a panzootic genotype in the Asian and African parts of the ME, which may be useful for the development of vaccines. The extensive circulation of H9N2 for about 20 years in this region where the H5N1 virus is also endemic in some countries, poses a serious public health threat. Regional surveillance and control strategy are highly recommended.
Collapse
|
18
|
Tombari W, ElBehi I, Amouna F, Ghram A. Variability of tropism and replicative capacity of two naturally occurring influenza A H9N2 viruses in cell cultures from different tissues. Avian Pathol 2017; 45:212-20. [PMID: 26813086 DOI: 10.1080/03079457.2016.1143086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Studies carried out on cell permissivity are of great interest to understand virus replication and pathogenicity. We described the results of a comparative analysis of replication efficiency of two naturally occurring influenza A H9N2 variants isolated from poultry and wild birds, differing by only two substitutions Q226L and T384N, in the receptor-binding site of haemagglutinin and the 380 loop region of NA proteins, respectively. Considering the overall growth of both viruses, lung cultures ensured the most efficient growth of TUN12L226N384 strain with titres up to 10(9) TCID50/ml whereas small intestine culture was highly susceptible to the TUN51Q226T384 virus reaching a titre of 10(6) TCID50/ml. The lowest replication was shown in liver cells. The addition of trypsin was essential for the replication of either virus in primary fibroblasts, but it had a marginal positive effect on virus replication in the four other culture types with maximum titres of 10(8) TCID50/ml. This means that in chicken, the proteolytic activation of the H9N2 viruses with the cleavage motif RSSR may be mediated by other endoproteases than trypsin. Further investigations should concentrate on the production of the appropriate set of viruses by a reverse genetics approach and the examination of cellular protease expression in chicken tissues. This would lead to a more complete understanding of the tropism of low-pathogenic Influenza A viruses.
Collapse
Affiliation(s)
- Wafa Tombari
- a Laboratory of Epidemiology and Veterinary Microbiology , Institute Pasteur of Tunis, University Tunis El Manar , Tunis- Belvédère , Tunisia
| | - Imen ElBehi
- a Laboratory of Epidemiology and Veterinary Microbiology , Institute Pasteur of Tunis, University Tunis El Manar , Tunis- Belvédère , Tunisia
| | - Faten Amouna
- a Laboratory of Epidemiology and Veterinary Microbiology , Institute Pasteur of Tunis, University Tunis El Manar , Tunis- Belvédère , Tunisia
| | - Abdeljelil Ghram
- a Laboratory of Epidemiology and Veterinary Microbiology , Institute Pasteur of Tunis, University Tunis El Manar , Tunis- Belvédère , Tunisia
| |
Collapse
|
19
|
Li Y, Xu J, Shi W, Chen C, Shao Y, Zhu L, Lu W, Han X. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice. Stem Cell Res Ther 2016; 7:159. [PMID: 27793190 PMCID: PMC5084318 DOI: 10.1186/s13287-016-0395-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 12/25/2022] Open
Abstract
Background The avian influenza virus (AIV) can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. Methods We hypothesized that mesenchymal stromal cells (MSCs) would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 104 MID50 of A/HONG KONG/2108/2003 [H9N2 (HK)] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF) and serum, and assessed pathological changes to the lungs. Results MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. Conclusions MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.
Collapse
Affiliation(s)
- Yan Li
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, People's Republic of China.,Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People's Republic of China
| | - Jun Xu
- Institute of Toxicology & Functional Assessment, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, People's Republic of China
| | - Weiqing Shi
- Institute of Toxicology & Functional Assessment, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, People's Republic of China
| | - Cheng Chen
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, People's Republic of China
| | - Yan Shao
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, People's Republic of China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, People's Republic of China
| | - Wei Lu
- Department of Chronic Communicable Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, People's Republic of China.
| | - XiaoDong Han
- Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People's Republic of China.
| |
Collapse
|
20
|
Tombari W, Ghram A. Production of a truncated recombinant HA1 for influenza A H9 subtype screening. Biologicals 2016; 44:546-555. [PMID: 27666434 DOI: 10.1016/j.biologicals.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/23/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022] Open
Abstract
Hemagglutinin is the major component of membrane protein and plays a major role in virus entry into host cells through their receptors and it is predicted to elicit the production neutralizing antibodies. Our aim is to assess the potential of a truncated rHA1 domain, encoding residues 157-260 to detect influenza A H9 specific antibodies. The predicted characteristics of this protein revealed that it is a hydrophobic protein possessing predominant antigenicity and composed of random coils (48%) and extended strand (28%) but few α-helix (6.33%) and β-sheet (7%). A 312 pb HA1 gene was amplified and cloned in pET23b(+) vector including an C-terminal polyHis as a fusion partner, transformed and expressed in Escherichia coli cells as inclusion bodies. The truncated protein was solubilized with 8 M urea, purified by immobilized metal affinity chromatography and then detected by western blot with anti-His and H9-specific polyclonal antibodies. The test demonstrated high specificity (100%) and sensibility (98%). The immunoreactivity of the truncated rHA1 assessed revealed that only antisera against H9 yielded a specific and strong reactivity, with no cross-reactivity against negative sera. This study demonstrates that the truncated rHA1 may serve as a useful tool for rapid and easy surveillance of H9 infection.
Collapse
Affiliation(s)
- Wafa Tombari
- University Tunis El Manar, Institute Pasteur of Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13, Place Pasteur, BP 74, Tunis-Belvédère, 1002, Tunisia.
| | - Abdeljelil Ghram
- University Tunis El Manar, Institute Pasteur of Tunis, Laboratory of Epidemiology and Veterinary Microbiology, 13, Place Pasteur, BP 74, Tunis-Belvédère, 1002, Tunisia
| |
Collapse
|
21
|
Accurate Detection of Avian Respiratory Viruses by Use of Multiplex PCR-Based Luminex Suspension Microarray Assay. J Clin Microbiol 2016; 54:2716-2725. [PMID: 27558184 DOI: 10.1128/jcm.00610-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
A novel oligonucleotide suspension microarray (Luminex microsphere system) was developed for the rapid detection of avian respiratory viruses of major clinical importance. This test was optimized and validated with 70 clinical samples. The developed tool was accurate for high-throughput detection and differentiation of the most important avian respiratory viruses: avian influenza virus (AIV), Newcastle disease virus (NDV), infection bronchitis virus (IBV), and infectious laryngotracheitis virus (ILTV) in single- and mixed-virus infections. A multiplex reverse transcriptase PCR (RT-PCR), followed by a monoplex or a multiplex Luminex assays, were realized using a Luminex 200 analyzer instrument. The sensitivity, specificity, and reproducibility of the multiplex DNA suspension microarray system were evaluated. The results showed no significant differences in the median fluorescence intensity (MFI) value in monoplex and multiplex Luminex assays. The sensitivity and specificity proved to be completely concordant with monoplex real-time RT-PCR. We demonstrated that the multiplex DNA suspension microarray system is an accurate, high-throughput, and relatively simple method for the rapid detection of the main respiratory viruses of poultry.
Collapse
|
22
|
Isolation and genetic characterization of novel reassortant H6N6 subtype avian influenza viruses isolated from chickens in eastern China. Arch Virol 2016; 161:1859-72. [PMID: 27101069 DOI: 10.1007/s00705-016-2861-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
H6 subtype avian influenza viruses (AIVs) possess the ability to cross the species barrier to infect mammals and pose a threat to human health. From June 2014 to July 2015, 12 H6N6 AIVs were isolated from chickens in live-poultry markets in Zhejiang Province, Eastern China. Phylogenetic analysis showed that these isolates received their genes from H6 and H9N2 subtype AIVs of poultry in China. These novel reassortant viruses showed moderate pathogenicity in mice and were able to replicate in mice without prior adaptation. Considering that novel reassorted H6N6 viruses were isolated from chickens in this study, it is possible that these chickens play an important role in the generation of novel reassorted H6N6 AIVs, and these results emphasize the need for continued surveillance of the H6N6 AIVs circulating in poultry.
Collapse
|
23
|
Gharaibeh S, Amareen S. Vaccine Efficacy Against a New Avian Influenza (H9N2) Field Isolate from the Middle East (Serology and Challenge Studies). Avian Dis 2016; 59:508-11. [PMID: 26629624 DOI: 10.1637/11123-050615-reg] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Avian influenza subtype H9N2 is endemic in many countries in the Middle East. The reported prevalence of infection was variable between countries and ranged from 28.7% in Tunisia to 71% in Jordan. Several commercial killed whole-virus vaccine products are used as monovalent or bivalent mixed with Newcastle disease virus. Recently, we have noticed that many of the vaccinated broiler flocks did not show a production advantage over nonvaccinated flocks in the field. A new avian influenza field virus (H9N2) was isolated from these vaccinated and infected broiler flocks in 2013. This virus had 89.1% similarity of its hemagglutinin (HA) gene to the classical virus used for manufacturing the classical vaccine. Inactivated autogenous vaccine was manufactured from this new field isolate to investigate its serological response and protection in specific-pathogen-free (SPF) and breeder-male chickens compared to the classical vaccine. Oropharyngeal virus shedding of vaccinated breeder-male chickens was evaluated at 3, 9, 10, and 14 days postchallenge (DPC). Percentage of chickens shedding the virus at 3 DPC was 64%, 50%, and 64% in the classical vaccine group, autogenous vaccine group, and the control challenged group, respectively. At 7 DPC percentage of virus shedding was 42%, 7%, and 64% in the classical vaccine group, autogenous vaccine group, and the control challenged group, respectively. At 10 DPC only 9% of classical vaccine group was shedding the virus and there was no virus shedding in any of the groups at 14 DPC. There was statistical significance difference (P < 0.05) in shedding only at 7 DPC between the autogenous vaccine group and the other two groups. At 42 days of age (14 DPC), average body weight was 2.720, 2.745, 2.290, and 2.760 kg for the classical vaccine group, autogenous vaccine group, control challenged group, and control unchallenged group, respectively. Only the control challenged group had significantly (P < 0.05) lower average body weight. In another experiment, vaccinated SPF chicks had hemagglutination inhibition (HI) geometric mean titers (GMTs), with classical antigen, of 8.7 and 3.1 log 2 for classical and autogenous vaccine groups, respectively. When the autogenous antigen was used for HI, GMTs were 6.0 and 8.1 log 2, respectively. Both vaccines protected against body weight suppression after challenge. However, autogenous vaccine elicited significantly higher HI titer and reduced viral shedding at 7 DPC. In conclusion, it is important to revise the vaccine virus strains used in each region to protect against and control infection from new field strains. Further field experiments are needed to demonstrate the efficacy of new vaccines under field conditions.
Collapse
Affiliation(s)
- Saad Gharaibeh
- A Department of Pathology and Public Health, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Shadi Amareen
- B Jordan Bio-industries Center (JOVAC), Amman 11941, Jordan
| |
Collapse
|
24
|
Antigenic mapping of an H9N2 avian influenza virus reveals two discrete antigenic sites and a novel mechanism of immune escape. Sci Rep 2016; 6:18745. [PMID: 26738561 PMCID: PMC4704030 DOI: 10.1038/srep18745] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022] Open
Abstract
H9N2 avian influenza virus is a major cause of poultry production loss across Asia leading to the wide use of vaccines. Efficacy of vaccines is often compromised due to the rapid emergence of antigenic variants. To improve the effectiveness of vaccines in the field, a better understanding of the antigenic epitopes of the major antigen, hemagglutinin, is required. To address this, a panel of nine monoclonal antibodies were generated against a contemporary Pakistani H9N2 isolate, which represents a major Asian H9N2 viral lineage. Antibodies were characterized in detail and used to select a total of 26 unique 'escape' mutants with substitutions across nine different amino acid residues in hemagglutinin including seven that have not been described as antigenic determinants for H9N2 viruses before. Competition assays and structural mapping revealed two novel, discrete antigenic sites "H9-A" and "H9-B". Additionally, a second subset of escape mutants contained amino acid deletions within the hemagglutinin receptor binding site. This constitutes a novel method of escape for group 1 hemagglutinins and could represent an alternative means for H9N2 viruses to overcome vaccine induced immunity. These results will guide surveillance efforts for arising antigenic variants as well as evidence based vaccine seed selection and vaccine design.
Collapse
|
25
|
Chaudhry M, Rashid HB, Thrusfield M, Welburn S, Bronsvoort BM. A case-control study to identify risk factors associated with avian influenza subtype H9N2 on commercial poultry farms in Pakistan. PLoS One 2015; 10:e0119019. [PMID: 25774768 PMCID: PMC4361405 DOI: 10.1371/journal.pone.0119019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
A 1:1 matched case-control study was conducted to identify risk factors for avian influenza subtype H9N2 infection on commercial poultry farms in 16 districts of Punjab, and 1 administrative unit of Pakistan. One hundred and thirty-three laboratory confirmed positive case farms were matched on the date of sample submission with 133 negative control farms. The association between a series of farm-level characteristics and the presence or absence of H9N2 was assessed by univariable analysis. Characteristics associated with H9N2 risk that passed the initial screening were included in a multivariable conditional logistic regression model. Manual and automated approaches were used, which produced similar models. Key risk factors from all approaches included selling of eggs/birds directly to live bird retail stalls, being near case/infected farms, a previous history of infectious bursal disease (IBD) on the farm and having cover on the water storage tanks. The findings of current study are in line with results of many other studies conducted in various countries to identify similar risk factors for AI subtype H9N2 infection. Enhancing protective measures and controlling risks identified in this study could reduce spread of AI subtype H9N2 and other AI viruses between poultry farms in Pakistan.
Collapse
Affiliation(s)
- Mamoona Chaudhry
- Division of Infection and Pathway Medicine, The University of Edinburgh Medical School, Edinburgh, Scotland, United Kingdom
- * E-mail:
| | - Hamad B. Rashid
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Abdul Qadir Jilani Road, Lahore, Pakistan
| | - Michael Thrusfield
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh, Scotland, United Kingdom
| | - Sue Welburn
- Division of Infection and Pathway Medicine, The University of Edinburgh Medical School, Edinburgh, Scotland, United Kingdom
| | - Barend MdeC. Bronsvoort
- The University of Edinburgh, Roslin Institute at the R(D)SVS, Easter Bush, Roslin, Midlothian, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
26
|
Wu H, Lu R, Wu X, Peng X, Xu L, Cheng L, Lu X, Jin C, Xie T, Yao H, Wu N. Isolation and characterization of a novel H10N2 avian influenza virus from a domestic duck in Eastern China. INFECTION GENETICS AND EVOLUTION 2014; 29:1-5. [PMID: 25445651 DOI: 10.1016/j.meegid.2014.10.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/29/2014] [Indexed: 11/28/2022]
Abstract
During the surveillance for avian influenza viruses (AIVs) in live poultry markets (LPMs) in Eastern China, in 2013, an H10N2 AIV was isolated from a domestic duck. Phylogenetic analysis showed that this strain received its genes from H10, H1 and H7 AIVs of wild birds in China. The virulence of this strain was examined in chickens and mice, and was found to be low pathogenic in chickens but demonstrated moderate pathogenicity in mice. These results suggest that active surveillance of AIVs in LPMs should be used in an early warning system for avian influenza outbreaks.
Collapse
Affiliation(s)
- Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Rufeng Lu
- Department of Emergency, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Xiaoxin Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lihua Xu
- Animal Husbandry and Veterinary Institute, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tiansheng Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
27
|
Yu M, Qi W, Huang Z, Zhang K, Ye J, Liu R, Wang H, Ma Y, Liao M, Ning Z. Expression profile and histological distribution of IFITM1 and IFITM3 during H9N2 avian influenza virus infection in BALB/c mice. Med Microbiol Immunol 2014; 204:505-14. [PMID: 25265877 PMCID: PMC7087031 DOI: 10.1007/s00430-014-0361-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/24/2014] [Indexed: 02/07/2023]
Abstract
The H9N2 avian influenza virus is a pandemic threat which has repeatedly caused infection in humans and shows enhanced replication and transmission in mice. Previous reports showed that host factors, the interferon-inducible transmembrane (IFITM) protein, can block the replication of pathogens and affect their pathogenesis. BALB/c mice are routine laboratory animals used in influenza virus research, but the effects of H9N2 influenza virus on tissue distribution and expression pattern of IFITM in these mice are unknown. Here, we investigated the expression patterns and tissue distribution of IFITM1 and IFITM3 in BALB/c mice by infection with H9N2 AIV strains with only a PB2 residue 627 difference. The results showed that the expression patterns of ITITM1 and IFITM3 differ in various tissues of BALB/c mice at different time points after infection. IFITM1 and IFITM3 showed cell- and tissue-specific distribution in the lung, heart, liver, spleen, kidney and brain. Notably, the epithelial and neuronal cells all expressed the proteins of IFITM1 and IFITM3. Our results provide the first look at differences in IFITM1 and IFITM3 expression patterns in BALB/c mice infected by H9N2 influenza viruses. This will enhance research on the interaction between AIV and host and further will elucidate the pathogenesis of influenza virus infection based on the interferon-inducible transmembrane (IFITM) protein.
Collapse
Affiliation(s)
- Meng Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Paul MC, Gilbert M, Desvaux S, Rasamoelina Andriamanivo H, Peyre M, Khong NV, Thanapongtharm W, Chevalier V. Agro-environmental determinants of avian influenza circulation: a multisite study in Thailand, Vietnam and Madagascar. PLoS One 2014; 9:e101958. [PMID: 25029441 PMCID: PMC4100877 DOI: 10.1371/journal.pone.0101958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
Outbreaks of highly pathogenic avian influenza have occurred and have been studied in a variety of ecological systems. However, differences in the spatial resolution, geographical extent, units of analysis and risk factors examined in these studies prevent their quantitative comparison. This study aimed to develop a high-resolution, comparative study of a common set of agro-environmental determinants of avian influenza viruses (AIV) in domestic poultry in four different environments: (1) lower-Northern Thailand, where H5N1 circulated in 2004-2005, (2) the Red River Delta in Vietnam, where H5N1 is circulating widely, (3) the Vietnam highlands, where sporadic H5N1 outbreaks have occurred, and (4) the Lake Alaotra region in Madagascar, which features remarkable similarities with Asian agro-ecosystems and where low pathogenic avian influenza viruses have been found. We analyzed H5N1 outbreak data in Thailand in parallel with serological data collected on the H5 subtype in Vietnam and on low pathogenic AIV in Madagascar. Several agro-environmental covariates were examined: poultry densities, landscape dominated by rice cultivation, proximity to a water body or major road, and human population density. Relationships between covariates and AIV circulation were explored using spatial generalized linear models. We found that AIV prevalence was negatively associated with distance to the closest water body in the Red River Delta, Vietnam highlands and Madagascar. We also found a positive association between AIV and duck density in the Vietnam highlands and Thailand, and with rice landscapes in Thailand and Madagascar. Our findings confirm the important role of wetlands-rice-ducks ecosystems in the epidemiology of AI in diverse settings. Variables influencing circulation of the H5 subtype in Southeast Asia played a similar role for low pathogenic AIV in Madagascar, indicating that this area may be at risk if a highly virulent strain is introduced.
Collapse
Affiliation(s)
- Mathilde C. Paul
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UR AGIRs, Montpellier, France
- Université de Toulouse, INP-ENVT, UMR ENVT INRA 1225 IHAP, Toulouse, France
- * E-mail:
| | - Marius Gilbert
- Biological Control and Spatial Ecology, Université Libre de Bruxelles, Brussels, Belgium
- Fonds National de la Recherche Scientifique, Brussels, Belgium
| | - Stéphanie Desvaux
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UR AGIRs, Montpellier, France
- Direction Régionale de l’Alimentation, de l’Agriculture et de la Forêt de Languedoc- Roussillon, Montpellier, France
| | | | - Marisa Peyre
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UR AGIRs, Montpellier, France
| | | | | | - Véronique Chevalier
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UR AGIRs, Montpellier, France
| |
Collapse
|
29
|
Lin Z, Xu C, Liu B, Ji Y, Fu Y, Guo J, Zhu Q. Analysis of the phylogeny of Chinese H9N2 avian influenza viruses and their pathogenicity in mice. Arch Virol 2014; 159:2575-86. [PMID: 24838853 DOI: 10.1007/s00705-014-2110-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
We isolated nineteen strains of H9N2 influenza virus from farms across five northern Chinese provinces between 2001 and 2012. Sequence analysis of the genes for the two surface glycoproteins revealed that residue 226 of the hemagglutinin (HA) of eight isolates was a leucine. A T300I mutation in three strains resulted in the loss of a potential glycosylation site. The P315S mutation in seven strains added a potential glycosylation site in HA. The isolates CK/HN/323/08 and CK/HN/321/08 had a full-length neuraminidase (NA) that differed from those seen in other isolates. Phylogenetic and molecular analysis revealed that the nineteen strains shared common ancestry with strains BJ/94 and G1. We examined eight gene sequences in the present study and concluded that the HA and NS genes appeared to be derived directly from BJ/94. The remaining six genes evolved from different reference strains. Specifically, the NA and PA genes of CK/HN/321/08 and CK/HN/323/08 clustered with the G9 and Y439 branch, respectively, and the PB2 genes of CK/SD/513/11 and CK/GS/419/12 were in an unknown lineage. We found evidence that seven new genotypes had undergone intra-subtype reassortment. A mouse infection experiment with six selected isolates showed that five of these isolates were able to replicate in mouse lungs without adaptation. Viral replication in infected mice resulted in minimal weight loss, suggesting that these H9N2 avian influenza viruses had low virulence in mammals. Our findings highlight the genetic and biological diversity of H9N2 avian influenza viruses circulating in China and emphasize the importance in continuing surveillance of these viruses so as to better understand the potential risks they pose to humans.
Collapse
Affiliation(s)
- Zhongqing Lin
- The State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xujiaping, Chengguan District, Lanzhou, 730046, Gansu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|