1
|
Giraud A, Imbert L, Favier A, Henot F, Duffieux F, Samson C, Frances O, Crublet E, Boisbouvier J. Enabling site-specific NMR investigations of therapeutic Fab using a cell-free based isotopic labeling approach: application to anti-LAMP1 Fab. JOURNAL OF BIOMOLECULAR NMR 2024; 78:73-86. [PMID: 38546905 DOI: 10.1007/s10858-023-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 06/15/2024]
Abstract
Monoclonal antibodies (mAbs) are biotherapeutics that have achieved outstanding success in treating many life-threatening and chronic diseases. The recognition of an antigen is mediated by the fragment antigen binding (Fab) regions composed by four different disulfide bridge-linked immunoglobulin domains. NMR is a powerful method to assess the integrity, the structure and interaction of Fabs, but site specific analysis has been so far hampered by the size of the Fabs and the lack of approaches to produce isotopically labeled samples. We proposed here an efficient in vitro method to produce [15N, 13C, 2H]-labeled Fabs enabling high resolution NMR investigations of these powerful therapeutics. As an open system, the cell-free expression mode enables fine-tuned control of the redox potential in presence of disulfide bond isomerase to enhance the formation of native disulfide bonds. Moreover, inhibition of transaminases in the S30 cell-free extract offers the opportunity to produce perdeuterated Fab samples directly in 1H2O medium, without the need for a time-consuming and inefficient refolding process. This specific protocol was applied to produce an optimally labeled sample of a therapeutic Fab, enabling the sequential assignment of 1HN, 15N, 13C', 13Cα, 13Cβ resonances of a full-length Fab. 90% of the backbone resonances of a Fab domain directed against the human LAMP1 glycoprotein were assigned successfully, opening new opportunities to study, at atomic resolution, Fabs' higher order structures, dynamics and interactions, using solution-state NMR.
Collapse
Affiliation(s)
- Arthur Giraud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France
| | - Lionel Imbert
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Adrien Favier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Faustine Henot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
| | | | - Camille Samson
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
| | - Oriane Frances
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France.
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France.
| | - Jérôme Boisbouvier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France.
| |
Collapse
|
2
|
Punch E, Klein J, Diaba-Nuhoho P, Morawietz H, Garelnabi M. Effects of PCSK9 Targeting: Alleviating Oxidation, Inflammation, and Atherosclerosis. J Am Heart Assoc 2022; 11:e023328. [PMID: 35048716 PMCID: PMC9238481 DOI: 10.1161/jaha.121.023328] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Characterized as a chronic inflammatory disease of the large arteries, atherosclerosis is the primary cause of cardiovascular disease, the leading contributor of morbidity and mortality worldwide. Elevated plasma cholesterol levels and chronic inflammation within the arterial plaque are major mediators of plaque initiation, progression, and instability. In 2003, the protein PCSK9 (proprotein convertase subtilisin/kexin 9) was discovered to play a critical role in cholesterol regulation, thus becoming a key player in the mechanisms behind atherosclerotic plaque development. Emerging evidence suggests that PCSK9 could potentially have effects on atherosclerosis that are independent of cholesterol levels. The objective of this review was to discuss the role on PCSK9 in oxidation, inflammation, and atherosclerosis. This function activates proinflammatory cytokine production and affects oxidative modifications within atherosclerotic lesions, revealing its more significant role in atherosclerosis. Although a variety of evidence demonstrates that PCSK9 plays a role in atherosclerotic inflammation, the direct mechanism of involvement is still unknown, driving a gap in knowledge to such a predominant player in cardiovascular disease. Investigation of proteins structurally related to PCSK9 may interestingly be the link in unveiling the mechanistic role of this protein’s involvement in oxidation and inflammation. Importantly, the unique structure of PCSK9 bears structural homology to a one‐of‐a‐kind domain found in the metabolic protein resistin, which is responsible for many of the same inflammatory outcomes as PCSK9. Closing this gap in knowledge of PCSK9`s role in atherosclerotic oxidation and inflammation will provide fundamental information for understanding, preventing, and treating cardiovascular disease.
Collapse
Affiliation(s)
- Emily Punch
- Department of Chemistry University of Massachusetts Lowell MA
| | - Justus Klein
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav CarusTechnische Universität Dresden Germany
| | - Mahdi Garelnabi
- Biomedical and Nutritional Sciences University of Massachusetts Lowell MA
| |
Collapse
|
3
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
4
|
Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A. Protein sample preparation for solid-state NMR investigations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:20-33. [PMID: 30803692 DOI: 10.1016/j.pnmrs.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France; Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
| |
Collapse
|
5
|
Wheat germ in vitro translation to produce one of the most toxic sodium channel specific toxins. Biosci Rep 2014; 34:BSR20140050. [PMID: 24924257 PMCID: PMC4114062 DOI: 10.1042/bsr20140050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Envenoming following scorpion sting is a common emergency in many parts of the world. During scorpion envenoming, highly toxic small polypeptides of the venom diffuse rapidly within the victim causing serious medical problems. The exploration of toxin structure-function relationship would benefit from the generation of soluble recombinant scorpion toxins in Escherichia coli. We developed an in vitro wheat germ translation system for the expression of the highly toxic Aah (Androctonus australis hector)II protein that requires the proper formation of four disulphide bonds. Soluble, recombinant N-terminal GST (glutathione S-transferase)-tagged AahII toxin is obtained in this in vitro translation system. After proteolytic removal of the GST-tag, purified rAahII (recombinant AahII) toxin, which contains two extra amino acids at its N terminal relative to the native AahII, is highly toxic after i.c.v. (intracerebroventricular) injection in Swiss mice. An LD50 (median lethal dose)-value of 10 ng (or 1.33 pmol), close to that of the native toxin (LD50 of 3 ng) indicates that the wheat germ in vitro translation system produces properly folded and biological active rAahII. In addition, NbAahII10 (Androctonus australis hector nanobody 10), a camel single domain antibody fragment, raised against the native AahII toxin, recognizes its cognate conformational epitope on the recombinant toxin and neutralizes the toxicity of purified rAahII upon injection in mice. A wheat germ embryo derived cell-free translation system expresses a biologically active, highly toxic scorpion venom protein that is fully neutralized by a camel single domain antibody fragment raised against the native scorpion toxin.
Collapse
|
6
|
Disulfide bond formation in prokaryotes: history, diversity and design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1402-14. [PMID: 24576574 DOI: 10.1016/j.bbapap.2014.02.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 01/16/2023]
Abstract
The formation of structural disulfide bonds is essential for the function and stability of a great number of proteins, particularly those that are secreted. There exists a variety of dedicated cellular catalysts and pathways from archaea to humans that ensure the formation of native disulfide bonds. In this review we describe the initial discoveries of these pathways and report progress in recent years in our understanding of the diversity of these pathways in prokaryotes, including those newly discovered in some archaea. We will also discuss the various successful efforts to achieve laboratory-based evolution and design of synthetic disulfide bond formation machineries in the bacterium Escherichia coli. These latter studies have also led to new more general insights into the redox environment of the cytoplasm and bacterial cell envelope. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.
Collapse
|
7
|
Meester I, Rosas-Taraco AG, Salinas-Carmona MC. Retnla down-regulation and IL-13-rich environment correlate with inflammation severity in experimental actinomycetoma by Nocardia brasiliensis. Pathog Dis 2013; 67:214-20. [PMID: 23620185 DOI: 10.1111/2049-632x.12036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 12/26/2022] Open
Abstract
Nocardia brasiliensis (Nb) is a facultative intracellular pathogen that may cause actinomycetoma when immune response is unable to control the pathogenic invasion. We used comparative real-time PCR to evaluate the expression level of molecules indicative of either classical or alternative activation of macrophages, as well as of cytokines involved in macrophage polarization, during the experimental infection in BALB/c mice. We found induction or increased expression of the pro-inflammatory markers csf2/GM-CSF, interferon-gamma, and nos2/iNOS. The expression of Ym1 and IL-13, which are usually related with alternative activation of macrophage, was also increased. However, retnla/FIZZ1 expression decreased sharply during the infection. We concluded that Nb infection induces both a pro-inflammatory and anti-inflammatory environment, in which there is a strong inverse correlation between IL-13 and retnla expression.
Collapse
Affiliation(s)
- Irene Meester
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | | | | |
Collapse
|