1
|
Harishankar A, Viswanathan VK. Attaching and effacing pathogens modulate host mitochondrial structure and function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 377:65-86. [PMID: 37268351 PMCID: PMC11321239 DOI: 10.1016/bs.ircmb.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are human enteric pathogens that contribute significantly to morbidity and mortality worldwide. These extracellular pathogens attach intimately to intestinal epithelial cells and cause signature lesions by effacing the brush border microvilli, a property they share with other "attaching and effacing" (A/E) bacteria, including the murine pathogen Citrobacter rodentium. A/E pathogens use a specialized apparatus called a type III secretion system (T3SS) to deliver specific proteins directly into the host cytosol and modify host cell behavior. The T3SS is essential for colonization and pathogenesis, and mutants lacking this apparatus fail to cause disease. Thus, deciphering effector-induced host cell modifications is critical for understanding A/E bacterial pathogenesis. Several of the ∼20-45 effector proteins delivered into the host cell modify disparate mitochondrial properties, some via direct interactions with the mitochondria and/or mitochondrial proteins. In vitro studies have uncovered the mechanistic basis for the actions of some of these effectors, including their mitochondrial targeting, interaction partners, and consequent impacts on mitochondrial morphology, oxidative phosphorylation and ROS production, disruption of membrane potential, and intrinsic apoptosis. In vivo studies, mostly relying on the C. rodentium/mouse model, have been used to validate a subset of the in vitro observations; additionally, animal studies reveal broad changes to intestinal physiology that are likely accompanied by mitochondrial alterations, but the mechanistic underpinnings remain undefined. This chapter provides an overview of A/E pathogen-induced host alterations and pathogenesis, specifically focusing on mitochondria-targeted effects.
Collapse
Affiliation(s)
- Anusha Harishankar
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States; The BIO5 Institute for Collaborative Research, The University of Arizona, Tucson, AZ, United States; Department of Immunobiology, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
2
|
Roxas JL, Ramamurthy S, Cocchi K, Rutins I, Harishankar A, Agellon A, Wilbur JS, Sylejmani G, Vedantam G, Viswanathan V. Enteropathogenic Escherichia coli regulates host-cell mitochondrial morphology. Gut Microbes 2022; 14:2143224. [PMID: 36476073 PMCID: PMC9733699 DOI: 10.1080/19490976.2022.2143224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The diarrheagenic pathogen enteropathogenic Escherichia coli is responsible for significant childhood mortality and morbidity. EPEC and related attaching-and-effacing (A/E) pathogens use a type III secretion system to hierarchically deliver effector proteins into host cells and manipulate epithelial structure and function. Subversion of host mitochondrial biology is a key aspect of A/E pathogen virulence strategy, but the mechanisms remain poorly defined. We demonstrate that the early-secreted effector EspZ and the late-secreted effector EspH have contrasting effects on host mitochondrial structure and function. EspZ interacts with FIS1, a protein that induces mitochondrial fragmentation and mitophagy. Infection of epithelial cells with either wildtype EPEC or an isogenic espZ deletion mutant (ΔespZ) robustly upregulated FIS1 abundance, but a marked increase in mitochondrial fragmentation and mitophagy was seen only in ΔespZ-infected cells. FIS1-depleted cells were protected against ΔespZ-induced fission, and EspZ-expressing transfected epithelial cells were protected against pharmacologically induced mitochondrial fission and membrane potential disruption. Thus, EspZ interacts with FIS1 and blocks mitochondrial fragmentation and mitophagy. In contrast to WT EPEC, ΔespH-infected epithelial cells had minimal FIS1 upregulation and exhibited hyperfused mitochondria. Consistent with the contrasting impacts on organelle shape, mitochondrial membrane potential was preserved in ΔespH-infected cells, but profoundly disrupted in ΔespZ-infected cells. Collectively, our studies reveal hitherto unappreciated roles for two essential EPEC virulence factors in the temporal and dynamic regulation of host mitochondrial biology.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Shylaja Ramamurthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Katie Cocchi
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Ilga Rutins
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Anusha Harishankar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - John Scott Wilbur
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Gresa Sylejmani
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA,Department of Immunobiology, University of Arizona, Tucson, AZ, USA,BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, USA,Research Service, Southern Arizona VA Healthcare System, Tucson, AZ, USA
| | - V.K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA,Department of Immunobiology, University of Arizona, Tucson, AZ, USA,BIO5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, USA,CONTACT V.K. Viswanathan School of Animal & Comparative Biomedical Sciences, the University of Arizona, Room 227, 1117 E. Lowell Street, Tucson, AZ85721, USA
| |
Collapse
|
3
|
Carlino MJ, Kralicek SE, Santiago SA, Sitaraman LM, Harrington AT, Hecht GA. Quantitative analysis and virulence phenotypes of atypical enteropathogenic Escherichia coli (EPEC) acquired from diarrheal stool samples from a Midwest US hospital. Gut Microbes 2020; 12:1-21. [PMID: 33131419 PMCID: PMC7644165 DOI: 10.1080/19490976.2020.1824562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Infectious diarrhea causes approximately 179 million illnesses annually in the US. Multiplex PCR assays for enteric pathogens detect enteropathogenic Escherichia coli (EPEC) in 12-29% of diarrheal stool samples from all age groups in developed nations. The aim of this study was to isolate and characterize EPEC from diarrhea samples identified as EPEC positive by BioFire Gastrointestinal Panel (GIP). EPEC is the second most common GIP-detected pathogen, equally present in sole and mixed infections peaking during summer months. EPEC bacterial load is higher in samples with additional pathogens. EPEC-GIP-positive stool samples were cultured on MacConkey II agar and analyzed by colony PCR for eaeA and bfpA to identify and classify EPEC isolates as typical (tEPEC) or atypical (aEPEC). EPEC were not recovered from the majority of stool samples with only 61 isolates obtained from 277 samples; most were aEPEC from adults. bfpA-mRNA was severely diminished in 3 of 4 bfpA-positive isolates. HeLa and SKCO-15 epithelial cells were infected with EPEC isolates and virulence-associated phenotypes, including adherence pattern, attachment level, pedestal formation, and tight junction disruption, were assessed. All aEPEC adherence patterns were represented with diffuse adherence predominating. Attachment rates of isolates adhering with defined adherence patterns were higher than tEPEC lacking bfpA (ΔbfpA). The majority of isolates formpedestals. All but one isolate initially increases but ultimately decreases transepithelial electrical resistance of SKCO-15 monolayers, similar to ΔbfpA. Most isolates severely disrupt occludin; ZO-1 disruption is variable. Most aEPEC isolates induce more robust virulence-phenotypes in vitro than ΔbfpA, but less than tEPEC-E2348/69.
Collapse
Affiliation(s)
- MJ Carlino
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - SE Kralicek
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - SA Santiago
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - LM Sitaraman
- Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA
| | - AT Harrington
- Department of Pathology and Laboratory Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Gail A. Hecht
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA,Department of Medicine, Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, IL, USA,Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA,Department of Medical Service, Edward Hines Jr. VA Hospital, Hines, IL,CONTACT Gail A. Hecht Department of Medicine, Division of Gastroenterology, Loyola University Chicago, IL, USA
| |
Collapse
|
4
|
Roxas JL, Viswanathan VK. Modulation of Intestinal Paracellular Transport by Bacterial Pathogens. Compr Physiol 2018; 8:823-842. [PMID: 29687905 DOI: 10.1002/cphy.c170034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018.
Collapse
Affiliation(s)
- Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA.,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA.,BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Ntuli V, Njage PMK, Bonilauri P, Serraino A, Buys EM. Quantitative Risk Assessment of Hemolytic Uremic Syndrome Associated with Consumption of Bulk Milk Sold Directly from Producer to Consumer in South Africa. J Food Prot 2018; 81:472-481. [PMID: 29474148 DOI: 10.4315/0362-028x.jfp-17-199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/31/2017] [Indexed: 11/11/2022]
Abstract
This study was conducted to estimate the hemolytic uremic syndrome (HUS) risk associated with consumption of producer-distributor bulk milk (PDBM) contaminated with Shiga toxin-producing Escherichia coli (STEC) in South Africa. Data were obtained from recently completed studies in South Africa taking into account prior collected prevalence data of STEC in raw and pasteurized PDBM and survey information from producer-distributor outlets and households. Inputs for the models were complemented with data from published and unpublished literature. A probabilistic exposure model was developed with Monte Carlo simulation in Excel add-in software using @Risk software. Hazard characterization was based on an exponential dose-response model to calculate the probability of illness from STEC infection in individuals 5 years and younger and individuals older than 5 years. The estimated mean STEC level was 0.12 CFU/mL (95% confidence interval [CI]: 0 to 1.2; σ = 0.34) for raw PDBM and 0.08 CFU/mL (95% CI: 0 to 1; σ = 0.27) for pasteurized PDBM. A higher risk of HUS cases per year was recorded in raw than in pasteurized PDBM and also in individuals younger than 5 years of age. For every 100,000 servings consumed, the expected median numbers of HUS cases per year from raw PDBM were 52 for 5 years and younger and 3.2 for older than 5 years. The median numbers of cases per year for pasteurized PDBM were 47 for 5 years and younger and 2.9 for older than 5 years. Sensitivity analysis revealed that serving volume and time taken to sell PDBM at producer-distributor outlets were the factors with the greatest impact on probability of illness. The models developed in this study are an example of risk assessments for milk produced and marketed from similar scenarios across the globe.
Collapse
Affiliation(s)
- Victor Ntuli
- Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa (ORCID: http://orcid.org/0000-0002-1392-9797 [V.N.])
| | - Patrick M K Njage
- Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa (ORCID: http://orcid.org/0000-0002-1392-9797 [V.N.]).,Division for Epidemiology and Microbial Genomics, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Paolo Bonilauri
- Experimental Institute for Zooprophylaxis in Lombardy and Emilia Romagna, Via Bianchi 7/9, 25124 Brescia, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia, Bologna, Italy
| | - Elna M Buys
- Department of Food Science, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa (ORCID: http://orcid.org/0000-0002-1392-9797 [V.N.])
| |
Collapse
|
6
|
Singh AP, Aijaz S. Generation of a MDCK cell line with constitutive expression of the Enteropathogenic E. coli effector protein Map as an in vitro model of pathogenesis. Bioengineered 2015; 6:335-41. [PMID: 26430918 DOI: 10.1080/21655979.2015.1096456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Enteropathogenic E. coli (EPEC) cause diarrhea and are the major cause of mortality in developing countries. EPEC use a type III secretion system to deliver effector proteins into the host epithelial cells. To understand the functions of these effectors, majority of studies on EPEC pathogenesis have relied on infections of animals or cell lines with wild type strains of EPEC or mutant strains deficient in one or more effectors. While these studies have provided valuable data, it can be difficult to assess functions of an individual effector in the presence of other EPEC effectors. Recent studies have reported the use of transient transfections with plasmids encoding various EPEC effectors into different cell lines. However, variable transfection efficiencies and expression levels of the effector proteins coupled with their expression for relatively short periods of time pose a problem if the long term effects of these effectors need to be examined. We have generated a MDCK cell line with constitutive expression of the EPEC effector Map (Mitochondrial associated protein) for efficient stable expression of EGFP-tagged Map. We observed that the constitutive expression of Map increased the permeability of charged and non-charged molecules. We also generated polyclonal antibodies against Map and checked for their specificity in MDCK-Map expressing cells. Map has been reported to contribute to the onset of diarrhea but the underlying mechanism is yet to be identified. The MDCK-Map cell line and the anti-Map antibodies generated by us can be used for in vitro studies to examine the role of Map in EPEC pathogenesis.
Collapse
Affiliation(s)
- Anand Prakash Singh
- a Centre for Molecular Medicine; Jawaharlal Nehru University ; New Delhi, India
| | - Saima Aijaz
- a Centre for Molecular Medicine; Jawaharlal Nehru University ; New Delhi, India
| |
Collapse
|
7
|
Enterohemorrhagic Escherichia coli colonization of human colonic epithelium in vitro and ex vivo. Infect Immun 2014; 83:942-9. [PMID: 25534942 PMCID: PMC4333473 DOI: 10.1128/iai.02928-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen causing gastroenteritis and more severe complications, such as hemorrhagic colitis and hemolytic uremic syndrome. Pathology is most pronounced in the colon, but to date there is no direct clinical evidence showing EHEC binding to the colonic epithelium in patients. In this study, we investigated EHEC adherence to the human colon by using in vitro organ culture (IVOC) of colonic biopsy samples and polarized T84 colon carcinoma cells. We show for the first time that EHEC colonizes human colonic biopsy samples by forming typical attaching and effacing (A/E) lesions which are dependent on EHEC type III secretion (T3S) and binding of the outer membrane protein intimin to the translocated intimin receptor (Tir). A/E lesion formation was dependent on oxygen levels and suppressed under oxygen-rich culture conditions routinely used for IVOC. In contrast, EHEC adherence to polarized T84 cells occurred independently of T3S and intimin and did not involve Tir translocation into the host cell membrane. Colonization of neither biopsy samples nor T84 cells was significantly affected by expression of Shiga toxins. Our study suggests that EHEC colonizes and forms stable A/E lesions on the human colon, which are likely to contribute to intestinal pathology during infection. Furthermore, care needs to be taken when using cell culture models, as they might not reflect the in vivo situation.
Collapse
|
8
|
Shifrin DA, Crawley SW, Grega-Larson NE, Tyska MJ. Dynamics of brush border remodeling induced by enteropathogenic E. coli. Gut Microbes 2014; 5:504-16. [PMID: 25076126 PMCID: PMC5642117 DOI: 10.4161/gmic.32084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) induces dramatic remodeling of enterocyte brush borders, a process that includes microvillar effacement and actin pedestal formation. Although the Arp2/3 complex is involved in formation of a branched actin network within pedestals, the fate of parallel actin bundles in microvilli during infection remains unclear. Here, we find that in polarized intestinal epithelial cells, EPEC stimulates long-range microvillar dynamics, pulling protrusions toward sites of bacterial attachment in a process mediated by the adhesion molecule protocadherin-24. Additionally, retraction of the EPEC bundle forming pilus stimulates directed elongation of nearby microvilli. These processes lead to coalescence of microvilli and incorporation of the underlying parallel actin bundles into pedestals. Furthermore, stabilization of microvillar actin bundles delays pedestal formation. Together, these results suggest a model where EPEC takes advantage of pre-existing actin filaments in microvillar core bundles to facilitate pedestal formation.
Collapse
Affiliation(s)
| | | | | | - Matthew J Tyska
- Correspondence to: Matthew J Tyska; matthew.tyska@vanderbilt
| |
Collapse
|
9
|
Wouters MM, Lambrechts D, Knapp M, Cleynen I, Whorwell P, Agréus L, Dlugosz A, Schmidt PT, Halfvarson J, Simrén M, Ohlsson B, Karling P, Van Wanrooy S, Mondelaers S, Vermeire S, Lindberg G, Spiller R, Dukes G, D'Amato M, Boeckxstaens G. Genetic variants in CDC42 and NXPH1 as susceptibility factors for constipation and diarrhoea predominant irritable bowel syndrome. Gut 2014; 63:1103-11. [PMID: 24041540 DOI: 10.1136/gutjnl-2013-304570] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The complex genetic aetiology underlying irritable bowel syndrome (IBS) needs to be assessed in large-scale genetic studies. Two independent IBS cohorts were genotyped to assess whether genetic variability in immune, neuronal and barrier integrity genes is associated with IBS. DESIGN 384 single nucleotide polymorphisms (SNPs) covering 270 genes were genotyped in an exploratory cohort (935 IBS patients, 639 controls). 33 SNPs with Puncorrected<0.05 were validated in an independent set of 497 patients and 887 controls. Genotype distributions of single SNPs were assessed using an additive genetic model in IBS and clinical subtypes, IBS-C and IBS-D, both in individual and combined cohorts. Trait anxiety (N=614 patients, 533 controls), lifetime depression (N=654 patients, 533 controls) and mRNA expression in rectal biopsies (N=22 patients, 29 controls) were correlated with SNP genotypes. RESULTS Two SNPs associated independently in the exploratory and validation cohort: rs17837965-CDC42 with IBS-C (ORexploratory=1.59 (1.05 to 1.76); ORvalidation=1.76 (1.03 to 3.01)) and rs2349775-NXPH1 with IBS-D (ORexploratory=1.28 (1.06 to 1.56); ORvalidation=1.42 (1.08 to 1.88)). When combining both cohorts, the association of rs2349775 withstood post hoc correction for multiple testing in the IBS-D subgroup. Additionally, three SNPs in immune-related genes (rs1464510-LPP, rs1881457-IL13, rs2104286-IL2RA), one SNP in a neuronal gene (rs2349775-NXPH1) and two SNPs in epithelial genes (rs245051-SLC26A2, rs17837965-CDC42) were weakly associated with total-IBS (Puncorrected<0.05). At the functional level, rs1881457 increased IL13 mRNA levels, whereas anxiety and depression scores did not correlate with rs2349775-NXPH1. CONCLUSIONS Rs2349775 (NXPH1) and rs17837965 (CDC42) were associated with IBS-D and IBS-C, respectively, in two independent cohorts. Further studies are warranted to validate our findings and to determine the mechanisms underlying IBS pathophysiology.
Collapse
Affiliation(s)
- Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium
| | - Diether Lambrechts
- Vesalius Research Center, VIB, Leuven University, Leuven, Belgium Laboratory for Translational Genetics, Department of Oncology, Leuven University, Leuven, Belgium
| | - Michael Knapp
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - Isabelle Cleynen
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium
| | - Peter Whorwell
- Department of Medicine, University of Manchester, Manchester, UK
| | - Lars Agréus
- Centre for Family Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aldona Dlugosz
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Jonas Halfvarson
- Department of Internal Medicine, Örebro University Hospital, Örebro, Sweden
| | - Magnus Simrén
- Department of Internal Medicine, Gothenburg University, Gothenburg, Sweden
| | - Bodil Ohlsson
- Department of Clinical Sciences, Skånes University Hospital, Malmoe, Sweden
| | | | - Sander Van Wanrooy
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium
| | - Stéphanie Mondelaers
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium
| | - Severine Vermeire
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium
| | - Greger Lindberg
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - George Dukes
- Academic DPU, GlaxoSmithKline, Research Triangle Par, North Carolina, USA
| | - Mauro D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Guy Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders, Leuven University, Leuven, Belgium
| |
Collapse
|
10
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
11
|
Lai Y, Rosenshine I, Leong JM, Frankel G. Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli. Cell Microbiol 2013; 15:1796-808. [PMID: 23927593 PMCID: PMC4036124 DOI: 10.1111/cmi.12179] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/19/2013] [Accepted: 07/01/2013] [Indexed: 12/30/2022]
Abstract
Enteropathogenic and enterohaemorrhagic Escherichia coli use a novel infection strategy to colonize the gut epithelium, involving translocation of their own receptor, Tir, via a type III secretion system and subsequent formation of attaching and effecting (A/E) lesions. Following integration into the host cell plasma membrane of cultured cells, and clustering by the outer membrane adhesin intimin, Tir triggers multiple actin polymerization pathways involving host and bacterial adaptor proteins that converge on the host Arp2/3 actin nucleator. Although initially thought to be involved in A/E lesion formation, recent data have shown that the known Tir-induced actin polymerization pathways are dispensable for this activity, but can play other major roles in colonization efficiency, in vivo fitness and systemic disease. In this review we summarize the roadmap leading from the discovery of Tir, through the different actin polymerization pathways it triggers, to our current understanding of their physiological functions.
Collapse
Affiliation(s)
- YuShuan Lai
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester MA, USA
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of
Medicine, The Hebrew University of Jerusalem, Israel
| | - John M. Leong
- Department of Microbiology and Physiological Systems, University of
Massachusetts Medical School, Worcester MA, USA
- Molecular Biology and Microbiology Department, Tufts University,
Boston MA, USA
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Imperial
College London, London, UK
| |
Collapse
|