1
|
Moutsouri I, Manoli P, Christofi V, Bashiardes E, Keravnou A, Xenophontos S, Cariolou MA. Deciphering the maternal ancestral lineage of Greek Cypriots, Armenian Cypriots and Maronite Cypriots. PLoS One 2024; 19:e0292790. [PMID: 38315645 PMCID: PMC10843121 DOI: 10.1371/journal.pone.0292790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/28/2023] [Indexed: 02/07/2024] Open
Abstract
Cyprus was conquered from several populations because of its special geographical location. In this study, 406 unrelated Cypriot samples were tested based on their mitochondrial DNA. In more detail, 185 were Greek Cypriots, 114 Armenian Cypriots and 107 Maronite Cypriots. This is the first time where the mitochondrial DNA of Greek Cypriots, Armenian Cypriots and Maronite Cypriots is compared with the aim of characterizing the maternal ancestry of Cypriots. The control region of the mtDNA is the most informative in terms of studying maternal ancestry and consists of three hypervariable regions (HVS-I, HVS-II, HVS-III). The hypervariable regions can provide important information regarding the maternal ancestor of the tested samples. The entire control region of the mtDNA was used to determine the mitotypes and subsequently the haplogroups of all the Cypriot DNA samples. Based on the aforementioned analyses, Greek Cypriots were found to be genetically closer to Armenian Cypriots, while Greek Cypriots and Armenian Cypriots showed moderate genetic differentiation with Maronite Cypriots. The most prevalent haplogroups among Cypriots were haplogroups H and U, while R0 is common but in different frequencies for Greek Cypriots, Armenian Cypriots and Maronite Cypriots. It is proposed that the maternal ancestor may have originated during the Neolithic period and/or the Bronze age.
Collapse
Affiliation(s)
- Irene Moutsouri
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Panayiotis Manoli
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vasilis Christofi
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Evy Bashiardes
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anna Keravnou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Stavroulla Xenophontos
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios A Cariolou
- Department of Cardiovascular Genetics and The Laboratory of Forensic Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
2
|
Petersen BC. An economic model and evidence of the evolution of human intelligence in the Middle Pleistocene: Climate change and assortative mating. PLoS One 2023; 18:e0287964. [PMID: 37531351 PMCID: PMC10395973 DOI: 10.1371/journal.pone.0287964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
A main objective of this paper is to provide the first model of how climate change, working through sexual selection, could have led to dramatic increases in hominin brain size, and presumably intelligence, in the Middle Pleistocene. The model is built using core elements from the field of family economics, including assortative mating and specialization and complementarities between mates. The main assumptions are that family public goods (e.g., conversation, shelter, fire) were particularly cognitively intensive to produce and became increasingly important for child survival during glacial phases. Intermediate climates (e.g., not the depths of severe glacial phases) create the largest gains from specialization, encouraging negative assortative mating. In contrast, severe glacial phases encourage positive assortative mating because of the rising importance of family public goods. One testable hypothesis is that absence of severe glacial phases should have led to stasis in brain size. Two other testable hypotheses are that severe glacial phases should have led to speciation events, as well as increases in brain size. The evidence shows that there was a million-year stasis in cranial size prior to the start of the severe glacial phases. This stasis is broken by a speciation event (Homo heidelbergensis), with the oldest fossil evidence dated near the close of the first severe glacial phase. In the next 300 kyr, there are two additional severe glacial phases, accompanied by considerable increases in cranial capacity. The last speciation event is Homo sapiens, with the earliest fossils dated near the end of the last of these two glacial phases.
Collapse
Affiliation(s)
- Bruce C Petersen
- Department of Economics, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
3
|
Barbarić L, Horjan-Zanki I. Challenges in the recovery of the genetic data from human remains found on the Western Balkan migration route. Int J Legal Med 2023; 137:181-193. [PMID: 35449468 DOI: 10.1007/s00414-022-02829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/13/2022] [Indexed: 01/11/2023]
Abstract
Traditional DNA-based identification of human remains relies on the system of matching STR profile of the deceased with the family references or antemortem samples. In forensic cases without any available samples for the comparison, the body remains unidentified. The aim of this study was to assess the applicability of massively parallel sequencing (MPS) approach in the forensic cases of five drowned individuals recovered on the Western Balkan migration route. Besides capillary electrophoresis (CE)-based genetic profiling (aSTR, Y STR, and mitochondrial control region sequencing) of postmortem samples, we applied ForenSeq DNA Signature Prep Kit/Primer Mix B on MiSeqFGx platform and concomitant ForenSeq Universal Analysis (UAS) software. The assay showed high reproducibility and complete concordance with CE-based data except in locus DYF387S1. Allele and locus drop was evident in 2.9% of total SNPs that slightly reduced the completeness of the data. We endeavored to predict the phenotype of the tested samples and accurate biogeographical ancestry of European individual. UAS was less informative for the remaining samples assigned to Admixed American cluster. Nevertheless, the application of FROG-kb and Snipper tools along with admixture analysis in STRUCTURE and lineage markers revealed likely Middle Eastern and North African ancestry. We conclude that the combination of the phenotype and biogeographical ancestry predictions, including paternal and maternal genetic ancestry, represent a promising tool for humanitarian identification of dead migrants. Nevertheless, the data interpretation remains a challenging task.
Collapse
Affiliation(s)
- Lucija Barbarić
- Forensic Science Centre "Ivan Vučetić, " Ministry of the Interior, Ilica 335, 10000, Zagreb, Croatia.
| | - Ivana Horjan-Zanki
- Forensic Science Centre "Ivan Vučetić, " Ministry of the Interior, Ilica 335, 10000, Zagreb, Croatia
| |
Collapse
|
4
|
Truelsen D, Freire-Aradas A, Nazari M, Aliferi A, Ballard D, Phillips C, Morling N, Pereira V, Børsting C. Evaluation of a custom QIAseq targeted DNA panel with 164 ancestry informative markers sequenced with the Illumina MiSeq. Sci Rep 2021; 11:21040. [PMID: 34702940 PMCID: PMC8548529 DOI: 10.1038/s41598-021-99933-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
Introduction of new methods requires meticulous evaluation before they can be applied to forensic genetic case work. Here, a custom QIAseq Targeted DNA panel with 164 ancestry informative markers was assessed using the MiSeq sequencing platform. Concordance, sensitivity, and the capability for analysis of mixtures were tested. The assay gave reproducible and nearly concordant results with an input of 10 and 2 ng DNA. Lower DNA input led to an increase in both locus and allele drop-outs, and a higher variation in heterozygote balance. Locus or allele drop-outs in the samples with less than 2 ng DNA input were not necessarily associated with the overall performance of a locus. Thus, the QIAseq assay will be difficult to implement in a forensic genetic setting where the sample material is often scarce and of poor quality. With equal or near equal mixture ratios, the mixture DNA profiles were easily identified by an increased number of imbalanced heterozygotes. For more skewed mixture ratios, the mixture DNA profiles were identified by an increased noise level. Lastly, individuals from Great Britain and the Middle East were investigated. The Middle Eastern individuals showed a greater affinity with South European populations compared to North European populations.
Collapse
Affiliation(s)
- D Truelsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - A Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - M Nazari
- Faculty of Life Sciences and Medicine, King's College, London, UK
| | - A Aliferi
- Faculty of Life Sciences and Medicine, King's College, London, UK
| | - D Ballard
- Faculty of Life Sciences and Medicine, King's College, London, UK
| | - C Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - N Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
- Department of Mathematical Sciences, Aalborg University, 9220, Aalborg, Denmark
| | - V Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - C Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
5
|
Following the Trace of HVS II Mitochondrial Region Within the Nine Iranian Ethnic Groups Based on Genetic Population Analysis. Biochem Genet 2021; 60:987-1006. [PMID: 34661819 DOI: 10.1007/s10528-021-10141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
The Iranian gene pool is seen as an important human genetic resource for investigating the region connecting Mesopotamia and the Iranian plateau. The main objective of this study was to explore gene flow in nine Iranian ethnic/subpopulation groups (402 samples) by examining mtDNA HVS2 sequence variations. This then allowed us to detect mtDNA HVS2 sequence mutations in two independent thalassemia and cystic fibrosis patient sample groups. The patient groups did not explicitly belong to any of the aforementioned nine subpopulations. Across all subpopulations, the haplogroups B4a1c3a, H2a2a1, N10b, H2a2a2, and J1 were seen to be predominant. High haplogroup diversities along with admixture of the exotic groups were observed in this study. The Arab subpopulation was shown to be independent from the others. It was revealed that there is a far distant relationship between Arab and Azeri groups. The thalassemia patient group, represented an almost random sample of most Iranian ethnic groups, and revealed few significant differences (P < 0.05) in their HVS2 sequence. It turned out that the IVS II-I (G → A) mutation in the thalassemia β-globin gene was highly significant. Since the thalassemia patients in the present study represent many unique haplotypes, we can begin to comprehend the importance of mtDNA with this disease and the necessity for more studies in this context.
Collapse
|
6
|
Razali RM, Rodriguez-Flores J, Ghorbani M, Naeem H, Aamer W, Aliyev E, Jubran A, Clark AG, Fakhro KA, Mokrab Y. Thousands of Qatari genomes inform human migration history and improve imputation of Arab haplotypes. Nat Commun 2021; 12:5929. [PMID: 34642339 PMCID: PMC8511259 DOI: 10.1038/s41467-021-25287-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Arab populations are largely understudied, notably their genetic structure and history. Here we present an in-depth analysis of 6,218 whole genomes from Qatar, revealing extensive diversity as well as genetic ancestries representing the main founding Arab genealogical lineages of Qahtanite (Peninsular Arabs) and Adnanite (General Arabs and West Eurasian Arabs). We find that Peninsular Arabs are the closest relatives of ancient hunter-gatherers and Neolithic farmers from the Levant, and that founder Arab populations experienced multiple splitting events 12–20 kya, consistent with the aridification of Arabia and farming in the Levant, giving rise to settler and nomadic communities. In terms of recent genetic flow, we show that these ancestries contributed significantly to European, South Asian as well as South American populations, likely as a result of Islamic expansion over the past 1400 years. Notably, we characterize a large cohort of men with the ChrY J1a2b haplogroup (n = 1,491), identifying 29 unique sub-haplogroups. Finally, we leverage genotype novelty to build a reference panel of 12,432 haplotypes, demonstrating improved genotype imputation for both rare and common alleles in Arabs and the wider Middle East. Arab populations are relatively understudied, especially their genetic architecture and historical relationship with early founders of the ancient Near East. Here, the authors examine 6,218 Qatari whole genomes, revealing insights on migration, population history and genetic structure of populations across the Middle Eastern region.
Collapse
Affiliation(s)
| | | | | | - Haroon Naeem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Waleed Aamer
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ali Jubran
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, New York, NY, USA
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar. .,Weill Cornell Medicine-Qatar, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| | - Younes Mokrab
- Department of Human Genetics, Sidra Medicine, Doha, Qatar. .,Weill Cornell Medicine-Qatar, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
7
|
Autosomal genetics and Y-chromosome haplogroup L1b-M317 reveal Mount Lebanon Maronites as a persistently non-emigrating population. Eur J Hum Genet 2020; 29:581-592. [PMID: 33273712 DOI: 10.1038/s41431-020-00765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
Currently, there are 18 different religious communities living in Lebanon. While evolving primarily within Lebanon, these communities show a level of local isolation as demonstrated previously from their Y-haplogroup distributions. In order to trace the origins and migratory patterns that may have led to the genetic isolation and autosomal clustering in some of these communities we analyzed Y-chromosome STR and SNP sample data from 6327 individuals, in addition to whole genome autosomal sample data from 609 individuals, from Mount Lebanon and other surrounding communities. We observed Y chromosome L1b Levantine STR branching that occurred around 5000 years ago. Autosomal DNA analyses suggest that the North Lebanese Mountain Maronite community possesses an ancestral Fertile Crescent genetic component distinct from other populations in the region. We suggest that the Levantine L1b group split from the Caucasus ancestral group around 7300 years ago and migrated to the Levant. This event was distinct from the earlier expansions from the Caucasus region that contributed to the wider Levantine populations. Differential cultural adaption by populations from the North Lebanese Mountains are clearly aligned with the L1b haplotype STR haplogroup clusters, indicating pre-existing and persistent cultural barriers marked by the transmission of L1b lineages. Our findings highlight the value of uniparental haplogroups and STR haplotype data for elucidating biosocial events among these populations.
Collapse
|
8
|
Mining the red deer genome (CerEla1.0) to develop X-and Y-chromosome-linked STR markers. PLoS One 2020; 15:e0242506. [PMID: 33226998 PMCID: PMC7986210 DOI: 10.1371/journal.pone.0242506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Microsatellites are widely applied in population and forensic genetics, wildlife studies and parentage testing in animal breeding, among others, and recently, high-throughput sequencing technologies have greatly facilitated the identification of microsatellite markers. In this study the genomic data of Cervus elaphus (CerEla1.0) was exploited, in order to identify microsatellite loci along the red deer genome and for designing the cognate primers. The bioinformatics pipeline identified 982,433 microsatellite motifs genome-wide, assorted along the chromosomes, from which 45,711 loci mapped to the X- and 1096 to the Y-chromosome. Primers were successfully designed for 170,873 loci, and validated with an independently developed autosomal tetranucleotide STR set. Ten X- and five Y-chromosome-linked microsatellites were selected and tested by two multiplex PCR setups on genomic DNA samples of 123 red deer stags. The average number of alleles per locus was 3.3, and the average gene diversity value of the markers was 0.270. The overall observed and expected heterozygosities were 0.755 and 0.832, respectively. Polymorphic Information Content (PIC) ranged between 0.469 and 0.909 per locus with a mean value of 0.813. Using the X- and Y-chromosome linked markers 19 different Y-chromosome and 72 X-chromosome lines were identified. Both the X- and the Y-haplotypes split to two distinct clades each. The Y-chromosome clades correlated strongly with the geographic origin of the haplotypes of the samples. Segregation and admixture of subpopulations were demonstrated by the use of the combination of nine autosomal and 16 sex chromosomal STRs concerning southwestern and northeastern Hungary. In conclusion, the approach demonstrated here is a very efficient method for developing microsatellite markers for species with available genomic sequence data, as well as for their use in individual identifications and in population genetics studies.
Collapse
|
9
|
Forni D, Cagliani R, Clerici M, Pozzoli U, Sironi M. You Will Never Walk Alone: Codispersal of JC Polyomavirus with Human Populations. Mol Biol Evol 2020; 37:442-454. [PMID: 31593241 DOI: 10.1093/molbev/msz227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
JC polyomavirus (JCPyV) is one of the most prevalent human viruses. Findings based on the geographic distribution of viral subtypes suggested that JCPyV codiverged with human populations. This view was however challenged by data reporting a much more recent origin and expansion of JCPyV. We collected information on ∼1,100 worldwide strains and we show that their geographic distribution roughly corresponds to major human migratory routes. Bayesian phylogeographic analysis inferred a Subsaharan origin for JCPyV, although with low posterior probability. High confidence inference at internal nodes provided strong support for a long-standing association between the virus and human populations. In line with these data, pairwise FST values for JCPyV and human mtDNA sampled from the same areas showed a positive and significant correlation. Likewise, very strong relationships were found when node ages in the JCPyV phylogeny were correlated with human population genetic distances (nuclear-marker based FST). Reconciliation analysis detected a significant cophylogenetic signal for the human population and JCPyV trees. Notably, JCPyV also traced some relatively recent migration events such as the expansion of people from the Philippines/Taiwan area into Remote Oceania, the gene flow between North-Eastern Siberian and Ainus, and the Koryak contribution to Circum-Arctic Americans. Finally, different molecular dating approaches dated the origin of JCPyV in a time frame that precedes human out-of-Africa migration. Thus, JCPyV infected early human populations and accompanied our species during worldwide dispersal. JCPyV typing can provide reliable geographic information and the virus most likely adapted to the genetic background of human populations.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Uberto Pozzoli
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Lecco, Italy
| |
Collapse
|
10
|
Castro LP, Sahbatou M, Kehdy FSG, Farias AA, Yurchenko AA, de Souza TA, Rosa RCA, Mendes-Junior CT, Borda V, Munford V, Zanardo ÉA, Chehimi SN, Kulikowski LD, Aquino MM, Leal TP, Tarazona-Santos E, Chaibub SC, Gener B, Calmels N, Laugel V, Sarasin A, Menck CFM. The Iberian legacy into a young genetic xeroderma pigmentosum cluster in central Brazil. Mutat Res 2020; 852:503164. [PMID: 32265042 DOI: 10.1016/j.mrgentox.2020.503164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
In central Brazil, in the municipality of Faina (state of Goiás), the small and isolated village of Araras comprises a genetic cluster of xeroderma pigmentosum (XP) patients. The high level of consanguinity and the geographical isolation gave rise to a high frequency of XP patients. Recently, two founder events were identified affecting that community, with two independent mutations at the POLH gene, c.764 + 1 G > A (intron 6) and c.907 C > T; p.Arg303* (exon 8). These deleterious mutations lead to the xeroderma pigmentosum variant syndrome (XP-V). Previous reports identified both mutations in other countries: the intron 6 mutation in six patients (four families) from Northern Spain (Basque Country and Cantabria) and the exon 8 mutation in two patients from different families in Europe, one of them from Kosovo. In order to investigate the ancestry of the XP patients and the age for these mutations at Araras, we generated genotyping information for 22 XP-V patients from Brazil (16), Spain (6) and Kosovo (1). The local genomic ancestry and the shared haplotype segments among the patients showed that the intron 6 mutation at Araras is associated with an Iberian genetic legacy. All patients from Goiás, homozygotes for intron 6 mutation, share with the Spanish patients identical-by-descent (IBD) genomic segments comprising the mutation. The entrance date for the Iberian haplotype at the village was calculated to be approximately 200 years old. This result is in agreement with the historical arrival of Iberian individuals at the Goiás state (BR). Patients from Goiás and the three families from Spain share 1.8 cM (family 14), 1.7 cM (family 15), and a more significant segment of 4.7 cM within family 13. On the other hand, the patients carrying the exon 8 mutation do not share any specific genetic segment, indicating an old genetic distance between them or even no common ancestry.
Collapse
Affiliation(s)
- L P Castro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M Sahbatou
- Foundation Jean Dausset - CEPH, Paris, France
| | - F S G Kehdy
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - A A Farias
- Human Genome and Stem-Cell Center, Institute of Biosciences, University of São Paulo (USP), Sao Paulo, Brazil; Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), São Paulo, Brazil
| | - A A Yurchenko
- Inserm U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - T A de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - R C A Rosa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - C T Mendes-Junior
- Department of Chemistry, Forensic and Genomics Research Laboratory, Faculty of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, Brazil
| | - V Borda
- National Laboratory for Scientific Computation (LNCC), Petropolis, Rio de Janeiro, Brazil
| | - V Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - É A Zanardo
- Cytogenomics Laboratory, Department of Pathology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | - S N Chehimi
- Cytogenomics Laboratory, Department of Pathology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | - L D Kulikowski
- Cytogenomics Laboratory, Department of Pathology, School of Medicine, University of São Paulo (FMUSP), São Paulo, Brazil
| | - M M Aquino
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - T P Leal
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - E Tarazona-Santos
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - S C Chaibub
- General Hospital of Goiania, Goiania, Brazil
| | - B Gener
- Osakidetza Basque Health Service, Cruces University Hospital. Department of Genetics, Bizkaia, Spain; Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - N Calmels
- Laboratory of Medical Genetics, Institute of Medical Genetics of Alsace (IGMA), Strasbourg, France
| | - V Laugel
- Laboratory of Medical Genetics, Institute of Medical Genetics of Alsace (IGMA), Strasbourg, France
| | - A Sarasin
- UMR8200 CNRS, Gustave Roussy Institute, University Paris-Saclay, Villejuif, France
| | - C F M Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Laitman Y, Friebel TM, Yannoukakos D, Fostira F, Konstantopoulou I, Figlioli G, Bonanni B, Manoukian S, Zuradelli M, Tondini C, Pasini B, Peterlongo P, Plaseska-Karanfilska D, Jakimovska M, Majidzadeh K, Zarinfam S, Loizidou MA, Hadjisavvas A, Michailidou K, Kyriacou K, Behar DM, Molho RB, Ganz P, James P, Parsons MT, Sallam A, Olopade OI, Seth A, Chenevix-Trench G, Leslie G, McGuffog L, Marafie MJ, Megarbane A, Al-Mulla F, Rebbeck TR, Friedman E. The spectrum of BRCA1 and BRCA2 pathogenic sequence variants in Middle Eastern, North African, and South European countries. Hum Mutat 2019; 40:e1-e23. [PMID: 31209999 DOI: 10.1002/humu.23842] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/25/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
BRCA1 BRCA2 mutational spectrum in the Middle East, North Africa, and Southern Europe is not well characterized. The unique history and cultural practices characterizing these regions, often involving consanguinity and inbreeding, plausibly led to the accumulation of population-specific founder pathogenic sequence variants (PSVs). To determine recurring BRCA PSVs in these locales, a search in PUBMED, EMBASE, BIC, and CIMBA was carried out combined with outreach to researchers from the relevant countries for unpublished data. We identified 232 PSVs in BRCA1 and 239 in BRCA2 in 25 of 33 countries surveyed. Common PSVs that were detected in four or more countries were c.5266dup (p.Gln1756Profs), c.181T>G (p.Cys61Gly), c.68_69del (p.Glu23Valfs), c.5030_5033del (p.Thr1677Ilefs), c.4327C>T (p.Arg1443Ter), c.5251C>T (p.Arg1751Ter), c.1016dup (p.Val340Glyfs), c.3700_3704del (p.Val1234Glnfs), c.4065_4068del (p.Asn1355Lysfs), c.1504_1508del (p.Leu502Alafs), c.843_846del (p.Ser282Tyrfs), c.798_799del (p.Ser267Lysfs), and c.3607C>T (p.Arg1203Ter) in BRCA1 and c.2808_2811del (p.Ala938Profs), c.5722_5723del (p.Leu1908Argfs), c.9097dup (p.Thr3033Asnfs), c.1310_1313del (p. p.Lys437Ilefs), and c.5946del (p.Ser1982Argfs) for BRCA2. Notably, some mutations (e.g., p.Asn257Lysfs (c.771_775del)) were observed in unrelated populations. Thus, seemingly genotyping recurring BRCA PSVs in specific populations may provide first pass BRCA genotyping platform.
Collapse
Affiliation(s)
- Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, The Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Gisella Figlioli
- Genome Diagnostics Program, IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Monica Zuradelli
- Medical Oncology and Hematology Department, Humanitas Cancer Center, Milan, Italy
| | - Carlo Tondini
- Department of Medical Oncology, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Dijana Plaseska-Karanfilska
- Macedonian Academy of Sciences and Arts Research Centre for Genetic Engineering and Biotechnology, Skopje, Republic of Macedonia
| | - Milena Jakimovska
- Macedonian Academy of Sciences and Arts Research Centre for Genetic Engineering and Biotechnology, Skopje, Republic of Macedonia
| | - Keivan Majidzadeh
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Shiva Zarinfam
- Department of Genetics, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Maria A Loizidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | | | - Rinat Bernstein Molho
- The Institute of Oncology, Sheba Medical Center, Tel-Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Patricia Ganz
- Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Jonsson Comprehensive Cancer Centre, UCLA, Los Angeles, CA
| | - Paul James
- Parkville Familial Cancer Peter MacCallum Cancer Center, Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Aminah Sallam
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL
| | | | - Arun Seth
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Queensland Institute of Medical Research, Brisbane, Australia
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, England
| | | | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute, Boston, MA
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, The Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
12
|
Zimmermann B, Sturk-Andreaggi K, Huber N, Xavier C, Saunier J, Tahir M, Chouery E, Jalkh N, Megarbane A, Bodner M, Coble M, Irwin J, Parsons T, Parson W. Mitochondrial DNA control region variation in Lebanon, Jordan, and Bahrain. Forensic Sci Int Genet 2019; 42:99-102. [DOI: 10.1016/j.fsigen.2019.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/06/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
|
13
|
Chung NN, Jacobs GS, Sudoyo H, Malik SG, Chew LY, Lansing JS, Cox MP. Sex-linked genetic diversity originates from persistent sociocultural processes at microgeographic scales. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190733. [PMID: 31598251 PMCID: PMC6731738 DOI: 10.1098/rsos.190733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Population genetics has been successful at identifying the relationships between human groups and their interconnected histories. However, the link between genetic demography inferred at large scales and the individual human behaviours that ultimately generate that demography is not always clear. While anthropological and historical context are routinely presented as adjuncts in population genetic studies to help describe the past, determining how underlying patterns of human sociocultural behaviour impact genetics still remains challenging. Here, we analyse patterns of genetic variation in village-scale samples from two islands in eastern Indonesia, patrilocal Sumba and a matrilocal region of Timor. Adopting a 'process modelling' approach, we iteratively explore combinations of structurally different models as a thinking tool. We find interconnected socio-genetic interactions involving sex-biased migration, lineage-focused founder effects, and on Sumba, heritable social dominance. Strikingly, founder ideology, a cultural model derived from anthropological and archaeological studies at larger regional scales, has both its origins and impact at the scale of villages. Process modelling lets us explore these complex interactions, first by circumventing the complexity of formal inference when studying large datasets with many interacting parts, and then by explicitly testing complex anthropological hypotheses about sociocultural behaviour from a more familiar population genetic standpoint.
Collapse
Affiliation(s)
- Ning Ning Chung
- Complexity Institute, Nanyang Technological University, Singapore
- Centre for University Core, Singapore University of Social Sciences, Singapore
| | - Guy S. Jacobs
- Complexity Institute, Nanyang Technological University, Singapore
| | - Herawati Sudoyo
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Department of Medical Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Safarina G. Malik
- Genome Diversity and Diseases Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Lock Yue Chew
- Complexity Institute, Nanyang Technological University, Singapore
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - J. Stephen Lansing
- Santa Fe Institute, Santa Fe, NM 87501, USA
- Stockholm Resilience Center, Kräftriket, 10405 Stockholm, Sweden
| | - Murray P. Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
- Te Pūnaha Matatini, Centre of Research Excellence for Complex Systems, Aukland, New Zealand
| |
Collapse
|
14
|
Pereira V, Freire-Aradas A, Ballard D, Børsting C, Diez V, Pruszkowska-Przybylska P, Ribeiro J, Achakzai NM, Aliferi A, Bulbul O, Carceles MDP, Triki-Fendri S, Rebai A, Court DS, Morling N, Lareu MV, Carracedo Á, Phillips C. Development and validation of the EUROFORGEN NAME (North African and Middle Eastern) ancestry panel. Forensic Sci Int Genet 2019; 42:260-267. [PMID: 31404905 DOI: 10.1016/j.fsigen.2019.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/06/2023]
Abstract
Inference of biogeographic origin is an important factor in clinical, population and forensic genetics. The information provided by AIMs (Ancestry Informative Markers) can allow the differentiation of major continental population groups, and several AIM panels have been developed for this purpose. However, from these major population groups, Eurasia covers a wide area between two continents that is difficult to differentiate genetically. These populations display a gradual genetic cline from West Europe to South Asia in terms of allele frequency distribution. Although differences have been reported between Europe and South Asia, Middle East populations continue to be a target of further investigations due to the lack of genetic variability, therefore hampering their genetic differentiation from neighboring populations. In the present study, a custom-built ancestry panel was developed to analyze North African and Middle Eastern populations, designated the 'NAME' panel. The NAME panel contains 111 SNPs that have patterns of allele frequency differentiation that can distinguish individuals originating in North Africa and the Middle East when combined with a previous set of 126 Global AIM-SNPs.
Collapse
Affiliation(s)
- V Pereira
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - A Freire-Aradas
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - D Ballard
- Faculty of Life Sciences and Medicine, King's College, London, UK
| | - C Børsting
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - V Diez
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - P Pruszkowska-Przybylska
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark; Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Poland
| | - J Ribeiro
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - N M Achakzai
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - A Aliferi
- Faculty of Life Sciences and Medicine, King's College, London, UK
| | - O Bulbul
- Institute of Forensic Science, Istanbul University, Istanbul, Turkey
| | | | - S Triki-Fendri
- Centre of Biotechnology of Sfax, Bioinformatics Research Group, Sfax, Tunisia
| | - A Rebai
- Centre of Biotechnology of Sfax, Bioinformatics Research Group, Sfax, Tunisia
| | | | - N Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, DK-2100 Copenhagen, Denmark
| | - M V Lareu
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| | - Á Carracedo
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - C Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain.
| |
Collapse
|
15
|
De Angelis F, Scorrano G, Martínez-Labarga C, Scano G, Macciardi F, Rickards O. Mitochondrial variability in the Mediterranean area: a complex stage for human migrations. Ann Hum Biol 2018; 45:5-19. [PMID: 29382277 DOI: 10.1080/03014460.2017.1416172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT The Mediterranean area has always played a significant role in human dispersal due to the large number of migratory events contributing to shape the cultural features and the genetic pool of its populations. OBJECTIVE This paper aims to review and diachronically describe the mitogenome variability in the Mediterranean population and the main demic diffusions that occurred in this area over time. METHODS Frequency distributions of the leading mitochondrial haplogroups have been geographically and chronologically evaluated. The variability of U5b and K lineages has been focussed to broaden the knowledge of their genetic histories. RESULTS The mitochondrial genetic makeup of Palaeolithic hunter-gatherers is poorly defined within the extant Mediterranean populations, since only a few traces of their genetic contribution are still detectable. The Neolithic lineages are more represented, suggesting that the Neolithic revolution had a marked effect on the peopling of the Mediterranean area. The largest effect, however, was provided by historical migrations. CONCLUSION Although the mitogenome variability has been widely used to try and clarify the evolution of the Mediterranean genetic makeup throughout almost 50 000 years, it is necessary to collect whole genome data on both extinct and extant populations from this area to fully reconstruct and interpret the impact of multiple migratory waves and their cultural and genetic consequences on the structure of the Mediterranean populations.
Collapse
Affiliation(s)
- Flavio De Angelis
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Gabriele Scorrano
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Cristina Martínez-Labarga
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Giuseppina Scano
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| | - Fabio Macciardi
- b Laboratory of Molecular Psychiatry, Department of Psychiatry and Human Behavior , University of California , Irvine , CA , USA
| | - Olga Rickards
- a Centre of Molecular Anthropology for Ancient DNA Studies , University of Rome "Tor Vergata" , Rome , Italy
| |
Collapse
|
16
|
Cabrera VM, Marrero P, Abu-Amero KK, Larruga JM. Carriers of mitochondrial DNA macrohaplogroup L3 basal lineages migrated back to Africa from Asia around 70,000 years ago. BMC Evol Biol 2018; 18:98. [PMID: 29921229 PMCID: PMC6009813 DOI: 10.1186/s12862-018-1211-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/05/2018] [Indexed: 11/15/2022] Open
Abstract
Background The main unequivocal conclusion after three decades of phylogeographic mtDNA studies is the African origin of all extant modern humans. In addition, a southern coastal route has been argued for to explain the Eurasian colonization of these African pioneers. Based on the age of macrohaplogroup L3, from which all maternal Eurasian and the majority of African lineages originated, the out-of-Africa event has been dated around 60-70 kya. On the opposite side, we have proposed a northern route through Central Asia across the Levant for that expansion and, consistent with the fossil record, we have dated it around 125 kya. To help bridge differences between the molecular and fossil record ages, in this article we assess the possibility that mtDNA macrohaplogroup L3 matured in Eurasia and returned to Africa as basal L3 lineages around 70 kya. Results The coalescence ages of all Eurasian (M,N) and African (L3 ) lineages, both around 71 kya, are not significantly different. The oldest M and N Eurasian clades are found in southeastern Asia instead near of Africa as expected by the southern route hypothesis. The split of the Y-chromosome composite DE haplogroup is very similar to the age of mtDNA L3. An Eurasian origin and back migration to Africa has been proposed for the African Y-chromosome haplogroup E. Inside Africa, frequency distributions of maternal L3 and paternal E lineages are positively correlated. This correlation is not fully explained by geographic or ethnic affinities. This correlation rather seems to be the result of a joint and global replacement of the old autochthonous male and female African lineages by the new Eurasian incomers. Conclusions These results are congruent with a model proposing an out-of-Africa migration into Asia, following a northern route, of early anatomically modern humans carrying pre-L3 mtDNA lineages around 125 kya, subsequent diversification of pre-L3 into the basal lineages of L3, a return to Africa of Eurasian fully modern humans around 70 kya carrying the basal L3 lineages and the subsequent diversification of Eurasian-remaining L3 lineages into the M and N lineages in the outside-of-Africa context, and a second Eurasian global expansion by 60 kya, most probably, out of southeast Asia. Climatic conditions and the presence of Neanderthals and other hominins might have played significant roles in these human movements. Moreover, recent studies based on ancient DNA and whole-genome sequencing are also compatible with this hypothesis. Electronic supplementary material The online version of this article (10.1186/s12862-018-1211-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| | - Patricia Marrero
- Research Support General Service, E-38271, La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| |
Collapse
|
17
|
Elkamel S, Boussetta S, Khodjet-El-Khil H, Benammar Elgaaied A, Cherni L. Ancient and recent Middle Eastern maternal genetic contribution to North Africa as viewed by mtDNA diversity in Tunisian Arab populations. Am J Hum Biol 2018; 30:e23100. [PMID: 29359455 DOI: 10.1002/ajhb.23100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVES Through previous mitochondrial DNA studies, the Middle Eastern maternal genetic contribution to Tunisian populations appears limited. In fact, most of the studied communities were cosmopolitan, or of Berber or Andalusian origin. To provide genetic evidence for the actual contribution of Middle Eastern mtDNA lineages to Tunisia, we focused on two Arab speaking populations from Kairouan and Wesletia known to belong to an Arab genealogical lineage. MATERIALS AND METHODS A total of 114 samples were sequenced for the mtDNA HVS-I and HVS-II regions. Using these data, we evaluated the distribution of Middle Eastern haplogroups in the study populations, constructed interpolation maps, and established phylogenetic networks allowing estimation of the coalescence time for three specific Middle Eastern subclades (R0a, J1b, and T1). RESULTS Both studied populations displayed North African genetic structure and Middle Eastern lineages with a frequency of 12% and 28.12% in Kairouan and Wesletia, respectively. TMRCA estimates for haplogroups T1a, R0a, and J1b in Tunisian Arabian samples were around 15 000 YBP, 9000 to 5000 YBP, and 960 to 600 YBP, respectively. CONCLUSIONS The Middle Eastern maternal genetic contribution to Tunisian populations, as to other North African populations, occurred mostly in deep prehistory. They were brought in different migration waves during the Upper Paleolithic, probably with the expansion of Iberomaurusian culture, and during Epipaleolithic and Early Neolithic periods, which are concomitant with the Capsian civilization. Middle Eastern lineages also came to Tunisia during the recent Islamic expansion of the 7th CE and the subsequent massive Bedouin migration during the 11th CE.
Collapse
Affiliation(s)
- Sarra Elkamel
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Houssein Khodjet-El-Khil
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathology, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia.,High Institute of Biotechnology, University of Monastir, Monastir, 5000, Tunisia
| |
Collapse
|
18
|
Ancient mitogenomes of Phoenicians from Sardinia and Lebanon: A story of settlement, integration, and female mobility. PLoS One 2018; 13:e0190169. [PMID: 29320542 PMCID: PMC5761892 DOI: 10.1371/journal.pone.0190169] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/08/2017] [Indexed: 11/19/2022] Open
Abstract
The Phoenicians emerged in the Northern Levant around 1800 BCE and by the 9th century BCE had spread their culture across the Mediterranean Basin, establishing trading posts, and settlements in various European Mediterranean and North African locations. Despite their widespread influence, what is known of the Phoenicians comes from what was written about them by the Greeks and Egyptians. In this study, we investigate the extent of Phoenician integration with the Sardinian communities they settled. We present 14 new ancient mitogenome sequences from pre-Phoenician (~1800 BCE) and Phoenician (~700–400 BCE) samples from Lebanon (n = 4) and Sardinia (n = 10) and compare these with 87 new complete mitogenomes from modern Lebanese and 21 recently published pre-Phoenician ancient mitogenomes from Sardinia to investigate the population dynamics of the Phoenician (Punic) site of Monte Sirai, in southern Sardinia. Our results indicate evidence of continuity of some lineages from pre-Phoenician populations suggesting integration of indigenous Sardinians in the Monte Sirai Phoenician community. We also find evidence of the arrival of new, unique mitochondrial lineages, indicating the movement of women from sites in the Near East or North Africa to Sardinia, but also possibly from non-Mediterranean populations and the likely movement of women from Europe to Phoenician sites in Lebanon. Combined, this evidence suggests female mobility and genetic diversity in Phoenician communities, reflecting the inclusive and multicultural nature of Phoenician society.
Collapse
|
19
|
Manco L, Albuquerque J, Sousa MF, Martiniano R, de Oliveira RC, Marques S, Gomes V, Amorim A, Alvarez L, Prata MJ. The Eastern side of the Westernmost Europeans: Insights from subclades within Y-chromosome haplogroup J-M304. Am J Hum Biol 2017; 30. [PMID: 29193490 DOI: 10.1002/ajhb.23082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/22/2017] [Accepted: 11/05/2017] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES We examined internal lineages and haplotype diversity in Portuguese samples belonging to J-M304 to improve the spatial and temporal understanding of the introduction of this haplogroup in Iberia, using the available knowledge about the phylogeography of its main branches, J1-M267 and J2-M172. METHODS A total of 110 males of Portuguese descent were analyzed for 17 Y-chromosome bi-allelic markers and seven Y-chromosome short tandem repeats (Y-STR) loci. RESULTS Among J1-M267 individuals (n = 36), five different sub-haplogroups were identified, with the most common being J1a2b2-L147.1 (∼72%), which encompassed the majority of representatives of the J1a2b-P58 subclade. One sample belonged to the rare J1a1-M365.1 lineage and presented a core Y-STR haplotype consistent with the Iberian settlement during the fifth century by the Alans, a people of Iranian heritage. The analysis of J2-M172 Portuguese males (n = 74) enabled the detection of the two main subclades at very dissimilar frequencies, J2a-M410 (∼80%) and J2b-M12 (∼20%), among which the most common branches were J2a1(xJ2a1b,h)-L26 (22.9%), J2a1b(xJ2a1b1)-M67 (20.3%), J2a1h-L24 (27%), and J2b2-M241 (20.3%). CONCLUSIONS While previous inferences based on modern haplogroup J Y-chromosomes implicated a main Neolithic dissemination, here we propose a later arrival of J lineages into Iberia using a combination of novel Portuguese Y-chromosomal data and recent evidence from ancient DNA. Our analysis suggests that a substantial tranche of J1-M267 lineages was likely carried into the Iberian Peninsula as a consequence of the trans-Mediterranean contacts during the first millennium BC, while most of the J2-M172 lineages may be associated with post-Neolithic population movements within Europe.
Collapse
Affiliation(s)
- Licínio Manco
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Joana Albuquerque
- Research Centre for Anthropology and Health (CIAS), University of Coimbra, Coimbra, Portugal
| | - Maria Francisca Sousa
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rui Martiniano
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambs CB10 1SA, United Kingdom
| | | | - Sofia Marques
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Verónica Gomes
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - António Amorim
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| | - Luís Alvarez
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Maria João Prata
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Porto, Portugal
| |
Collapse
|
20
|
A glimpse at the intricate mosaic of ethnicities from Mesopotamia: Paternal lineages of the Northern Iraqi Arabs, Kurds, Syriacs, Turkmens and Yazidis. PLoS One 2017; 12:e0187408. [PMID: 29099847 PMCID: PMC5669434 DOI: 10.1371/journal.pone.0187408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023] Open
Abstract
Widely considered as one of the cradles of human civilization, Mesopotamia is largely situated in the Republic of Iraq, which is also the birthplace of the Sumerian, Akkadian, Assyrian and Babylonian civilizations. These lands were subsequently ruled by the Persians, Greeks, Romans, Arabs, Mongolians, Ottomans and finally British prior to the independence. As a direct consequence of this rich history, the contemporary Iraqi population comprises a true mosaic of different ethnicities, which includes Arabs, Kurds, Turkmens, Assyrians, and Yazidis among others. As such, the genetics of the contemporary Iraqi populations are of anthropological and forensic interest. In an effort to contribute to a better understanding of the genetic basis of this ethnic diversity, a total of 500 samples were collected from Northern Iraqi volunteers belonging to five major ethnic groups, namely: Arabs (n = 102), Kurds (n = 104), Turkmens (n = 102), Yazidis (n = 106) and Syriacs (n = 86). 17-loci Y-STR analyses were carried out using the AmpFlSTR Yfiler system, and subsequently in silico haplogroup assignments were made to gain insights from a molecular anthropology perspective. Systematic comparisons of the paternal lineages of these five Northern Iraqi ethnic groups, not only among themselves but also in the context of the larger genetic landscape of the Near East and beyond, were then made through the use of two different genetic distance metric measures and the associated data visualization methods. Taken together, results from the current study suggested the presence of intricate Y-chromosomal lineage patterns among the five ethic groups analyzed, wherein both interconnectivity and independent microvariation were observed in parallel, albeit in a differential manner. Notably, the novel Y-STR data on Turkmens, Syriacs and Yazidis from Northern Iraq constitute the first of its kind in the literature. Data presented herein is expected to contribute to further population and forensic investigations in Northern Iraq in particular and the Near East in general.
Collapse
|
21
|
Yardumian A, Shengelia R, Chitanava D, Laliashvili S, Bitadze L, Laliashvili I, Villanea F, Sanders A, Azzam A, Groner V, Edleson K, Vilar MG, Schurr TG. Genetic diversity in Svaneti and its implications for the human settlement of the Highland Caucasus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:837-852. [PMID: 29076141 DOI: 10.1002/ajpa.23324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/19/2017] [Accepted: 09/10/2017] [Indexed: 11/11/2022]
Abstract
OBJECTIVES In this study, we characterized genetic diversity in the Svans from northwestern Georgia to better understand the phylogeography of their genetic lineages, determine whether genetic diversity in the highland South Caucasus has been shaped by language or geography, and assess whether Svan genetic diversity was structured by regional residence patterns. MATERIALS AND METHODS We analyzed mtDNA and Y-chromosome variation in 184 individuals from 13 village districts and townlets located throughout the region. For all individuals, we analyzed mtDNA diversity through control region sequencing, and, for males, we analyzed Y-chromosome diversity through SNP and STR genotyping. The resulting data were compared with those for populations from the Caucasus and Middle East. RESULTS We observed significant mtDNA heterogeneity in Svans, with haplogroups U1-U7, H, K, and W6 being common there. By contrast, ∼78% of Svan males belonged to haplogroup G2a, with the remainder falling into four other haplogroups (J2a1, I2, N, and R1a). While showing a distinct genetic profile, Svans also clustered with Caucasus populations speaking languages from different families, suggesting a deep common ancestry for all of them. The mtDNA data were not structured by geography or linguistic affiliation, whereas the NRY data were influenced only by geography. DISCUSSION These patterns of genetic variation confirm a complex set of geographic sources and settlement phases for the Caucasus highlands. Such patterns may also reflect social and cultural practices in the region. The high frequency and antiquity of Y-chromosome haplogroup G2a in this region further points to its emergence there.
Collapse
Affiliation(s)
- Aram Yardumian
- Department of History and Social Sciences, Bryn Athyn College, Pennsylvania 19009.,Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ramaz Shengelia
- Department of the History of Medicine and Bioethics, Tbilisi State Medical University, Tbilisi 01747, Georgia
| | - David Chitanava
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Shorena Laliashvili
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Lia Bitadze
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Irma Laliashvili
- Laboratory for Anthropologic Studies, Ivane Javakhishvili Institute of History and Ethnology, Tbilisi 0102, Georgia
| | - Fernando Villanea
- Grant Programs, Science and Exploration, National Geographic Society, Washington, DC 20036
| | - Akiva Sanders
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Andrew Azzam
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Victoria Groner
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kristi Edleson
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Miguel G Vilar
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Grant Programs, Science and Exploration, National Geographic Society, Washington, DC 20036
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
22
|
Hernández CL, Dugoujon JM, Novelletto A, Rodríguez JN, Cuesta P, Calderón R. The distribution of mitochondrial DNA haplogroup H in southern Iberia indicates ancient human genetic exchanges along the western edge of the Mediterranean. BMC Genet 2017; 18:46. [PMID: 28525980 PMCID: PMC5437654 DOI: 10.1186/s12863-017-0514-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/11/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The structure of haplogroup H reveals significant differences between the western and eastern edges of the Mediterranean, as well as between the northern and southern regions. Human populations along the westernmost Mediterranean coasts, which were settled by individuals from two continents separated by a relatively narrow body of water, show the highest frequencies of mitochondrial haplogroup H. These characteristics permit the analysis of ancient migrations between both shores, which may have occurred via primitive sea crafts and early seafaring. We collected a sample of 750 autochthonous people from the southern Iberian Peninsula (Andalusians from Huelva and Granada provinces). We performed a high-resolution analysis of haplogroup H by control region sequencing and coding SNP screening of the 337 individuals harboring this maternal marker. Our results were compared with those of a wide panel of populations, including individuals from Iberia, the Maghreb, and other regions around the Mediterranean, collected from the literature. RESULTS Both Andalusian subpopulations showed a typical western European profile for the internal composition of clade H, but eastern Andalusians from Granada also revealed interesting traces from the eastern Mediterranean. The basal nodes of the most frequent H sub-haplogroups, H1 and H3, harbored many individuals of Iberian and Maghrebian origins. Derived haplotypes were found in both regions; haplotypes were shared far more frequently between Andalusia and Morocco than between Andalusia and the rest of the Maghreb. These and previous results indicate intense, ancient and sustained contact among populations on both sides of the Mediterranean. CONCLUSIONS Our genetic data on mtDNA diversity, combined with corresponding archaeological similarities, provide support for arguments favoring prehistoric bonds with a genetic legacy traceable in extant populations. Furthermore, the results presented here indicate that the Strait of Gibraltar and the adjacent Alboran Sea, which have often been assumed to be an insurmountable geographic barrier in prehistory, served as a frequently traveled route between continents.
Collapse
Affiliation(s)
- Candela L. Hernández
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Jean M. Dugoujon
- CNRS UMR 5288 Laboratoire d’Anthropologie Moléculaire et d’Imagerie de Synthèse (AMIS), Université Paul Sabatier Toulouse III, Toulouse, France
| | | | | | - Pedro Cuesta
- Centro de Proceso de Datos, Universidad Complutense, Madrid, Spain
| | - Rosario Calderón
- Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, Madrid, Spain
| |
Collapse
|
23
|
Origin and spread of human mitochondrial DNA haplogroup U7. Sci Rep 2017; 7:46044. [PMID: 28387361 PMCID: PMC5384202 DOI: 10.1038/srep46044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/07/2017] [Indexed: 01/17/2023] Open
Abstract
Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16–19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that – analysed alongside 100 published ones – enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.
Collapse
|
24
|
Balanovsky O, Gurianov V, Zaporozhchenko V, Balaganskaya O, Urasin V, Zhabagin M, Grugni V, Canada R, Al-Zahery N, Raveane A, Wen SQ, Yan S, Wang X, Zalloua P, Marafi A, Koshel S, Semino O, Tyler-Smith C, Balanovska E. Phylogeography of human Y-chromosome haplogroup Q3-L275 from an academic/citizen science collaboration. BMC Evol Biol 2017; 17:18. [PMID: 28251872 PMCID: PMC5333174 DOI: 10.1186/s12862-016-0870-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background The Y-chromosome haplogroup Q has three major branches: Q1, Q2, and Q3. Q1 is found in both Asia and the Americas where it accounts for about 90% of indigenous Native American Y-chromosomes; Q2 is found in North and Central Asia; but little is known about the third branch, Q3, also named Q1b-L275. Here, we combined the efforts of population geneticists and genetic genealogists to use the potential of full Y-chromosome sequencing for reconstructing haplogroup Q3 phylogeography and suggest possible linkages to events in population history. Results We analyzed 47 fully sequenced Y-chromosomes and reconstructed the haplogroup Q3 phylogenetic tree in detail. Haplogroup Q3-L275, derived from the oldest known split within Eurasian/American haplogroup Q, most likely occurred in West or Central Asia in the Upper Paleolithic period. During the Mesolithic and Neolithic epochs, Q3 remained a minor component of the West Asian Y-chromosome pool and gave rise to five branches (Q3a to Q3e), which spread across West, Central and parts of South Asia. Around 3–4 millennia ago (Bronze Age), the Q3a branch underwent a rapid expansion, splitting into seven branches, some of which entered Europe. One of these branches, Q3a1, was acquired by a population ancestral to Ashkenazi Jews and grew within this population during the 1st millennium AD, reaching up to 5% in present day Ashkenazi. Conclusions This study dataset was generated by a massive Y-chromosome genotyping effort in the genetic genealogy community, and phylogeographic patterns were revealed by a collaboration of population geneticists and genetic genealogists. This positive experience of collaboration between academic and citizen science provides a model for further joint projects. Merging data and skills of academic and citizen science promises to combine, respectively, quality and quantity, generalization and specialization, and achieve a well-balanced and careful interpretation of the paternal-side history of human populations. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0870-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oleg Balanovsky
- Vavilov Institute of General Genetics, Moscow, Russia. .,Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Valery Zaporozhchenko
- Vavilov Institute of General Genetics, Moscow, Russia.,Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - Maxat Zhabagin
- National Laboratory Astana, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Viola Grugni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Nadia Al-Zahery
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Shao-Qing Wen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shi Yan
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xianpin Wang
- Department of Criminal Investigation, Xuanwei Public Security Bureau, Xuanwei, China
| | | | | | - Sergey Koshel
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elena Balanovska
- Vavilov Institute of General Genetics, Moscow, Russia.,Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
25
|
Matisoo-Smith EA, Gosling AL, Boocock J, Kardailsky O, Kurumilian Y, Roudesli-Chebbi S, Badre L, Morel JP, Sebaï LL, Zalloua PA. A European Mitochondrial Haplotype Identified in Ancient Phoenician Remains from Carthage, North Africa. PLoS One 2016; 11:e0155046. [PMID: 27224451 PMCID: PMC4880306 DOI: 10.1371/journal.pone.0155046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/22/2016] [Indexed: 11/18/2022] Open
Abstract
While Phoenician culture and trade networks had a significant impact on Western civilizations, we know little about the Phoenicians themselves. In 1994, a Punic burial crypt was discovered on Byrsa Hill, near the entry to the National Museum of Carthage in Tunisia. Inside this crypt were the remains of a young man along with a range of burial goods, all dating to the late 6th century BCE. Here we describe the complete mitochondrial genome recovered from the Young Man of Byrsa and identify that he carried a rare European haplogroup, likely linking his maternal ancestry to Phoenician influenced locations somewhere on the North Mediterranean coast, the islands of the Mediterranean or the Iberian Peninsula. This result not only provides the first direct ancient DNA evidence of a Phoenician individual but the earliest evidence of a European mitochondrial haplogroup, U5b2c1, in North Africa.
Collapse
Affiliation(s)
| | - Anna L. Gosling
- Department of Anatomy and Allan Wilson Centre, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - James Boocock
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Olga Kardailsky
- Department of Anatomy and Allan Wilson Centre, University of Otago, Dunedin, New Zealand
| | - Yara Kurumilian
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | | | - Leila Badre
- Archaeological Museum, American University of Beirut, Beirut, Lebanon
| | - Jean-Paul Morel
- Université d’Aix-Marseille, Centre Camille Jullian, Aix-en-Provence, France
| | | | | |
Collapse
|
26
|
Messina F, Scano G, Contini I, Martínez-Labarga C, De Stefano GF, Rickards O. Linking between genetic structure and geographical distance: Study of the maternal gene pool in the Ethiopian population. Ann Hum Biol 2016; 44:53-69. [PMID: 26883569 DOI: 10.3109/03014460.2016.1155646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background The correlation between genetics and geographical distance has already been examined through the study of the dispersion of human populations, especially in terms of uniparental genetic markers. Aim The present work characterises, at the level of the mitochondrial DNA (mtDNA), two new samples of Amhara and Oromo populations from Ethiopia to evaluate the possible pattern of distribution for mtDNA variation and to test the hypothesis of the Isolation-by-Distance (IBD) model among African, European and Middle-Eastern populations. Subjects and methods This study analysed 173 individuals belonging to two ethnic groups of Ethiopia, Amhara and Oromo, by assaying HVS-I and HVS-II of mtDNA D-loop and informative coding region SNPs of mtDNA. Results The analysis suggests a relationship between genetic and geographic distances, affirming that the mtDNA pool of Africa, Europe and the Middle East might be coherent with the IBD model. Moreover, the mtDNA gene pools of the Sub-Saharan African and Mediterranean populations were very different. Conclusion In this study the pattern of mtDNA distribution, beginning with the Ethiopian plateau, was tested in the IBD model. It could be affirmed that, on a continent scale, the mtDNA pool of Africa, Europe and the Middle East might fall under the IBD model.
Collapse
Affiliation(s)
- Francesco Messina
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Giuseppina Scano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Irene Contini
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Cristina Martínez-Labarga
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Gian Franco De Stefano
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| | - Olga Rickards
- a Center of Molecular Anthropology for Ancient DNA Study, Department of Biology , University of Rome 'Tor Vergata' , Via della Ricerca Scientifica n. 1 , 00133 Rome , Italy
| |
Collapse
|
27
|
Černý V, Čížková M, Poloni ES, Al‐Meeri A, Mulligan CJ. Comprehensive view of the population history of
A
rabia as inferred by mt
DNA
variation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:607-16. [DOI: 10.1002/ajpa.22920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Viktor Černý
- Archaeogenetics LaboratoryInstitute of Archaeology of the Academy of Sciences of the Czech Republic Czech Republic
| | - Martina Čížková
- Department of Anthropology and Human GeneticsFaculty of Science, Charles University in Prague Czech Republic
| | - Estella S. Poloni
- Department of Genetics and EvolutionAnthropology Unit, Laboratory of Anthropology, Genetics and Peopling History, University of GenevaGeneva Switzerland
| | - Ali Al‐Meeri
- Department of Clinical BiochemistryFaculty of Medicine and Health Sciences, University of Sana'aSana'a Yemen
| | | |
Collapse
|
28
|
Vyas DN, Kitchen A, Miró‐Herrans AT, Pearson LN, Al‐Meeri A, Mulligan CJ. Bayesian analyses of Yemeni mitochondrial genomes suggest multiple migration events with Africa and Western Eurasia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:382-93. [DOI: 10.1002/ajpa.22890] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/21/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Deven N. Vyas
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| | - Andrew Kitchen
- Department of AnthropologyUniversity of IowaIowa City IA52242
| | - Aida T. Miró‐Herrans
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| | - Laurel N. Pearson
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| | - Ali Al‐Meeri
- Department of Clinical Biochemistry, Faculty of Medicine and Health SciencesUniversity of Sana'aSana'a Yemen
| | - Connie J. Mulligan
- Department of AnthropologyUniversity of FloridaGainesville FL32611‐7305
- Genetics Institute, University of FloridaGainesville FL32610‐3610
| |
Collapse
|
29
|
Mitogenomes from The 1000 Genome Project reveal new Near Eastern features in present-day Tuscans. PLoS One 2015; 10:e0119242. [PMID: 25786119 PMCID: PMC4365045 DOI: 10.1371/journal.pone.0119242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/13/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Genetic analyses have recently been carried out on present-day Tuscans (Central Italy) in order to investigate their presumable recent Near East ancestry in connection with the long-standing debate on the origins of the Etruscan civilization. We retrieved mitogenomes and genome-wide SNP data from 110 Tuscans analyzed within the context of The 1000 Genome Project. For phylogeographic and evolutionary analysis we made use of a large worldwide database of entire mitogenomes (>26,000) and partial control region sequences (>180,000). RESULTS Different analyses reveal the presence of typical Near East haplotypes in Tuscans representing isolated members of various mtDNA phylogenetic branches. As a whole, the Near East component in Tuscan mitogenomes can be estimated at about 8%; a proportion that is comparable to previous estimates but significantly lower than admixture estimates obtained from autosomal SNP data (21%). Phylogeographic and evolutionary inter-population comparisons indicate that the main signal of Near Eastern Tuscan mitogenomes comes from Iran. CONCLUSIONS Mitogenomes of recent Near East origin in present-day Tuscans do not show local or regional variation. This points to a demographic scenario that is compatible with a recent arrival of Near Easterners to this region in Italy with no founder events or bottlenecks.
Collapse
|
30
|
Expanding X-chromosomal forensic haplotype frequencies database: Italian population data of four linkage groups. Forensic Sci Int Genet 2015; 15:127-30. [DOI: 10.1016/j.fsigen.2014.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/30/2014] [Accepted: 11/01/2014] [Indexed: 11/19/2022]
|
31
|
Messina F, Finocchio A, Rolfo MF, De Angelis F, Rapone C, Coletta M, Martínez-Labarga C, Biondi G, Berti A, Rickards O. Traces of forgotten historical events in mountain communities in Central Italy: A genetic insight. Am J Hum Biol 2015; 27:508-19. [PMID: 25728801 DOI: 10.1002/ajhb.22677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/20/2014] [Accepted: 12/20/2014] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Analysis of human genetic variation in mountain communities can shed light on the peopling of mountainous regions, perhaps revealing whether the remote geographic location spared them from outside invasion and preserved their gene pool from admixture. In this study, we created a model to assess genetic traces of historical events by reconstructing the paternal and maternal genetic history of seven small mountain villages in inland valleys of Central Italy. METHODS The communities were selected for their geographic isolation, attested biodemographic stability, and documented history prior to the Roman conquest. We studied the genetic structure by analyzing two hypervariable segments (HVS-I and HVS-II) of the mtDNA D-loop and several informative single nucleotide polymorphisms (SNPs) of the mtDNA coding region in 346 individuals, in addition to 17 short tandem repeats (STRs) and Y-chromosome SNPs in 237 male individuals. RESULTS For both uniparental markers, most of the haplogroups originated in Western Europe while some Near Eastern haplogroups were identified at low frequencies. However, there was an evident genetic similarity between the Central Italian samples and Near Eastern populations mainly in the male genetic pool. CONCLUSIONS The samples highlight an overall European genetic pattern both for mtDNA and Y chromosome. Notwithstanding this scenario, Y chromosome haplogroup Q, a common paternal lineage in Central/Western Asia but almost Europe-wide absent, was found, suggesting that Central Italy could have hosted a settlement from Anatolia that might be supported by cultural, topographic and genetic evidence.
Collapse
Affiliation(s)
- Francesco Messina
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Andrea Finocchio
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Mario Federico Rolfo
- Department of Historical, Philosophical and Social Sciences, Cultural and Territory Heritage, University of Rome 'Tor Vergata', Via Columbia n. 1, 00173, Rome, Italy
| | - Flavio De Angelis
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Cesare Rapone
- Carabinieri, Scientific Investigation Department, Viale di Tor di Quinto 151, 00191, Rome, Italy
| | - Martina Coletta
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Cristina Martínez-Labarga
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| | - Gianfranco Biondi
- Department of Environmental Sciences, University of L'Aquila, Via Vetoio, 67010, L'Aquila, Italy
| | - Andrea Berti
- Carabinieri, Scientific Investigation Department, Viale di Tor di Quinto 151, 00191, Rome, Italy
| | - Olga Rickards
- Department of Biology, Center of Molecular Anthropology for ancient DNA study, University of Rome 'Tor Vergata', Via della Ricerca Scientifica n. 1, 00133, Rome, Italy
| |
Collapse
|
32
|
Triki-Fendri S, Sánchez-Diz P, Rey-González D, Ayadi I, Carracedo Á, Rebai A. Paternal lineages in Libya inferred from Y-chromosome haplogroups. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:242-51. [DOI: 10.1002/ajpa.22705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Soumaya Triki-Fendri
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| | - Paula Sánchez-Diz
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
| | - Danel Rey-González
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
| | - Imen Ayadi
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| | - Ángel Carracedo
- Forensic Genetics Unit, Institute of Forensic Science, University of Santiago de Compostela; Galicia Spain
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University; Jeddah Saudi Arabia
| | - Ahmed Rebai
- Research Group on Molecular and Cellular Screening Processes, Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax; Tunisia
| |
Collapse
|
33
|
Ghassibe-Sabbagh M, Haber M, Salloum AK, Al-Sarraj Y, Akle Y, Hirbli K, Romanos J, Mouzaya F, Gauguier D, Platt DE, El-Shanti H, Zalloua PA. T2DM GWAS in the Lebanese population confirms the role of TCF7L2 and CDKAL1 in disease susceptibility. Sci Rep 2014; 4:7351. [PMID: 25483131 PMCID: PMC5376673 DOI: 10.1038/srep07351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 11/14/2014] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies (GWAS) of multiple populations with distinctive genetic and lifestyle backgrounds are crucial to the understanding of Type 2 Diabetes Mellitus (T2DM) pathophysiology. We report a GWAS on the genetic basis of T2DM in a 3,286 Lebanese participants. More than 5,000,000 SNPs were directly genotyped or imputed using the 1000 Genomes Project reference panels. We identify genome-wide significant variants in two loci CDKAL1 and TCF7L2, independent of sex, age and BMI, with leading variants rs7766070 (OR = 1.39, P = 4.77 × 10(-9)) and rs34872471 (OR = 1.35, P = 1.01 × 10(-8)) respectively. The current study is the first GWAS to find genomic regions implicated in T2DM in the Lebanese population. The results support a central role of CDKAL1 and TCF7L2 in T2DM susceptibility in Southwest Asian populations and provide a plausible component for understanding molecular mechanisms involved in the disease.
Collapse
Affiliation(s)
| | - Marc Haber
- Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon
| | | | | | - Yasmine Akle
- Centre Hospitalier du Nord-CHN, Zgharta, Lebanon
| | - Kamal Hirbli
- 1] Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon [2] University Medical Center - Rizk Hospital (UMC-RH), Lebanon
| | - Jihane Romanos
- Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon
| | - Francis Mouzaya
- Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon
| | | | - Daniel E Platt
- Bioinformatics and Pattern Discovery, IBM T. J. Watson Research Centre, Yorktown Hgts, NY 10598, USA
| | - Hatem El-Shanti
- 1] Shafallah Medical Genetics Center, Doha, Qatar [2] University of Iowa Carver College of Medicine, Iowa City
| | - Pierre A Zalloua
- 1] Lebanese American University, School of Medicine, Beirut 1102 2801, Lebanon [2] Harvard School of Public Health, Boston MA 02215, USA
| |
Collapse
|
34
|
BAHRI RAOUDHA, ESTEBAN ESTHER, BEN HALIMA ABIR, MORAL PEDRO, CHAABANI HASSEN. Distinctive genetic signatures of Alu/STR compound systems revealed by analyses of Mediterranean and Middle East populations. ANTHROPOL SCI 2014. [DOI: 10.1537/ase.140602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- RAOUDHA BAHRI
- Laboratory of Human Genetics and Anthropology, Faculty of Pharmacy, University of Monastir
| | - ESTHER ESTEBAN
- Secció d’Antropologia, Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Barcelona
| | - ABIR BEN HALIMA
- Laboratory of Human Genetics and Anthropology, Faculty of Pharmacy, University of Monastir
| | - PEDRO MORAL
- Secció d’Antropologia, Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Barcelona
| | - HASSEN CHAABANI
- Laboratory of Human Genetics and Anthropology, Faculty of Pharmacy, University of Monastir
| |
Collapse
|
35
|
Fadhlaoui-Zid K, Haber M, Martínez-Cruz B, Zalloua P, Benammar Elgaaied A, Comas D. Genome-wide and paternal diversity reveal a recent origin of human populations in North Africa. PLoS One 2013; 8:e80293. [PMID: 24312208 PMCID: PMC3842387 DOI: 10.1371/journal.pone.0080293] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022] Open
Abstract
The geostrategic location of North Africa as a crossroad between three continents and as a stepping-stone outside Africa has evoked anthropological and genetic interest in this region. Numerous studies have described the genetic landscape of the human population in North Africa employing paternal, maternal, and biparental molecular markers. However, information from these markers which have different inheritance patterns has been mostly assessed independently, resulting in an incomplete description of the region. In this study, we analyze uniparental and genome-wide markers examining similarities or contrasts in the results and consequently provide a comprehensive description of the evolutionary history of North Africa populations. Our results show that both males and females in North Africa underwent a similar admixture history with slight differences in the proportions of admixture components. Consequently, genome-wide diversity show similar patterns with admixture tests suggesting North Africans are a mixture of ancestral populations related to current Africans and Eurasians with more affinity towards the out-of-Africa populations than to sub-Saharan Africans. We estimate from the paternal lineages that most North Africans emerged ∼15,000 years ago during the last glacial warming and that population splits started after the desiccation of the Sahara. Although most North Africans share a common admixture history, the Tunisian Berbers show long periods of genetic isolation and appear to have diverged from surrounding populations without subsequent mixture. On the other hand, continuous gene flow from the Middle East made Egyptians genetically closer to Eurasians than to other North Africans. We show that genetic diversity of today's North Africans mostly captures patterns from migrations post Last Glacial Maximum and therefore may be insufficient to inform on the initial population of the region during the Middle Paleolithic period.
Collapse
Affiliation(s)
- Karima Fadhlaoui-Zid
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Pompeu Fabra University), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Université el Manar, Tunis, Tunisia
| | - Marc Haber
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Pompeu Fabra University), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- The Lebanese American University, Chouran, Beirut, Lebanon
| | - Begoña Martínez-Cruz
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Pompeu Fabra University), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Pierre Zalloua
- The Lebanese American University, Chouran, Beirut, Lebanon
| | - Amel Benammar Elgaaied
- Laboratoire de Génétique, Immunologie et Pathologies Humaines, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Université el Manar, Tunis, Tunisia
| | - David Comas
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas-Pompeu Fabra University), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
36
|
Derenko M, Malyarchuk B, Bahmanimehr A, Denisova G, Perkova M, Farjadian S, Yepiskoposyan L. Complete mitochondrial DNA diversity in Iranians. PLoS One 2013; 8:e80673. [PMID: 24244704 PMCID: PMC3828245 DOI: 10.1371/journal.pone.0080673] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/07/2013] [Indexed: 11/19/2022] Open
Abstract
Due to its pivotal geographical location and proximity to transcontinental migratory routes, Iran has played a key role in subsequent migrations, both prehistoric and historic, between Africa, Asia and Europe. To shed light on the genetic structure of the Iranian population as well as on the expansion patterns and population movements which affected this region, the complete mitochondrial genomes of 352 Iranians were obtained. All Iranian populations studied here exhibit similarly high diversity values comparable to the other groups from the Caucasus, Anatolia and Europe. The results of AMOVA and MDS analyses did not associate any regional and/or linguistic group of populations in the Anatolia/Caucasus and Iran region pointing to close genetic positions of Persians and Qashqais to each other and to Armenians, and Azeris from Iran to Georgians. By reconstructing the complete mtDNA phylogeny of haplogroups R2, N3, U1, U3, U5a1g, U7, H13, HV2, HV12, M5a and C5c we have found a previously unexplored genetic connection between the studied Iranian populations and the Arabian Peninsula, India, Near East and Europe, likely the result of both ancient and recent gene flow. Our results for Persians and Qashqais point to a continuous increase of the population sizes from ∼24 kya to the present, although the phase between 14-24 kya is thought to be hyperarid according to the Gulf Oasis model. Since this would have affected hunter-gatherer ranges and mobility patterns and forced them to increasingly rely on coastal resources, this transition can explain the human expansion across the Persian Gulf region.
Collapse
Affiliation(s)
- Miroslava Derenko
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
- * E-mail:
| | - Boris Malyarchuk
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Ardeshir Bahmanimehr
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
| | - Galina Denisova
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Maria Perkova
- Institute of Biological Problems of the North, Russian Academy of Sciences, Magadan, Russia
| | - Shirin Farjadian
- Immunology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Levon Yepiskoposyan
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan, Armenia
| |
Collapse
|
37
|
Aglago KE, Menchawy IE, Kari KE, Hamdouchi AE, Barkat A, Bengueddour R, Haloui NE, Mokhtar N, Aguenaou H. Development and validation of bioelectrical impedance analysis equations for predicting total body water and fat-free mass in North-African adults. Eur J Clin Nutr 2013; 67:1081-6. [PMID: 23839666 DOI: 10.1038/ejcn.2013.125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Accuracy of the bioelectrical impedance analysis (BIA) depends on population-specific prediction equations. The aim of our study was to develop prediction equations for assessing total body water (TBW) and fat-free mass (FFM) in healthy North-African adults. SUBJECTS/METHODS In all, 250 participants (194 women, 56 men) aged 18-64 years were included in the analysis. BIA variables were measured by a tetra-polar device. TBW and FFM were assessed by the dilution of deuterium (D2O). The participants were sorted by gender and randomly split into development and validation subgroups. The validity of other published equations was also tested using Bland and Altman procedure, proportional bias and pure error. RESULTS The prediction equations derived were: TBW (l)=5.68+0.267 height(2)/resistance+4.42 sex (male=1, female=0) + 0.225 weight-0.052 age (R(2)=0.92, root mean square error (RMSE)=1.75 l, RMSE%=5.65); and FFM (kg)=7.47 + 0.366 height(2)/resistance+6.04 sex + 0.306 weight-0.063 age (R(2)=0.92, RMSE=2.38 kg, RMSE%=5.61). The new equations provided nonsignificant proportional bias values, and better agreement than other tested equations. Bias and pure error values were 0.36 and 1.88 l for men and 0.00 and 1.82 l for women, for TBW equation. For FFM equation, bias values were 0.43 and -0.04 kg, and pure errors were 2.57 and 2.46 kg for men and women, respectively. CONCLUSIONS The new prediction equations provide reliable estimates of TBW and FFM in North-African adults and are recommended for use in these populations.
Collapse
Affiliation(s)
- K E Aglago
- Joint Unit of Research in Nutrition and Food Sciences, Ibn Tofail University-CNESTEN, Rabat, Morocco
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Özdemir V, Badr KF, Dove ES, Endrenyi L, Geraci CJ, Hotez PJ, Milius D, Neves-Pereira M, Pang T, Rotimi CN, Sabra R, Sarkissian CN, Srivastava S, Tims H, Zgheib NK, Kickbusch I. Crowd-funded micro-grants for genomics and "big data": an actionable idea connecting small (artisan) science, infrastructure science, and citizen philanthropy. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:161-72. [PMID: 23574338 PMCID: PMC4702427 DOI: 10.1089/omi.2013.0034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biomedical science in the 21(st) century is embedded in, and draws from, a digital commons and "Big Data" created by high-throughput Omics technologies such as genomics. Classic Edisonian metaphors of science and scientists (i.e., "the lone genius" or other narrow definitions of expertise) are ill equipped to harness the vast promises of the 21(st) century digital commons. Moreover, in medicine and life sciences, experts often under-appreciate the important contributions made by citizen scholars and lead users of innovations to design innovative products and co-create new knowledge. We believe there are a large number of users waiting to be mobilized so as to engage with Big Data as citizen scientists-only if some funding were available. Yet many of these scholars may not meet the meta-criteria used to judge expertise, such as a track record in obtaining large research grants or a traditional academic curriculum vitae. This innovation research article describes a novel idea and action framework: micro-grants, each worth $1000, for genomics and Big Data. Though a relatively small amount at first glance, this far exceeds the annual income of the "bottom one billion"-the 1.4 billion people living below the extreme poverty level defined by the World Bank ($1.25/day). We describe two types of micro-grants. Type 1 micro-grants can be awarded through established funding agencies and philanthropies that create micro-granting programs to fund a broad and highly diverse array of small artisan labs and citizen scholars to connect genomics and Big Data with new models of discovery such as open user innovation. Type 2 micro-grants can be funded by existing or new science observatories and citizen think tanks through crowd-funding mechanisms described herein. Type 2 micro-grants would also facilitate global health diplomacy by co-creating crowd-funded micro-granting programs across nation-states in regions facing political and financial instability, while sharing similar disease burdens, therapeutics, and diagnostic needs. We report the creation of ten Type 2 micro-grants for citizen science and artisan labs to be administered by the nonprofit Data-Enabled Life Sciences Alliance International (DELSA Global, Seattle). Our hope is that these micro-grants will spur novel forms of disruptive innovation and genomics translation by artisan scientists and citizen scholars alike. We conclude with a neglected voice from the global health frontlines, the American University of Iraq in Sulaimani, and suggest that many similar global regions are now poised for micro-grant enabled collective innovation to harness the 21(st) century digital commons.
Collapse
Affiliation(s)
- Vural Özdemir
- Data-Enabled Life Sciences Alliance International (DELSA Global), Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|