1
|
Chiang TK, Kimchi O, Dhaliwal HK, Villarreal DA, Vasquez FF, Manoharan VN, Brenner MP, Garmann RF. Measuring intramolecular connectivity in long RNA molecules using two-dimensional DNA patch-probe arrays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.12.532302. [PMID: 36993626 PMCID: PMC10055002 DOI: 10.1101/2023.03.12.532302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We describe a simple method to infer intramolecular connections in a population of long RNA molecules in vitro. First we add DNA oligonucleotide "patches" that perturb the RNA connections, then we use a microarray containing a complete set of DNA oligonucleotide "probes" to record where perturbations occur. The pattern of perturbations reveals couplings between different regions of the RNA sequence, from which we infer connections as well as their prevalences in the population. We validate this patch-probe method using the 1,058-nucleotide RNA genome of satellite tobacco mosaic virus (STMV), which has previously been shown to have multiple long-range connections. Our results not only indicate long duplexes that agree with previous structures but also reveal the prevalence of competing connections. Together, these results suggest that globally-folded and locally-folded structures coexist in solution. We show that the prevalence of connections changes when pseudouridine, an important component of natural and synthetic RNA molecules, is substituted for uridine in STMV RNA.
Collapse
|
2
|
Tomezsko P, Swaminathan H, Rouskin S. Viral RNA structure analysis using DMS-MaPseq. Methods 2020; 183:68-75. [PMID: 32251733 DOI: 10.1016/j.ymeth.2020.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
RNA structure is critically important to RNA viruses in every part of the replication cycle. RNA structure is also utilized by DNA viruses in order to regulate gene expression and interact with host factors. Advances in next-generation sequencing have greatly enhanced the utility of chemical probing in order to analyze RNA structure. This review will cover some recent viral RNA structural studies using chemical probing and next-generation sequencing as well as the advantages of dimethyl sulfate (DMS)-mutational profiling and sequencing (MaPseq). DMS-MaPseq is a robust assay that can easily modify RNA in vitro, in cell and in virion. A detailed protocol for whole-genome DMS-MaPseq from cells transfected with HIV-1 and the structure of TAR as determined by DMS-MaPseq is presented. DMS-MaPseq has the ability to answer a variety of integral questions about viral RNA, including how they change in different environments and when interacting with different host factors.
Collapse
Affiliation(s)
- Phillip Tomezsko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Program in Virology, Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | | | - Silvi Rouskin
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
3
|
Abstract
RNA viruses encode the information required to usurp cellular metabolism and gene regulation and to enable their own replication in two ways: in the linear sequence of their RNA genomes and in higher-order structures that form when the genomic RNA strand folds back on itself. Application of high-resolution SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) structure probing to viral RNA genomes has identified numerous new regulatory elements, defined new principles by which viral RNAs interact with the cellular host and evade host immune responses, and revealed relationships between virus evolution and RNA structure. This review summarizes our current understanding of genome structure-function interrelationships for RNA viruses, as informed by SHAPE structure probing, and outlines opportunities for future studies.
Collapse
Affiliation(s)
- Mark A Boerneke
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| | - Jeffrey E Ehrhardt
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA; , ,
| |
Collapse
|
4
|
Chechetkin VR, Lobzin VV. Genome packaging within icosahedral capsids and large-scale segmentation in viral genomic sequences. J Biomol Struct Dyn 2018; 37:2322-2338. [PMID: 30044190 DOI: 10.1080/07391102.2018.1479660] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The assembly and maturation of viruses with icosahedral capsids must be coordinated with icosahedral symmetry. The icosahedral symmetry imposes also the restrictions on the cooperative specific interactions between genomic RNA/DNA and coat proteins that should be reflected in quasi-regular segmentation of viral genomic sequences. Combining discrete direct and double Fourier transforms, we studied the quasi-regular large-scale segmentation in genomic sequences of different ssRNA, ssDNA, and dsDNA viruses. The particular representatives included satellite tobacco mosaic virus (STMV) and the strains of satellite tobacco necrosis virus (STNV), STNV-C, STNV-1, STNV-2, Escherichia phages MS2, ϕX174, α3, and HK97, and Simian virus 40. In all their genomes, we found the significant quasi-regular segmentation of genomic sequences related to the virion assembly and the genome packaging within icosahedral capsid. We also found good correspondence between our results and available cryo-electron microscopy data on capsid structures and genome packaging in these viruses. Fourier analysis of genomic sequences provides the additional insight into mechanisms of hierarchical genome packaging and may be used for verification of the concepts of 3-fold or 5-fold intermediates in virion assembly. The results of sequence analysis should be taken into account at the choice of models and data interpretation. They also may be helpful for the development of antiviral drugs.
Collapse
Affiliation(s)
- V R Chechetkin
- a Engelhardt Institute of Molecular Biology of Russian Academy of Sciences , Moscow , Russia.,b Theoretical Department of Division for Perspective Investigations , Troitsk Institute of Innovation and Thermonuclear Investigations (TRINITI) , Moscow , Troitsk District , Russia
| | - V V Lobzin
- c School of Physics , University of Sydney , Sydney , NSW , Australia
| |
Collapse
|
5
|
Watters KE, Choudhary K, Aviran S, Lucks JB, Perry KL, Thompson JR. Probing of RNA structures in a positive sense RNA virus reveals selection pressures for structural elements. Nucleic Acids Res 2018; 46:2573-2584. [PMID: 29294088 PMCID: PMC5861449 DOI: 10.1093/nar/gkx1273] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/07/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022] Open
Abstract
In single stranded (+)-sense RNA viruses, RNA structural elements (SEs) play essential roles in the infection process from replication to encapsidation. Using selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) and covariation analysis, we explore the structural features of the third genome segment of cucumber mosaic virus (CMV), RNA3 (2216 nt), both in vitro and in plant cell lysates. Comparing SHAPE-Seq and covariation analysis results revealed multiple SEs in the coat protein open reading frame and 3' untranslated region. Four of these SEs were mutated and serially passaged in Nicotiana tabacum plants to identify biologically selected changes to the original mutated sequences. After passaging, loop mutants showed partial reversion to their wild-type sequence and SEs that were structurally disrupted by mutations were restored to wild-type-like structures via synonymous mutations in planta. These results support the existence and selection of virus open reading frame SEs in the host organism and provide a framework for further studies on the role of RNA structure in viral infection. Additionally, this work demonstrates the applicability of high-throughput chemical probing in plant cell lysates and presents a new method for calculating SHAPE reactivities from overlapping reverse transcriptase priming sites.
Collapse
Affiliation(s)
- Kyle E Watters
- Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Krishna Choudhary
- Department of Biomedical Engineering and Genome Center, University of California Davis, Davis, CA, USA
| | - Sharon Aviran
- Department of Biomedical Engineering and Genome Center, University of California Davis, Davis, CA, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60201, USA
| | - Keith L Perry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Jeremy R Thompson
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Larman BC, Dethoff EA, Weeks KM. Packaged and Free Satellite Tobacco Mosaic Virus (STMV) RNA Genomes Adopt Distinct Conformational States. Biochemistry 2017; 56:2175-2183. [PMID: 28332826 DOI: 10.1021/acs.biochem.6b01166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RNA genomes of viruses likely undergo multiple functionally important conformational changes during their replication cycles, changes that are poorly understood at present. We used two complementary in-solution RNA structure probing strategies (SHAPE-MaP and RING-MaP) to examine the structure of the RNA genome of satellite tobacco mosaic virus inside authentic virions and in a capsid-free state. Both RNA states feature similar three-domain architectures in which each major replicative function-translation, capsid coding, and genome synthesis-fall into distinct domains. There are, however, large conformational differences between the in-virion and capsid-free states, primarily in one arm of the central T domain. These data support a model in which the packaged capsid-bound RNA is constrained in a local high-energy conformation by the native capsid shell. The removal of the viral capsid then allows the RNA genome to relax into a more thermodynamically stable conformation. The RNA architecture of the central T domain thus likely changes during capsid assembly and disassembly and may play a role in genome packaging.
Collapse
Affiliation(s)
- Bridget C Larman
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - Elizabeth A Dethoff
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
7
|
Borodavka A, Singaram SW, Stockley PG, Gelbart WM, Ben-Shaul A, Tuma R. Sizes of Long RNA Molecules Are Determined by the Branching Patterns of Their Secondary Structures. Biophys J 2016; 111:2077-2085. [PMID: 27851933 PMCID: PMC5113152 DOI: 10.1016/j.bpj.2016.10.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/25/2016] [Accepted: 10/11/2016] [Indexed: 12/26/2022] Open
Abstract
Long RNA molecules are at the core of gene regulation across all kingdoms of life, while also serving as genomes in RNA viruses. Few studies have addressed the basic physical properties of long single-stranded RNAs. Long RNAs with nonrepeating sequences usually adopt highly ramified secondary structures and are better described as branched polymers. To test whether a branched polymer model can estimate the overall sizes of large RNAs, we employed fluorescence correlation spectroscopy to examine the hydrodynamic radii of a broad spectrum of biologically important RNAs, ranging from viral genomes to long noncoding regulatory RNAs. The relative sizes of long RNAs measured at low ionic strength correspond well to those predicted by two theoretical approaches that treat the effective branching associated with secondary structure formation-one employing the Kramers theorem for calculating radii of gyration, and the other featuring the metric of maximum ladder distance. Upon addition of multivalent cations, most RNAs are found to be compacted as compared with their original, low ionic-strength sizes. These results suggest that sizes of long RNA molecules are determined by the branching pattern of their secondary structures. We also experimentally validate the proposed computational approaches for estimating hydrodynamic radii of single-stranded RNAs, which use generic RNA structure prediction tools and thus can be universally applied to a wide range of long RNAs.
Collapse
Affiliation(s)
- Alexander Borodavka
- Faculty of Biological Sciences, Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Surendra W Singaram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; The Institute of Chemistry and Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter G Stockley
- Faculty of Biological Sciences, Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Avinoam Ben-Shaul
- The Institute of Chemistry and Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roman Tuma
- Faculty of Biological Sciences, Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
8
|
Liu ZY, Li XF, Jiang T, Deng YQ, Ye Q, Zhao H, Yu JY, Qin CF. Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. eLife 2016; 5. [PMID: 27692070 PMCID: PMC5101012 DOI: 10.7554/elife.17636] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/30/2016] [Indexed: 12/23/2022] Open
Abstract
Viral replicase recruitment and long-range RNA interactions are essential for RNA virus replication, yet the mechanism of their interplay remains elusive. Flaviviruses include numerous important human pathogens, e.g., dengue virus (DENV) and Zika virus (ZIKV). Here, we revealed a highly conserved, conformation-tunable cis-acting element named 5′-UAR-flanking stem (UFS) in the flavivirus genomic 5′ terminus. We demonstrated that the UFS was critical for efficient NS5 recruitment and viral RNA synthesis in different flaviviruses. Interestingly, stabilization of the DENV UFS impaired both genome cyclization and vRNA replication. Moreover, the UFS unwound in response to genome cyclization, leading to the decreased affinity of NS5 for the viral 5′ end. Thus, we propose that the UFS is switched by genome cyclization to regulate dynamic RdRp binding for vRNA replication. This study demonstrates that the UFS enables communication between flavivirus genome cyclization and RdRp recruitment, highlighting the presence of switch-like mechanisms among RNA viruses. DOI:http://dx.doi.org/10.7554/eLife.17636.001 Flaviviruses include a large family of viruses that are harmful to human health, such as dengue virus, West Nile virus and Zika virus. Understanding the details of the life cycle of these viruses is important for better controlling and treating the diseases that they cause. The genetic information of flaviviruses is stored in single-stranded molecules of RNA. To form new copies of a virus, the RNA must be replicated in a process that involves two critical steps. First, an enzyme called viral RNA polymerase NS5 must be recruited to a specific end of the RNA strand (known as the 5′ end). Then, the ends of the RNA strand bind together to form a circular loop. However, little is known about whether these two processes are linked, or how they are regulated. Using bioinformatics, biochemical and reverse genetics approaches, Liu et al. have now identified a new section of RNA in the 5′ end of the flavivirus RNA, named the 5′-UAR-flanking stem (or UFS for short), which is critical for viral replication. The UFS plays an important role in efficiently recruiting the NS5 viral RNA polymerase to the 5′ end of the flavivirus RNA. After the RNA forms a circle, the UFS unwinds. This makes the NS5 polymerase less likely to bind to the 5′ end of the RNA. Stabilizing the structure of the UFS impairs the ability of the RNA strand to form a circle, and hence reduces the ability of the RNA to replicate. Thus, the UFS links and enables communication between the processes that form the flavivirus RNA into a circle and that recruit the viral RNA polymerase to the RNA. The structural basis of the interaction between the flavivirus RNA 5′ end, including the UFS element, and the viral RNA polymerase now deserves further investigation. It will be also important to explore whether other types of viruses regulate their replication via a similar mechanism. DOI:http://dx.doi.org/10.7554/eLife.17636.002
Collapse
Affiliation(s)
- Zhong-Yu Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Xiao-Feng Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Tao Jiang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yong-Qiang Deng
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Qing Ye
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Zhao
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiu-Yang Yu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Cheng-Feng Qin
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
9
|
Lanier KA, Athavale SS, Petrov AS, Wartell R, Williams LD. Imprint of Ancient Evolution on rRNA Folding. Biochemistry 2016; 55:4603-13. [DOI: 10.1021/acs.biochem.6b00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kathryn A. Lanier
- School of Chemistry and Biochemistry and ‡School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Shreyas S. Athavale
- School of Chemistry and Biochemistry and ‡School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Anton S. Petrov
- School of Chemistry and Biochemistry and ‡School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Roger Wartell
- School of Chemistry and Biochemistry and ‡School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Loren Dean Williams
- School of Chemistry and Biochemistry and ‡School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
10
|
Singaram SW, Garmann RF, Knobler CM, Gelbart WM, Ben-Shaul A. Role of RNA Branchedness in the Competition for Viral Capsid Proteins. J Phys Chem B 2015; 119:13991-4002. [PMID: 26435053 DOI: 10.1021/acs.jpcb.5b06445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To optimize binding-and packaging-by their capsid proteins (CP), single-stranded (ss) RNA viral genomes often have local secondary/tertiary structures with high CP affinity, with these "packaging signals" serving as heterogeneous nucleation sites for the formation of capsids. Under typical in vitro self-assembly conditions, however, and in particular for the case of many ssRNA viruses whose CP have cationic N-termini, the adsorption of CP by RNA is nonspecific because the CP concentration exceeds the largest dissociation constant for CP-RNA binding. Consequently, the RNA is saturated by bound protein before lateral interactions between CP drive the homogeneous nucleation of capsids. But, before capsids are formed, the binding of protein remains reversible and introduction of another RNA species-with a different length and/or sequence-is found experimentally to result in significant redistribution of protein. Here we argue that, for a given RNA mass, the sequence with the highest affinity for protein is the one with the most compact secondary structure arising from self-complementarity; similarly, a long RNA steals protein from an equal mass of shorter ones. In both cases, it is the lateral attractions between bound proteins that determines the relative CP affinities of the RNA templates, even though the individual binding sites are identical. We demonstrate this with Monte Carlo simulations, generalizing the Rosenbluth method for excluded-volume polymers to include branching of the polymers and their reversible binding by protein.
Collapse
Affiliation(s)
- Surendra W Singaram
- Department of Chemistry and Biochemistry, UCLA , Los Angeles, California 90095, United States.,Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University , Jerusalem, 91904 Israel
| | - Rees F Garmann
- Department of Chemistry and Biochemistry, UCLA , Los Angeles, California 90095, United States
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, UCLA , Los Angeles, California 90095, United States
| | - William M Gelbart
- Department of Chemistry and Biochemistry, UCLA , Los Angeles, California 90095, United States
| | - Avinoam Ben-Shaul
- Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University , Jerusalem, 91904 Israel
| |
Collapse
|
11
|
Ashton P, Wu B, D'Angelo J, Grigull J, White KA. Biologically-supported structural model for a viral satellite RNA. Nucleic Acids Res 2015; 43:9965-77. [PMID: 26384416 PMCID: PMC4787747 DOI: 10.1093/nar/gkv917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023] Open
Abstract
Satellite RNAs (satRNAs) are a class of small parasitic RNA replicon that associate with different viruses, including plus-strand RNA viruses. Because satRNAs do not encode a polymerase or capsid subunit, they rely on a companion virus to provide these proteins for their RNA replication and packaging. SatRNAs recruit these and other required factors via their RNA sequences and structures. Here, through a combination of chemical probing analysis of RNA structure, phylogenetic structural comparisons, and viability assays of satRNA mutants in infected cells, the biological importance of a deduced higher-order structure for a 619 nt long tombusvirus satRNA was assessed. Functionally-relevant secondary and tertiary RNA structures were identified throughout the length of the satRNA. Notably, a 3′-terminal segment was found to adopt two mutually-exclusive RNA secondary structures, both of which were required for efficient satRNA accumulation. Accordingly, these alternative conformations likely function as a type of RNA switch. The RNA switch was also found to engage in a required long-range kissing-loop interaction with an upstream sequence. Collectively, these results establish a high level of conformational complexity within this small parasitic RNA and provide a valuable structural framework for detailed mechanistic studies.
Collapse
Affiliation(s)
- Peter Ashton
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Baodong Wu
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Jessica D'Angelo
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, Ontario, M3J 1P3 Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario, M3J 1P3 Canada
| |
Collapse
|
12
|
Sivanandam V, Mathews D, Rao ALN. Properties of satellite tobacco mosaic virus phenotypes expressed in the presence and absence of helper virus. Virology 2015; 483:163-73. [PMID: 25974867 DOI: 10.1016/j.virol.2015.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/18/2022]
Abstract
In this study, we assembled an Agrobacterium-based transient expression system for the ectopic expression of Satellite tobacco mosaic virus (STMV) (+) or (-) transcripts and their biological activity was confirmed when Nicotiana benthamiana plants were co-expressed with helper Tobacco mosaic virus replicase. Characterization of STMV in the presence and absence of its HV revealed: (i) HV-dependent expression of STMV (+) in N. benthamiana, but not in N. tabacum, generated a replication-deficient but translation and encapsidation competent variant lacking the highly conserved 3' 150 nucleotides (nt) (STMVΔ150); (ii) mutational analysis demonstrated that a conserved 3' stem-loop structure in wild type and STMVΔ150 located between nt 874 and 897 is essential for translation of CP; (iii) helper virus-independent expression of CP from wt STMV was competent for the assembly of empty aberrant virion-like particles; whereas, CP translated from STMVΔ150 resulted in disorganized CP aggregates suggesting a role for the 3'tRNA-like structure in STMV assembly.
Collapse
Affiliation(s)
- Venkatesh Sivanandam
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA
| | - Deborah Mathews
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA
| | - A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
13
|
The Role of Packaging Sites in Efficient and Specific Virus Assembly. J Mol Biol 2015; 427:2451-2467. [PMID: 25986309 DOI: 10.1016/j.jmb.2015.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Accepted: 05/10/2015] [Indexed: 12/25/2022]
Abstract
During the life cycle of many single-stranded RNA viruses, including many human pathogens, a protein shell called the capsid spontaneously assembles around the viral genome. Understanding the mechanisms by which capsid proteins selectively assemble around the viral RNA amidst diverse host RNAs is a key question in virology. In one proposed mechanism, short sequences (packaging sites) within the genomic RNA promote rapid and efficient assembly through specific interactions with the capsid proteins. In this work, we develop a coarse-grained particle-based computational model for capsid proteins and RNA that represents protein-RNA interactions arising both from nonspecific electrostatics and from specific packaging site interactions. Using Brownian dynamics simulations, we explore how the efficiency and specificity of assembly depend on solution conditions (which control protein-protein and nonspecific protein-RNA interactions) and the strength and number of packaging sites. We identify distinct regions in parameter space in which packaging sites lead to highly specific assembly via different mechanisms and others in which packaging sites lead to kinetic traps. We relate these computational predictions to in vitro assays for specificity in which cognate viral RNAs compete against non-cognate RNAs for assembly by capsid proteins.
Collapse
|
14
|
Garmann RF, Gopal A, Athavale SS, Knobler CM, Gelbart WM, Harvey SC. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy. RNA (NEW YORK, N.Y.) 2015; 21:877-886. [PMID: 25752599 PMCID: PMC4408795 DOI: 10.1261/rna.047506.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/30/2014] [Indexed: 05/29/2023]
Abstract
The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures.
Collapse
Affiliation(s)
- Rees F Garmann
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Ajaykumar Gopal
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Shreyas S Athavale
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Stephen C Harvey
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
15
|
Nicholson BL, White KA. Exploring the architecture of viral RNA genomes. Curr Opin Virol 2015; 12:66-74. [PMID: 25884487 DOI: 10.1016/j.coviro.2015.03.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 01/21/2023]
Abstract
The genomes of RNA viruses contain local structural elements and long-range interactions that control various steps in virus replication. While many individual RNA elements have been characterized, it remains less clear how the structure and activity of such elements are integrated and regulated within the complex context of complete viral genomes. Recent technical advances, particularly the development of high-throughput solution structure mapping methods, have made secondary structural analysis of entire viral RNA genomes feasible. As a consequence, whole-genome structural models have been deduced for a number of plus-strand RNA viruses and retroviruses and these structures have provided intriguing functional and evolutionary insights into global genome architecture.
Collapse
Affiliation(s)
- Beth L Nicholson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
16
|
Abstract
Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid and in some cases are surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assemble within their host cells and in vitro. We describe the thermodynamics and kinetics for the assembly of protein subunits into icosahedral capsid shells and how these are modified in cases in which the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques used to characterize capsid assembly, and we highlight aspects of virus assembly that are likely to receive significant attention in the near future.
Collapse
Affiliation(s)
- Jason D Perlmutter
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454;
| | | |
Collapse
|
17
|
Chillón I, Marcia M, Legiewicz M, Liu F, Somarowthu S, Pyle AM. Native Purification and Analysis of Long RNAs. Methods Enzymol 2015; 558:3-37. [PMID: 26068736 PMCID: PMC4477701 DOI: 10.1016/bs.mie.2015.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purification and analysis of long noncoding RNAs (lncRNAs) in vitro is a challenge, particularly if one wants to preserve elements of functional structure. Here, we describe a method for purifying lncRNAs that preserves the cotranscriptionally derived structure. The protocol avoids the misfolding that can occur during denaturation-renaturation protocols, thus facilitating the folding of long RNAs to a native-like state. This method is simple and does not require addition of tags to the RNA or the use of affinity columns. LncRNAs purified using this type of native purification protocol are amenable to biochemical and biophysical analysis. Here, we describe how to study lncRNA global compaction in the presence of divalent ions at equilibrium using sedimentation velocity analytical ultracentrifugation and analytical size-exclusion chromatography as well as how to use these uniform RNA species to determine robust lncRNA secondary structure maps by chemical probing techniques like selective 2'-hydroxyl acylation analyzed by primer extension and dimethyl sulfate probing.
Collapse
Affiliation(s)
- Isabel Chillón
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Marco Marcia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Michal Legiewicz
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Fei Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Srinivas Somarowthu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA; Department of Chemistry, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
18
|
Schroeder SJ. Probing viral genomic structure: alternative viewpoints and alternative structures for satellite tobacco mosaic virus RNA. Biochemistry 2014; 53:6728-37. [PMID: 25320869 DOI: 10.1021/bi501051k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral RNA structure prediction is a valuable tool for development of drugs against viral disease. This work discusses different approaches to predicting encapsidated viral RNA and highlights satellite tobacco mosaic virus (STMV) RNA as a model system with excellent crystallography data. Fundamentally important issues for debate include thermodynamic versus kinetic control of virus assembly and the possible consequences of quasi-species in the primary structure on RNA secondary structure prediction of a single structure or an ensemble of structures. Multiple computational tools and chemical reagents are now available for improved viral RNA structure prediction. Two different predicted structures for encapsidated STMV RNA result from differences in three main areas: a different approach and philosophy to studying encapsidated viral RNA, an emphasis on different RNA motifs, and technical differences in computational methods and chemical reagents. The experiments with traditional chemical probing and SHAPE reagents are compared in terms of chemistry, results, and interpretation for STMV RNA as well as other RNA protein assemblies, such as the 5'UTR of HIV and the ribosome. This discussion of the challenges of viral RNA structure prediction will lead to new experiments and improved future predictions for viral RNA.
Collapse
Affiliation(s)
- Susan J Schroeder
- Department of Chemistry and Biochemistry and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| |
Collapse
|
19
|
Nicholson BL, White KA. Functional long-range RNA-RNA interactions in positive-strand RNA viruses. Nat Rev Microbiol 2014; 12:493-504. [PMID: 24931042 PMCID: PMC7097572 DOI: 10.1038/nrmicro3288] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long-range RNA–RNA interactions, many of which span several thousands of nucleotides, have been discovered within the genomes of positive-strand RNA viruses. These interactions mediate fundamental viral processes, including translation, replication and transcription. In certain plant viruses that have uncapped, non-polyadenylated RNA genomes, translation initiation is facilitated by 3′ cap-independent translational enhancers (3′ CITEs) that are located in or near to their 3′ UTRs. These RNA elements function by binding to either the ribosome-recruiting eukaryotic translation initiation factor 4F (eIF4F) complex or ribosomal subunits, and they enhance translation initiation by engaging the 5′ end of the genome via a 5′-to-3′ RNA-based bridge. The activities of the internal ribosome entry sites (IRESs) in the 5′ UTRs of various viruses are modulated by RNA-based interactions between the IRESs and elements near to the 3′ ends of their genomes. In several plant viruses, translational recoding events, including ribosomal frameshifting and stop codon readthrough, have been found to rely on long-range RNA–RNA interactions. Multiple 5′-to-3′ base-pairing interactions facilitate genome circularization in flaviviruses, which has been proposed to reposition the 5′-bound RNA-dependent RNA polymerase (RdRp) to the initiation site of negative-strand synthesis at the 3′ terminus. The long-distance interaction between two cis-acting replication elements in tombusviruses generates a bipartite RNA platform for the assembly of the replicase complex and repositions the internally bound RdRp to the 3′ terminus. Tombusviruses also rely on several long-range interactions that mediate the premature termination of the RdRp during negative-strand synthesis that leads to transcription of subgenomic mRNAs (sgmRNAs). In a coronavirus, an exceptionally long-range interaction, which spans ∼26,000 nucleotides, promotes polymerase repriming during the discontinuous template synthesis step of sgmRNA-N transcription. A challenge for the future will be to determine how these long-range interactions are integrated and regulated in the complex context of viral RNA genomes.
Long-range intragenomic RNA–RNA interactions in the genomes of positive-strand RNA viruses involve direct nucleotide base pairing and can span distances of thousands of nucleotides. In this Review, Nicholson and White discuss recent insights into the structure and function of these genomic features and highlight their diverse roles in the gene expression and genome replication of positive-strand RNA viruses. Positive-strand RNA viruses are important human, animal and plant pathogens that are defined by their single-stranded positive-sense RNA genomes. In recent years, it has become increasingly evident that interactions that occur between distantly positioned RNA sequences within these genomes can mediate important viral activities. These long-range intragenomic RNA–RNA interactions involve direct nucleotide base pairing and can span distances of thousands of nucleotides. In this Review, we discuss recent insights into the structure and function of these intriguing genomic features and highlight their diverse roles in the gene expression and genome replication of positive-strand RNA viruses.
Collapse
Affiliation(s)
- Beth L Nicholson
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - K Andrew White
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
20
|
Wu B, Grigull J, Ore MO, Morin S, White KA. Global organization of a positive-strand RNA virus genome. PLoS Pathog 2013; 9:e1003363. [PMID: 23717202 PMCID: PMC3662671 DOI: 10.1371/journal.ppat.1003363] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 04/02/2013] [Indexed: 12/22/2022] Open
Abstract
The genomes of plus-strand RNA viruses contain many regulatory sequences and structures that direct different viral processes. The traditional view of these RNA elements are as local structures present in non-coding regions. However, this view is changing due to the discovery of regulatory elements in coding regions and functional long-range intra-genomic base pairing interactions. The ∼4.8 kb long RNA genome of the tombusvirus tomato bushy stunt virus (TBSV) contains these types of structural features, including six different functional long-distance interactions. We hypothesized that to achieve these multiple interactions this viral genome must utilize a large-scale organizational strategy and, accordingly, we sought to assess the global conformation of the entire TBSV genome. Atomic force micrographs of the genome indicated a mostly condensed structure composed of interconnected protrusions extending from a central hub. This configuration was consistent with the genomic secondary structure model generated using high-throughput selective 2′-hydroxyl acylation analysed by primer extension (i.e. SHAPE), which predicted different sized RNA domains originating from a central region. Known RNA elements were identified in both domain and inter-domain regions, and novel structural features were predicted and functionally confirmed. Interestingly, only two of the six long-range interactions known to form were present in the structural model. However, for those interactions that did not form, complementary partner sequences were positioned relatively close to each other in the structure, suggesting that the secondary structure level of viral genome structure could provide a basic scaffold for the formation of different long-range interactions. The higher-order structural model for the TBSV RNA genome provides a snapshot of the complex framework that allows multiple functional components to operate in concert within a confined context. The genomes of many important pathogenic viruses are made of RNA. These genomes encode viral proteins and contain regulatory sequences and structures. In some viruses, distant regions of the RNA genome can interact with each other via base pairing, which suggests that certain genomes may take on well-defined conformations. This concept was investigated using a tombusvirus RNA genome that contains several long-range RNA interactions. The results of microscopic and biochemical analyses indicated a compact genome conformation with structured regions radiating from a central core. The structural model was compatible with some, but not all, long-range interactions, suggesting that the genome is a dynamic molecule that assumes different conformations. The analysis also revealed new structural features of the genome, some of which were shown to be functionally relevant. This study advances our understanding of the role played by global structure in virus genome function and provides a model to further investigate its in role virus reproduction. We anticipate that organizational principles revealed by this investigation will be applicable to other viruses.
Collapse
Affiliation(s)
- Baodong Wu
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
| | - Moriam O. Ore
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Sylvie Morin
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - K. Andrew White
- Department of Biology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
The icosahedral RNA virus as a grotto: organizing the genome into stalagmites and stalactites. J Biol Phys 2013; 39:163-72. [PMID: 23860866 DOI: 10.1007/s10867-013-9312-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/08/2013] [Indexed: 10/26/2022] Open
Abstract
There are two important problems in the assembly of small, icosahedral RNA viruses. First, how does the capsid protein select the viral RNA for packaging, when there are so many other candidate RNA molecules available? Second, what is the mechanism of assembly? With regard to the first question, there are a number of cases where a particular RNA sequence or structure--often one or more stem-loops--either promotes assembly or is required for assembly, but there are others where specific packaging signals are apparently not required. With regard to the assembly pathway, in those cases where stem-loops are involved, the first step is generally believed to be binding of the capsid proteins to these "fingers" of the RNA secondary structure. In the mature virus, the core of the RNA would then occupy the center of the viral particle, and the stem-loops would reach outward, towards the capsid, like stalagmites reaching up from the floor of a grotto towards the ceiling. Those viruses whose assembly does not depend on protein binding to stem-loops could have a different structure, with the core of the RNA lying just under the capsid, and the fingers reaching down into the interior of the virus, like stalactites. We review the literature on these alternative structures, focusing on RNA selectivity and the assembly mechanism, and we propose experiments aimed at determining, in a given virus, which of the two structures actually occurs.
Collapse
|
22
|
Archer EJ, Simpson MA, Watts NJ, O'Kane R, Wang B, Erie DA, McPherson A, Weeks KM. Long-range architecture in a viral RNA genome. Biochemistry 2013; 52:3182-90. [PMID: 23614526 DOI: 10.1021/bi4001535] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a model for the secondary structure of the 1058-nucleotide plus-strand RNA genome of the icosahedral satellite tobacco mosaic virus (STMV) using nucleotide-resolution SHAPE chemical probing of the viral RNA isolated from virions and within the virion, perturbation of interactions distant in the primary sequence, and atomic force microscopy. These data are consistent with long-range base pairing interactions and a three-domain genome architecture. The compact domains of the STMV RNA have dimensions of 10-45 nm. Each of the three domains corresponds to a specific functional component of the virus: The central domain corresponds to the coding sequence of the single (capsid) protein encoded by the virus, whereas the 5' and 3' untranslated domains span signals essential for translation and replication, respectively. This three-domain architecture is compatible with interactions between the capsid protein and short RNA helices previously visualized by crystallography. STMV is among the simplest of the icosahedral viruses but, nonetheless, has an RNA genome with a complex higher-order structure that likely reflects high information content and an evolutionary relationship between RNA domain structure and essential replicative functions.
Collapse
Affiliation(s)
- Eva J Archer
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | | | | | | | | | | | | | |
Collapse
|