1
|
Zhang Y, Liu J, Kang L, Gu Y, Qu L, Liu B, Sun L, Xing M, Ma Z, Sun Y. Temporal variation of mineralization rates and its influence on carbon storage over the last 50 years in Bohai Bay, China. MARINE POLLUTION BULLETIN 2023; 188:114624. [PMID: 36736251 DOI: 10.1016/j.marpolbul.2023.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/23/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Recorded information on marine sediments is affected by mineralization. In this study, we collected sediment samples from Bohai Bay, where human interference is typically high. Overall, the CO2 fluxes in the columnar sediments decreased with increasing depth. The change in constants revealed a "C-curve" in which the mineralization rate first decreased significantly (i.e., from the 2020s to the 1980s) and subsequently increased slowly (i.e., from the 1980s to 1965). This may be explained by the fact that sediments from the 1980s-2020s were markedly influenced by the sedimentation rate, whereas sediments from the 1960s-1980s were predominantly influenced by microbial action. The loss of organic carbon due to mineralization accounted for approximately 15-20 % of the initial total organic carbon; therefore, when performing an inversion of the historical environment change using information derived from organic carbon in marine sediments, the influence of mineralization on this information should be fully considered.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Academy of Eco-Environmental Sciences, Nankai, Tianjin 300191, China
| | - Jingjing Liu
- Tianjin Academy of Eco-Environmental Sciences, Nankai, Tianjin 300191, China; Tianjin Lishen Battery Joint-stock Co., Ltd., Binhai New Area, Tianjin 300384, China
| | - Lei Kang
- Tianjin Academy of Eco-Environmental Sciences, Nankai, Tianjin 300191, China.
| | - Yingnan Gu
- Tianjin Huanke Testing Technology Co., Ltd., Nankai, Tianjin 300191, China
| | - Long Qu
- Tianjin Academy of Eco-Environmental Sciences, Nankai, Tianjin 300191, China
| | - Bao Liu
- Tianjin Academy of Eco-Environmental Sciences, Nankai, Tianjin 300191, China
| | - Lina Sun
- Tianjin Academy of Eco-Environmental Sciences, Nankai, Tianjin 300191, China
| | - Meinan Xing
- Tianjin Academy of Eco-Environmental Sciences, Nankai, Tianjin 300191, China
| | - Zhe Ma
- Tianjin Academy of Eco-Environmental Sciences, Nankai, Tianjin 300191, China
| | - Ying Sun
- Tianjin Academy of Eco-Environmental Sciences, Nankai, Tianjin 300191, China
| |
Collapse
|
2
|
Ghosh A, Saha R, Bhadury P. Metagenomic insights into surface water microbial communities of a South Asian mangrove ecosystem. PeerJ 2022; 10:e13169. [PMID: 35573175 PMCID: PMC9097664 DOI: 10.7717/peerj.13169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/04/2022] [Indexed: 01/12/2023] Open
Abstract
Estuaries are one of the most productive ecosystems and their productivity is maintained by resident microbial communities. Recent alterations driven by climate change have further escalated these stressors leading to the propagation of traits such as antibiotic resistance and heavy metal resistance in microbial communities. Surface water samples from eleven stations along the Thakuran and Matla estuaries of the Sundarbans Biosphere Reserve (SBR) of Sundarbans mangrove located in South Asia were sampled in monsoon (June) 2019 to elucidate resident microbial communities based on Nanopore sequencing. Metagenomic analyses revealed the widespread dominance of Proteobacteria across all the stations along with a high abundance of Firmicutes. Other phyla, including Euryarchaeota, Thaumarchaeota, Actinobacteria, Bacteroidetes and Cyanobacteria showed site-specific trends in abundance. Further taxonomic affiliations showed Gammaproteobacteria and Alphaproteobacteria to be dominant classes with high abundances of Bacilli in SBR_Stn58 and SBR_Stn113. Among the eukaryotic communities, the most abundant classes included Prasinophyceae, Saccharyomycetes and Sardariomycetes. Functional annotation showed metabolic activities such as carbohydrate, amino acid, nitrogen and phosphorus metabolisms to be uniformly distributed across all the studied stations. Pathways such as stress response, sulphur metabolism and motility-associated genes appeared in low abundances in SBR. Functional traits such as antibiotic resistance showed overwhelming dominance of genes involved in multidrug resistance along with widespread resistance towards commonly used antibiotics including Tetracycline, glycopeptide and aminoglycoside. Metal resistance genes including arsenic, nickel and copper were found in comparable abundances across the studied stations. The prevalence of ARG and MRG might indicate presence of pollutants and hint toward deteriorating ecosystem health status of Sundarbans mangrove.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Ratul Saha
- Wildlife and Habitats Division, WWF-India Sundarbans Landscape, Kolkata, West Bengal, India
| | - Punyasloke Bhadury
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India,Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
3
|
Konkel R, Toruńska-Sitarz A, Cegłowska M, Ežerinskis Ž, Šapolaitė J, Mažeika J, Mazur-Marzec H. Blooms of Toxic Cyanobacterium Nodularia spumigena in Norwegian Fjords During Holocene Warm Periods. Toxins (Basel) 2020; 12:toxins12040257. [PMID: 32326551 PMCID: PMC7232221 DOI: 10.3390/toxins12040257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
In paleoecological studies, molecular markers are being used increasingly often to reconstruct community structures, environmental conditions and ecosystem changes. In this work, nodularin, anabaenopeptins and selected DNA sequences were applied as Nodularia spumigena markers to reconstruct the history of the cyanobacterium in the Norwegian fjords. For the purpose of this study, three sediment cores collected in Oslofjorden, Trondheimsfjorden and Balsfjorden were analyzed. The lack of nodularin in most recent sediments is consistent with the fact that only one report on the sporadic occurrence and low amounts of the cyanobacterium in Norwegian Fjords in 1976 has been published. However, analyses of species-specific chemical markers in deep sediments showed that thousands of years ago, N. spumigena constituted an important component of the phytoplankton community. The content of the markers in the cores indicated that the biomass of the cyanobacterium increased during the warmer Holocene periods. The analyses of genetic markers were less conclusive; they showed the occurrence of microcystin/nodularin producing cyanobacteria of Nostocales order, but they did not allow for the identification of the organisms at a species level.
Collapse
Affiliation(s)
- Robert Konkel
- University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Biotechnology, Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland; (R.K.); (A.T.-S.)
| | - Anna Toruńska-Sitarz
- University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Biotechnology, Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland; (R.K.); (A.T.-S.)
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Science, Powstańców Warszawy 55, PL-81-712 Sopot, Poland;
| | - Žilvinas Ežerinskis
- Mass Spectrometry Laboratory, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania; (Ž.E.); (J.Š.)
| | - Justina Šapolaitė
- Mass Spectrometry Laboratory, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania; (Ž.E.); (J.Š.)
| | - Jonas Mažeika
- Laboratory of nuclear geophysics and radioecology, Nature research Centre Akademijos Str. 2, LT-08412 Vilnius, Lithuania;
| | - Hanna Mazur-Marzec
- University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Biotechnology, Marszałka J. Piłsudskiego 46, PL-81-378 Gdynia, Poland; (R.K.); (A.T.-S.)
- Correspondence: ; Tel.: +48-585-236-621
| |
Collapse
|
4
|
Thomas SP, Shanmuganathan B, Jaiswal MK, Kumaresan A, Sadasivam SK. Legacy of a Pleistocene bacterial community: Patterns in community dynamics through changing ecosystems. Microbiol Res 2019; 226:65-73. [PMID: 31284946 DOI: 10.1016/j.micres.2019.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/01/2019] [Accepted: 06/02/2019] [Indexed: 12/01/2022]
Abstract
Bacterial communities are resilient to the environmental changes, yet the effect of long term ecological changes on bacterial communities remain poorly explored. To study the effect of prolonged environmental changes, a 25 m long sediment core was excavated from a paleo beach ridge located on the Cauvery delta, south east coast of India. Geological evidences suggested that the site has experienced multiple marine transgressions and regressions. The three paleosols from Vettaikaraniruppu (VKI) beach ridge, VKI-2 (2.8 m bgl; 3 kybp), VKI-5 (7.2 m bgl; 6 kybp) and VKI-14 (24.5 m bgl; 146 kybp) was chosen for bacterial community analysis based on their formation period. Bacterial community structure of paleosols was reconstructed using V3 hypervariable region of bacterial 16S rDNA targeted Illumina sequencing. The VKI-5 sediment layer which formed under marine environment contained highest bacterial diversity, and the community was a mix up of terrestrial and marine bacterial population. The final community VKI-2 exhibited an approximate structural pattern witnessed in the native bacterial community VKI-14 which formed during marine regression. Furthermore, marine transgression and regression experienced in VKI resulted in the formation of distinct biogeographic patterns.
Collapse
Affiliation(s)
- Shan P Thomas
- Geobiotechnology Laboratory, National College (Autonomous), Tiruchirappalli, 620 001, Tamil Nadu, India
| | | | - Manoj Kumar Jaiswal
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Anbarasu Kumaresan
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli, 620 001, Tamil Nadu, India
| | - Senthil Kumar Sadasivam
- Geobiotechnology Laboratory, National College (Autonomous), Tiruchirappalli, 620 001, Tamil Nadu, India; PG and Research Department of Botany, National College (Autonomous), Tiruchirappalli, 620 001, Tamil Nadu, India.
| |
Collapse
|
5
|
More KD, Giosan L, Grice K, Coolen MJL. Holocene paleodepositional changes reflected in the sedimentary microbiome of the Black Sea. GEOBIOLOGY 2019; 17:436-448. [PMID: 30843322 DOI: 10.1111/gbi.12338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/13/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Subsurface microbial communities are generally thought to be structured through in situ environmental conditions such as the availability of electron acceptors and donors and porosity, but recent studies suggest that the vertical distribution of a subset of subseafloor microbial taxa, which were present at the time of deposition, were selected by the paleodepositional environment. However, additional highly resolved temporal records of subsurface microbiomes and paired paleoenvironmental reconstructions are needed to justify this claim. Here, we performed a highly resolved shotgun metagenomics survey to study the taxonomic and functional diversity of the subsurface microbiome in Holocene sediments underlying the permanently stratified and anoxic Black Sea. Obligate aerobic bacteria made the largest contribution to the observed shifts in microbial communities associated with known Holocene climate stages and transitions. This suggests that the aerobic fraction of the subseafloor microbiome was seeded from the water column and did not undergo post-depositional selection. In contrast, obligate and facultative anaerobic bacteria showed the most significant response to the establishment of modern-day environmental conditions 5.2 ka ago that led to a major shift in planktonic communities and in the type of sequestered organic matter available for microbial degradation. No significant shift in the subseafloor microbiome was observed as a result of environmental changes that occurred shortly after the marine reconnection, 9 ka ago. This supports the general view that the marine reconnection was a gradual process. We conclude that a high-resolution analysis of downcore changes in the subseafloor microbiome can provide detailed insights into paleoenvironmental conditions and biogeochemical processes that occurred at the time of deposition.
Collapse
Affiliation(s)
- Kuldeep D More
- Western Australia Organic and Isotope Geochemistry Centre, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
- Western Australia Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, Bentley, Western Australia, Australia
| | - Liviu Giosan
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Kliti Grice
- Western Australia Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, Bentley, Western Australia, Australia
| | - Marco J L Coolen
- Western Australia Organic and Isotope Geochemistry Centre, School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
6
|
Environmental filtering determines family-level structure of sulfate-reducing microbial communities in subsurface marine sediments. ISME JOURNAL 2019; 13:1920-1932. [PMID: 30894690 DOI: 10.1038/s41396-019-0387-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/22/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Recent work has shown that subsurface microbial communities assemble by selective survival of surface community members during sediment burial, but it remains unclear to what extent the compositions of the subsurface communities are a product of their founding population at the sediment surface or of the changing geochemical conditions during burial. Here we investigate this question for communities of sulfate-reducing microorganisms (SRMs). We collected marine sediment samples from the upper 3-5 m at four geochemically contrasting sites in the Skagerrak and Baltic Sea and measured SRM abundance (quantitative PCR of dsrB), metabolic activity (radiotracer rate measurements), and community composition (Illumina sequencing of dsrB amplicons). These data showed that SRM abundance, richness, and phylogenetic clustering as determined by the nearest taxon index peaked below the bioturbation zone and above the depth of sulfate depletion. Minimum cell-specific rates of sulfate reduction did not vary substantially between sites. SRM communities at different sites were best distinguished based on their composition of amplicon sequence variants (ASVs), while communities in different geochemical zones were best distinguished based on their composition of SRM families. This demonstrates environmental filtering of SRM communities in sediment while a site-specific fingerprint of the founding community is retained.
Collapse
|
7
|
Microbial Organic Matter Degradation Potential in Baltic Sea Sediments Is Influenced by Depositional Conditions and In Situ Geochemistry. Appl Environ Microbiol 2019; 85:AEM.02164-18. [PMID: 30504213 PMCID: PMC6365825 DOI: 10.1128/aem.02164-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/17/2018] [Indexed: 11/23/2022] Open
Abstract
Sediments sequester organic matter over geologic time scales and impact global climate regulation. Microbial communities in marine sediments drive organic matter degradation, but the factors controlling their assemblages and activities, which in turn impact their role in organic matter degradation, are not well understood. Hence, determining the role of microbial communities in carbon cycling in various sediment types is necessary for predicting future sediment carbon cycling. We examined microbial communities in Baltic Sea sediments, which were deposited across various climatic and geographical regimes to determine the relationship between microbial potential for breakdown of organic matter and abiotic factors, including geochemistry and sediment lithology. The findings from this study will contribute to our understanding of carbon cycling in the deep biosphere and how microbial communities live in deeply buried environments. Globally, marine sediments are a vast repository of organic matter, which is degraded through various microbial pathways, including polymer hydrolysis and monomer fermentation. The sources, abundances, and quality (i.e., labile or recalcitrant) of the organic matter and the composition of the microbial assemblages vary between sediments. Here, we examine new and previously published sediment metagenomes from the Baltic Sea and the nearby Kattegat region to determine connections between geochemistry and the community potential to degrade organic carbon. Diverse organic matter hydrolysis encoding genes were present in sediments between 0.25 and 67 meters below seafloor and were in higher relative abundances in those sediments that contained more organic matter. New analysis of previously published metatranscriptomes demonstrated that many of these genes were transcribed in two organic-rich Holocene sediments. Some of the variation in deduced pathways in the metagenomes correlated with carbon content and depositional conditions. Fermentation-related genes were found in all samples and encoded multiple fermentation pathways. Notably, genes involved in alcohol metabolism were amongst the most abundant of these genes, indicating that this is an important but underappreciated aspect of sediment carbon cycling. This study is a step towards a more complete understanding of microbial food webs and the impacts of depositional facies on present sedimentary microbial communities. IMPORTANCE Sediments sequester organic matter over geologic time scales and impact global climate regulation. Microbial communities in marine sediments drive organic matter degradation, but the factors controlling their assemblages and activities, which in turn impact their role in organic matter degradation, are not well understood. Hence, determining the role of microbial communities in carbon cycling in various sediment types is necessary for predicting future sediment carbon cycling. We examined microbial communities in Baltic Sea sediments, which were deposited across various climatic and geographical regimes to determine the relationship between microbial potential for breakdown of organic matter and abiotic factors, including geochemistry and sediment lithology. The findings from this study will contribute to our understanding of carbon cycling in the deep biosphere and how microbial communities live in deeply buried environments.
Collapse
|
8
|
Tamm M, Laas P, Freiberg R, Nõges P, Nõges T. Parallel assessment of marine autotrophic picoplankton using flow cytometry and chemotaxonomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:185-193. [PMID: 29289004 DOI: 10.1016/j.scitotenv.2017.12.234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Autotrophic picoplankton (0.2-2μm) can be a significant contributor to primary production and hence play an important role in carbon flow. The phytoplankton community structure in the Baltic Sea is very region specific and the understanding of the composition and dynamics of pico-size phytoplankton is generally poor. The main objective of this study was to determine the contribution of picoeukaryotic algae and their taxonomic composition in late summer phytoplankton community of the West-Estonian Archipelago Sea. We found that about 20% of total chlorophyll a (Chl a) in this area belongs to autotrophic picoplankton. With increasing total Chl a, the Chl a of autotrophic picoplankton increased while its contribution in total Chl a decreased. Picoeukaryotes play an important role in the coastal area of the Baltic Sea where they constituted around 50% of the total autotrophic picoplankton biomass. The most abundant groups of picoeukaryotic algae were cryptophytes (16%), chlorophytes (13%) and diatoms (9%). Picocyanobacteria were clearly dominated by phycoerythrin containing Synechococcus. The parallel use of different assessment methods (CHEMTAX and flow cytometry) revealed the share of eukaryotic and prokaryotic part of autotrophic picoplankton.
Collapse
Affiliation(s)
- Marju Tamm
- Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu County 61101,Estonia.
| | - Peeter Laas
- Ft. Lauderdale Research and Education Center, Department of Microbiology and Cell Science, UF/IFAS, University of Florida, Davie, FL 33314, USA
| | - Rene Freiberg
- Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu County 61101,Estonia
| | - Peeter Nõges
- Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu County 61101,Estonia
| | - Tiina Nõges
- Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu County 61101,Estonia
| |
Collapse
|
9
|
Cegłowska M, Toruńska-Sitarz A, Kowalewska G, Mazur-Marzec H. Specific Chemical and Genetic Markers Revealed a Thousands-Year Presence of Toxic Nodularia spumigena in the Baltic Sea. Mar Drugs 2018; 16:md16040116. [PMID: 29617355 PMCID: PMC5923403 DOI: 10.3390/md16040116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023] Open
Abstract
In the Baltic Sea, diazotrophic cyanobacteria have been present for thousands of years, over the whole brackish water phase of the ecosystem. However, our knowledge about the species composition of the cyanobacterial community is limited to the last several decades. In the current study, the presence of species-specific chemical and genetic markers in deep sediments were analyzed to increase the existing knowledge on the history of toxic Nodularia spumigena blooms in the Baltic Sea. As chemical markers, three cyclic nonribosomal peptides were applied: the hepatotoxic nodularin, which in the sea was detected solely in N. spumigena, and two anabaenopeptins (AP827 and AP883a) characteristic of two different chemotypes of this species. From the same sediment samples, DNA was isolated and the gene involved in biosynthesis of nodularin, as well as the phycocyanin intergenic spacer region (PC-IGS), were amplified. The results of chemical and genetic analyses proved for the first time the thousands-year presence of toxic N. spumigena in the Baltic Sea. They also indicated that through all this time, the same two sub-populations of the species co-existed.
Collapse
Affiliation(s)
- Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-727 Sopot, Poland.
| | - Anna Toruńska-Sitarz
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Płisudskiego 46, PL-81-378 Gdynia, Poland.
| | - Grażyna Kowalewska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-727 Sopot, Poland.
| | - Hanna Mazur-Marzec
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-727 Sopot, Poland.
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Płisudskiego 46, PL-81-378 Gdynia, Poland.
| |
Collapse
|
10
|
Marshall IP, Karst SM, Nielsen PH, Jørgensen BB. Metagenomes from deep Baltic Sea sediments reveal how past and present environmental conditions determine microbial community composition. Mar Genomics 2018; 37:58-68. [DOI: 10.1016/j.margen.2017.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023]
|
11
|
Fietz K, Galatius A, Teilmann J, Dietz R, Frie AK, Klimova A, Palsbøll PJ, Jensen LF, Graves JA, Hoffman JI, Olsen MT. Shift of grey seal subspecies boundaries in response to climate, culling and conservation. Mol Ecol 2017; 25:4097-112. [PMID: 27616353 DOI: 10.1111/mec.13748] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/06/2016] [Accepted: 06/22/2016] [Indexed: 12/01/2022]
Abstract
Identifying the processes that drive changes in the abundance and distribution of natural populations is a central theme in ecology and evolution. Many species of marine mammals have experienced dramatic changes in abundance and distribution due to climatic fluctuations and anthropogenic impacts. However, thanks to conservation efforts, some of these species have shown remarkable population recovery and are now recolonizing their former ranges. Here, we use zooarchaeological, demographic and genetic data to examine processes of colonization, local extinction and recolonization of the two northern European grey seal subspecies inhabiting the Baltic Sea and North Sea. The zooarchaeological and genetic data suggest that the two subspecies diverged shortly after the formation of the Baltic Sea approximately 4200 years bp, probably through a gradual shift to different breeding habitats and phenologies. By comparing genetic data from 19th century pre-extinction material with that from seals currently recolonizing their past range, we observed a marked spatiotemporal shift in subspecies boundaries, with increasing encroachment of North Sea seals on areas previously occupied by the Baltic Sea subspecies. Further, both demographic and genetic data indicate that the two subspecies have begun to overlap geographically and are hybridizing in a narrow contact zone. Our findings provide new insights into the processes of colonization, extinction and recolonization and have important implications for the management of grey seals across northern Europe.
Collapse
Affiliation(s)
- Katharina Fietz
- Evolutionary Genomics Section, Centre for Geogenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.,Marine Evolution and Conservation, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anders Galatius
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Jonas Teilmann
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Rune Dietz
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | | | - Anastasia Klimova
- Department of Animal Behaviour, University of Bielefeld, PO Box 10 01 31, 33501 Bielefeld, Germany
| | - Per J Palsbøll
- Marine Evolution and Conservation, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Lasse F Jensen
- Fisheries and Maritime Museum, Tarphagevej 2, DK-6710 Esbjerg V, Denmark
| | - Jeff A Graves
- Scottish Oceans Institute, School of Biology, University of St Andrews, Fife KY16 9TH, UK
| | - Joseph I Hoffman
- Department of Animal Behaviour, University of Bielefeld, PO Box 10 01 31, 33501 Bielefeld, Germany
| | - Morten Tange Olsen
- Evolutionary Genomics Section, Centre for Geogenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark
| |
Collapse
|
12
|
Climate oscillations reflected within the microbiome of Arabian Sea sediments. Sci Rep 2017; 7:6040. [PMID: 28729646 PMCID: PMC5519670 DOI: 10.1038/s41598-017-05590-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 06/13/2017] [Indexed: 11/08/2022] Open
Abstract
Selection of microorganisms in marine sediment is shaped by energy-yielding electron acceptors for respiration that are depleted in vertical succession. However, some taxa have been reported to reflect past depositional conditions suggesting they have experienced weak selection after burial. In sediments underlying the Arabian Sea oxygen minimum zone (OMZ), we performed the first metagenomic profiling of sedimentary DNA at centennial-scale resolution in the context of a multi-proxy paleoclimate reconstruction. While vertical distributions of sulfate reducing bacteria and methanogens indicate energy-based selection typical of anoxic marine sediments, 5-15% of taxa per sample exhibit depth-independent stratigraphies indicative of paleoenvironmental selection over relatively short geological timescales. Despite being vertically separated, indicator taxa deposited under OMZ conditions were more similar to one another than those deposited in bioturbated intervals under intervening higher oxygen. The genomic potential for denitrification also correlated with palaeo-OMZ proxies, independent of sediment depth and available nitrate and nitrite. However, metagenomes revealed mixed acid and Entner-Dourdoroff fermentation pathways encoded by many of the same denitrifier groups. Fermentation thus may explain the subsistence of these facultatively anaerobic microbes whose stratigraphy follows changing paleoceanographic conditions. At least for certain taxa, our analysis provides evidence of their paleoenvironmental selection over the last glacial-interglacial cycle.
Collapse
|
13
|
Franco DC, Signori CN, Duarte RTD, Nakayama CR, Campos LS, Pellizari VH. High Prevalence of Gammaproteobacteria in the Sediments of Admiralty Bay and North Bransfield Basin, Northwestern Antarctic Peninsula. Front Microbiol 2017; 8:153. [PMID: 28210255 PMCID: PMC5288382 DOI: 10.3389/fmicb.2017.00153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/20/2017] [Indexed: 11/15/2022] Open
Abstract
Microorganisms dominate most Antarctic marine ecosystems, in terms of biomass and taxonomic diversity, and play crucial role in ecosystem functioning due to their high metabolic plasticity. Admiralty Bay is the largest bay on King George Island (South Shetland Islands, Antarctic Peninsula) and a combination of hydro-oceanographic characteristics (bathymetry, sea ice and glacier melting, seasonal entrance of water masses, turbidity, vertical fluxes) create conditions favoring organic carbon deposition on the seafloor and microbial activities. We sampled surface sediments from 15 sites across Admiralty Bay (100–502 m total depth) and the adjacent North Bransfield Basin (693–1147 m), and used the amplicon 454-sequencing of 16S rRNA gene tags to compare the bacterial composition, diversity, and microbial community structure across environmental parameters (sediment grain size, pigments and organic nutrients) between the two areas. Marine sediments had a high abundance of heterotrophic Gammaproteobacteria (92.4% and 83.8% inside and outside the bay, respectively), followed by Alphaproteobacteria (2.5 and 5.5%), Firmicutes (1.5 and 1.6%), Bacteroidetes (1.1 and 1.7%), Deltaproteobacteria (0.8 and 2.5%) and Actinobacteria (0.7 and 1.3%). Differences in alpha-diversity and bacterial community structure were found between the two areas, reflecting the physical and chemical differences in the sediments, and the organic matter input.
Collapse
Affiliation(s)
- Diego C Franco
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo São Paulo, Brazil
| | - Camila N Signori
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo São Paulo, Brazil
| | - Rubens T D Duarte
- Centro de Ciências Biológicas, Universidade Federal de Santa Catarina Florianópolis, Brazil
| | - Cristina R Nakayama
- Departamento de Ciências Ambientais, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo Diadema, Brazil
| | - Lúcia S Campos
- Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Vivian H Pellizari
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo São Paulo, Brazil
| |
Collapse
|
14
|
Langenheder S, Comte J, Zha Y, Samad MS, Sinclair L, Eiler A, Lindström ES. Remnants of marine bacterial communities can be retrieved from deep sediments in lakes of marine origin. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:479-485. [PMID: 26929161 DOI: 10.1111/1758-2229.12392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Some bacteria can be preserved over time in deep sediments where they persist either in dormant or slow-growing vegetative stages. Here, we hypothesized that such cells can be revived when exposed to environmental conditions similar to those before they were buried in the sediments. To test this hypothesis, we collected bacteria from sediment samples of different ages (140-8500 calibrated years before present, cal BP) from three lakes that differed in the timing of their physical isolation from the Baltic Sea following postglacial uplift. After these bacterial communities were grown in sterile water from the Baltic Sea, we determined the proportion of 16S rRNA sequence reads associated with marine habitats by extracting the environment descriptive terms of homologous sequences retrieved from public databases. We found that the proportion of reads associated with marine descriptive term was significantly higher in cultures inoculated with sediment layers formed under Baltic conditions and where salinities were expected to be similar to current levels. Moreover, a similar pattern was found in the original sediment layers. Our study, therefore, suggests that remnants of marine bacterial communities can be preserved in sediments over thousands of years and can be revived from deep sediments in lakes of marine origin.
Collapse
Affiliation(s)
- Silke Langenheder
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Jérôme Comte
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Yinghua Zha
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Md Sainur Samad
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland St. North Dunedin, 9016, Dunedin, New Zealand
| | - Lucas Sinclair
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Alexander Eiler
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Eva S Lindström
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| |
Collapse
|
15
|
Microbial DNA records historical delivery of anthropogenic mercury. ISME JOURNAL 2015; 9:2541-50. [PMID: 26057844 PMCID: PMC4817628 DOI: 10.1038/ismej.2015.86] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/01/2015] [Accepted: 04/19/2015] [Indexed: 11/08/2022]
Abstract
Mercury (Hg) is an anthropogenic pollutant that is toxic to wildlife and humans, but the response of remote ecosystems to globally distributed Hg is elusive. Here, we use DNA extracted from a dated sediment core to infer the response of microbes to historical Hg delivery. We observe a significant association between the mercuric reductase gene (merA) phylogeny and the timing of Hg deposition. Using relaxed molecular clock models, we show a significant increase in the scaled effective population size of the merA gene beginning ~200 years ago, coinciding with the Industrial Revolution and a coincident strong signal for positive selection acting on residues in the terminal region of the mercuric reductase. This rapid evolutionary response of microbes to changes in the delivery of anthropogenic Hg indicates that microbial genomes record ecosystem response to pollutant deposition in remote regions.
Collapse
|
16
|
Laas P, Simm J, Lips I, Lips U, Kisand V, Metsis M. Redox-specialized bacterioplankton metacommunity in a temperate estuary. PLoS One 2015; 10:e0122304. [PMID: 25860812 PMCID: PMC4393233 DOI: 10.1371/journal.pone.0122304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 02/19/2015] [Indexed: 11/30/2022] Open
Abstract
This study explored the spatiotemporal dynamics of the bacterioplankton community composition in the Gulf of Finland (easternmost sub-basin of the Baltic Sea) based on phylogenetic analysis of 16S rDNA sequences acquired from community samples via pyrosequencing. Investigations of bacterioplankton in hydrographically complex systems provide good insight into the strategies by which microbes deal with spatiotemporal hydrographic gradients, as demonstrated by our research. Many ribotypes were closely affiliated with sequences isolated from environments with similar steep physiochemical gradients and/or seasonal changes, including seasonally anoxic estuaries. Hence, one of the main conclusions of this study is that marine ecosystems where oxygen and salinity gradients co-occur can be considered a habitat for a cosmopolitan metacommunity consisting of specialized groups occupying niches universal to such environments throughout the world. These niches revolve around functional capabilities to utilize different electron receptors and donors (including trace metal and single carbon compounds). On the other hand, temporal shifts in the bacterioplankton community composition at the surface layer were mainly connected to the seasonal succession of phytoplankton and the inflow of freshwater species. We also conclude that many relatively abundant populations are indigenous and well-established in the area.
Collapse
Affiliation(s)
- Peeter Laas
- Marine Systems Institute at Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| | - Jaak Simm
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics, KU Leuven, Leuven, Belgium
- iMinds Medical IT, Leuven, Belgium
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Inga Lips
- Marine Systems Institute at Tallinn University of Technology, Tallinn, Estonia
| | - Urmas Lips
- Marine Systems Institute at Tallinn University of Technology, Tallinn, Estonia
| | - Veljo Kisand
- Institute of Technology at University of Tartu, Tartu, Estonia
| | - Madis Metsis
- Institute of Mathematics and Natural Sciences, Tallinn University, Tallinn, Estonia
| |
Collapse
|
17
|
Sinkko H, Lukkari K, Sihvonen LM, Sivonen K, Leivuori M, Rantanen M, Paulin L, Lyra C. Bacteria contribute to sediment nutrient release and reflect progressed eutrophication-driven hypoxia in an organic-rich continental sea. PLoS One 2013; 8:e67061. [PMID: 23825619 PMCID: PMC3692436 DOI: 10.1371/journal.pone.0067061] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022] Open
Abstract
In the sedimental organic matter of eutrophic continental seas, such as the largest dead zone in the world, the Baltic Sea, bacteria may directly participate in nutrient release by mineralizing organic matter or indirectly by altering the sediment's ability to retain nutrients. Here, we present a case study of a hypoxic sea, which receives riverine nutrient loading and in which microbe-mediated vicious cycles of nutrients prevail. We showed that bacterial communities changed along the horizontal loading and vertical mineralization gradients in the Gulf of Finland of the Baltic Sea, using multivariate statistics of terminal restriction fragments and sediment chemical, spatial and other properties of the sampling sites. The change was mainly explained by concentrations of organic carbon, nitrogen and phosphorus, which showed strong positive correlation with Flavobacteria, Sphingobacteria, Alphaproteobacteria and Gammaproteobacteria. These bacteria predominated in the most organic-rich coastal surface sediments overlain by oxic bottom water, whereas sulphate-reducing bacteria, particularly the genus Desulfobacula, prevailed in the reduced organic-rich surface sediments in the open sea. They correlated positively with organic nitrogen and phosphorus, as well as manganese oxides. These relationships suggest that the bacterial groups participated in the aerobic and anaerobic degradation of organic matter and contributed to nutrient cycling. The high abundance of sulphate reducers in the surficial sediment layers reflects the persistence of eutrophication-induced hypoxia causing ecosystem-level changes in the Baltic Sea. The sulphate reducers began to decrease below depths of 20 cm, where members of the family Anaerolineaceae (phylum Chloroflexi) increased, possibly taking part in terminal mineralization processes. Our study provides valuable information on how organic loading affects sediment bacterial community compositions, which consequently may maintain active nutrient recycling. This information is needed to improve our understanding on nutrient cycling in shallow seas where the dead zones are continuously spreading worldwide.
Collapse
Affiliation(s)
- Hanna Sinkko
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kaarina Lukkari
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Leila M. Sihvonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Kaarina Sivonen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Mirja Leivuori
- Reference Laboratory, Finnish Environment Institute, Helsinki, Finland
| | - Matias Rantanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christina Lyra
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|