1
|
Grabowska-Pyrzewicz W, Want A, Leszek J, Wojda U. Antisense oligonucleotides for Alzheimer's disease therapy: from the mRNA to miRNA paradigm. EBioMedicine 2021; 74:103691. [PMID: 34773891 PMCID: PMC8602003 DOI: 10.1016/j.ebiom.2021.103691] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) represents a particular therapeutic challenge because its aetiology is very complex, with dynamic progression from preclinical to clinical stages. Several potential therapeutic targets and strategies were tested for AD, in over 2000 clinical trials, but no disease-modifying therapy exists. This failure indicates that AD, as a multifactorial disease, may require multi-targeted approaches and the delivery of therapeutic molecules to the right place and at the right disease stage. Opportunities to meet the challenges of AD therapy appear to come from recent progress in knowledge and methodological advances in the design, synthesis, and targeting of brain mRNA and microRNA with synthetic antisense oligonucleotides (ASOs). Several types of ASOs allow the utilisation of different mechanisms of posttranscriptional regulation and offer enhanced effects over alternative therapeutics. This article reviews ASO-based approaches and targets in preclinical and clinical trials for AD, and presents the future perspective on ASO therapies for AD.
Collapse
Affiliation(s)
- Wioleta Grabowska-Pyrzewicz
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Andrew Want
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Jerzy Leszek
- Department of Psychiatry, Wroclaw Medical University, Wybrzeże Pasteura 10, 50-367 Wroclaw, Poland
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standard, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland.
| |
Collapse
|
2
|
Kumric M, Ticinovic Kurir T, Borovac JA, Bozic J. Role of novel biomarkers in diabetic cardiomyopathy. World J Diabetes 2021; 12:685-705. [PMID: 34168722 PMCID: PMC8192249 DOI: 10.4239/wjd.v12.i6.685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is commonly defined as cardiomyopathy in patients with diabetes mellitus in the absence of coronary artery disease and hypertension. As DCM is now recognized as a cause of substantial morbidity and mortality among patients with diabetes mellitus and clinical diagnosis is still inappropriate, various expert groups struggled to identify a suitable biomarker that will help in the recognition and management of DCM, with little success so far. Hence, we thought it important to address the role of biomarkers that have shown potential in either human or animal studies and which could eventually result in mitigating the poor outcomes of DCM. Among the array of biomarkers we thoroughly analyzed, long noncoding ribonucleic acids, soluble form of suppression of tumorigenicity 2 and galectin-3 seem to be most beneficial for DCM detection, as their plasma/serum levels accurately correlate with the early stages of DCM. The combination of relatively inexpensive and accurate speckle tracking echocardiography with some of the highlighted biomarkers may be a promising screening method for newly diagnosed diabetes mellitus type 2 patients. The purpose of the screening test would be to direct affected patients to more specific confirmation tests. This perspective is in concordance with current guidelines that accentuate the importance of an interdisciplinary team-based approach.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Department of Endocrinology, University Hospital of Split, Split 21000, Croatia
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Emergency Medicine, Institute of Emergency Medicine of Split-Dalmatia County, Split 21000, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| |
Collapse
|
3
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
4
|
Law ZJ, Khoo XH, Lim PT, Goh BH, Ming LC, Lee WL, Goh HP. Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:629888. [PMID: 33768115 PMCID: PMC7985159 DOI: 10.3389/fmolb.2021.629888] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) remains a cancer with poor prognosis and high recurrence rate. Even with multimodal treatment options available for OSCC, tumor drug resistance is still a persistent problem, leading to increased tumor invasiveness among OSCC patients. An emerging trend of thought proposes that extracellular vesicles (EVs) play a role in facilitating tumor progression and chemoresistance via signaling between tumor cells. In particular, exosomes and microvesicles are heavily implicated in this process by various studies. Where primary studies into a particular EV-mediated chemoresistance mechanism in OSCC are limited, similar studies on other cancer cell types will be used in the discussion below to provide ideas for a new line of investigation into OSCC chemoresistance. By understanding how EVs are or may be involved in OSCC chemoresistance, novel targeted therapies such as EV inhibition may be an effective alternative to current treatment options in the near future. In this review, the current understandings on OSCC drug mechanisms under the novel context of exosomes and microvesicles were reviewed, including shuttling of miRNA content, drug efflux, alteration of vesicular pH, anti-apoptotic signaling, modulation of DNA damage repair, immunomodulation, epithelial-to-mesenchymal transition and maintenance of tumor by cancer stem cells.
Collapse
Affiliation(s)
- Zhu-Jun Law
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Xin Hui Khoo
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Pei Tee Lim
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Bey Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Hui Poh Goh
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
5
|
Azaman SNA, Satharasinghe DA, Tan SW, Nagao N, Yusoff FM, Yeap SK. Identification and Analysis of microRNAs in Chlorella sorokiniana Using High-Throughput Sequencing. Genes (Basel) 2020; 11:genes11101131. [PMID: 32992970 PMCID: PMC7599482 DOI: 10.3390/genes11101131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Chlorella is a popular microalga with robust physiological and biochemical characteristics, which can be cultured under various conditions. The exploration of the small RNA content of Chlorella could improve strategies for the enhancement of metabolite production from this microalga. In this study, stress was introduced to the Chlorella sorokiniana culture to produce high-value metabolites such as carotenoids and phenolic content. The small RNA transcriptome of C. sorokiniana was sequenced, focusing on microRNA (miRNA) content. From the analysis, 98 miRNAs were identified in cultures subjected to normal and stress conditions. The functional analysis result showed that the miRNA targets found were most often involved in the biosynthesis of secondary metabolites, followed by protein metabolism, cell cycle, and porphyrin and chlorophyll metabolism. Furthermore, the biosynthesis of secondary metabolites such as carotenoids, terpenoids, and lipids was found mostly in stress conditions. These results may help to improve our understanding of regulatory mechanisms of miRNA in the biological and metabolic process of Chlorella species. It is important and timely to determine the true potential of this microalga species and to support the potential for genetic engineering of microalgae as they receive increasing focus for their development as an alternative source of biofuel, food, and health supplements.
Collapse
Affiliation(s)
- Siti Nor Ani Azaman
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Dilan Amila Satharasinghe
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Sheau Wei Tan
- Laboratory of Vaccine and Biomolecules (VacBio), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Norio Nagao
- 102 Naname-go, Shinkamigoto-cho, Minami Matsuura-gun, Nagasaki 857-4214, Japan;
| | - Fatimah M. Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia;
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, 43900 Selangor, Malaysia
- Correspondence:
| |
Collapse
|
6
|
Huang C, Luo WF, Ye YF, Lin L, Wang Z, Luo MH, Song QD, He XP, Chen HW, Kong Y, Tang YK. Characterization of inflammatory factor-induced changes in mesenchymal stem cell exosomes and sequencing analysis of exosomal microRNAs. World J Stem Cells 2019; 11:859-890. [PMID: 31692888 PMCID: PMC6828590 DOI: 10.4252/wjsc.v11.i10.859] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/24/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Treatments utilizing stems cells often require stem cells to be exposed to inflammatory environments, but the effects of such environments are unknown. AIM To examine the effects of inflammatory cytokines on the morphology and quantity of mesenchymal stem cell exosomes (MSCs-exo) as well as the differential expression of microRNAs (miRNAs) in the exosomes. METHODS MSCs were isolated from human umbilical tissue by enzymatic digestion. Exosomes were then collected after a 48-h incubation period in a serum-free medium with one of the following the inflammatory cytokines: None (control), vascular cell adhesion molecule-1 (VCAM-1), tumor necrosis factor (TNF) α, and interleukin (IL) 6. The morphology and quantity of each group of MSC exosomes were observed and measured. The miRNAs in MSCs-exo were sequenced. We compared the sequenced data with the miRBase and other non-coding databases in order to detect differentially expressed miRNAs and explore their target genes and regulatory mechanisms. In vitro tube formation assays and Western blot were performed in endothelial cells which were used to assess the angiogenic potential of MSCs-exo after inflammatory cytokine stimulation. RESULTS MSCs-exo were numerous, small, and regularly shaped in the VCAM-1 group. TNFα stimulated MSCs to secrete larger and irregular exosomes. IL6 led to a reduced quantity of MSCs-exo. Compared to the control group, the TNFα and IL6 groups had more downregulated differentially expressed miRNAs, particularly angiogenesis-related miRNAs. The angiogenic potential of MSCs-exo declined after IL6 stimulation. CONCLUSION TNFα and IL6 may influence the expression of miRNAs that down-regulate the PI3K-AKT, MAPK, and VEGF signaling pathways; particularly, IL6 significantly down-regulates the PI3K-AKT signaling pathway. Overall, inflammatory cytokines may lead to changes in exosomal miRNAs that abnormally impact cellular components, molecular function, and biological processes.
Collapse
Affiliation(s)
- Chen Huang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, Guangdong Province, China
| | - Wen-Feng Luo
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, Guangdong Province, China
| | - Yu-Feng Ye
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, Guangdong Province, China
| | - Li Lin
- Jinan University Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zhe Wang
- Department of Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, Guangdong Province, China
| | - Ming-Hua Luo
- Department of Radiology, Shiyan People's Hospital, Shenzhen 518108, Guangdong Province, China
| | - Qi-De Song
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, Guangdong Province, China
| | - Xue-Ping He
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, Guangdong Province, China
| | - Han-Wei Chen
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, Guangdong Province, China
| | - Yi Kong
- Department of Pharmacy, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, Guangdong Province, China
| | - Yu-Kuan Tang
- Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, Guangdong Province, China.
| |
Collapse
|
7
|
Gorshkov O, Chernova T, Mokshina N, Gogoleva N, Suslov D, Tkachenko A, Gorshkova T. Intrusive Growth of Phloem Fibers in Flax Stem: Integrated Analysis of miRNA and mRNA Expression Profiles. PLANTS (BASEL, SWITZERLAND) 2019; 8:E47. [PMID: 30791461 PMCID: PMC6409982 DOI: 10.3390/plants8020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
Phloem fibers are important elements of plant architecture and the target product of many fiber crops. A key stage in fiber development is intrusive elongation, the mechanisms of which are largely unknown. Integrated analysis of miRNA and mRNA expression profiles in intrusivelygrowing fibers obtained by laser microdissection from flax (Linum usitatissimum L.) stem revealed all 124 known flax miRNA from 23 gene families and the potential targets of differentially expressed miRNAs. A comparison of the expression between phloem fibers at different developmental stages, and parenchyma and xylem tissues demonstrated that members of miR159, miR166, miR167, miR319, miR396 families were down-regulated in intrusively growing fibers. Some putative target genes of these miRNA families, such as those putatively encoding growth-regulating factors, an argonaute family protein, and a homeobox-leucine zipper family protein were up-regulated in elongating fibers. miR160, miR169, miR390, and miR394 showed increased expression. Changes in the expression levels of miRNAs and their target genes did not match expectations for the majority of predicted target genes. Taken together, poorly understood intrusive fiber elongation, the key process of phloem fiber development, was characterized from a miRNA-target point of view, giving new insights into its regulation.
Collapse
Affiliation(s)
- Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Tatyana Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420021 Kazan, Russia.
| | - Dmitry Suslov
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universiteskaya emb., 7/9, 199034 Saint Petersburg, Russia.
| | - Alexander Tkachenko
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universiteskaya emb., 7/9, 199034 Saint Petersburg, Russia.
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| |
Collapse
|
8
|
microRNA diagnostic panel for Alzheimer's disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Res Rev 2019; 49:125-143. [PMID: 30391753 DOI: 10.1016/j.arr.2018.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
microRNAs (miRNAs) have been extensively studied as potential biomarkers for Alzheimer's disease (AD). Their profiles have been analyzed in blood, cerebrospinal fluid (CSF) and brain tissue. However, due to the high variability between the reported data, stemming from the lack of methodological standardization and the heterogeneity of AD, the most promising miRNA biomarker candidates have not been selected. Our literature review shows that out of 137 miRNAs found to be altered in AD blood, 36 have been replicated in at least one independent study, and out of 166 miRNAs reported as differential in AD CSF, 13 have been repeatedly found. Only 3 miRNAs have been consistently reported as altered in three analyzed specimens: blood, CSF and the brain (hsa-miR-146a, hsa-miR-125b, hsa-miR-135a). Nonetheless, all 36 repeatedly differential miRNAs in AD blood are promising as components of the diagnostic panel. Given their predicted functions, such miRNA panel may report multiple pathways contributing to AD pathology, enabling the design of personalized therapies. In addition, the analysis revealed that the miRNAs dysregulated in AD overlap highly with miRNAs implicated in cancer. However, the directions of the miRNA changes are usually opposite in cancer and AD, indicative of an epigenetic trade-off between the two diseases.
Collapse
|
9
|
Hollis AR, Starkey MP. MicroRNAs in equine veterinary science. Equine Vet J 2018; 50:721-726. [PMID: 29672919 DOI: 10.1111/evj.12954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/31/2018] [Indexed: 12/26/2022]
Abstract
MicroRNAs are small noncoding RNAs that play a pivotal role in diverse cellular processes through post-transcriptional regulation of gene expression. The dysregulation of specific microRNAs is associated with disease development and progression. In this review, we summarise how microRNAs modulate gene expression, and explain microRNA nomenclature. We discuss the potential applications of microRNAs in equine disease diagnosis and treatment, in the context of the sum of current knowledge about microRNA expression in normal and diseased equine tissues.
Collapse
Affiliation(s)
- A R Hollis
- Animal Health Trust, Kentford, Suffolk, UK
| | | |
Collapse
|
10
|
Li Y, Zhang J, Lei Y, Lyu L, Zuo R, Chen T. MicroRNA-21 in Skin Fibrosis: Potential for Diagnosis and Treatment. Mol Diagn Ther 2017; 21:633-642. [DOI: 10.1007/s40291-017-0294-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Arfat Y, Chang H, Gao Y. Stress-responsive microRNAs are involved in re-programming of metabolic functions in hibernators. J Cell Physiol 2017; 233:2695-2704. [PMID: 28574587 DOI: 10.1002/jcp.26034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/01/2017] [Indexed: 12/21/2022]
Abstract
Mammalian hibernation includes re-programing of metabolic capacities, partially, encouraged by microRNAs (miRNAs). Albeit much is known about the functions of miRNAs, we need learning on low temperature miRNAs target determination. As hibernators can withstand low body temperatures (TB) for a long time without anguish tissue damage, understanding the means and mechanisms that empower them to do as such are of restorative intrigue. Nonetheless, these mechanisms by which miRNAs and the hibernators react to stressful conditions are not much clear. It is evident from recent data that the gene expression and the translation of mRNA to protein are controlled by miRNAs. The miRNAs also influence regulation of major cellular processes. As the significance of miRNAs in stress conditions adaptation are getting clearer, this audit article abridges the key alterations in miRNA expression and the mechanism that facilitates stress survival.
Collapse
Affiliation(s)
- Yasir Arfat
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, China
| | - Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (College of Life Sciences, Northwest University), Ministry of Education, Xi'an, China
| |
Collapse
|
12
|
Small and Smaller-sRNAs and MicroRNAs in the Regulation of Toxin Gene Expression in Prokaryotic Cells: A Mini-Review. Toxins (Basel) 2017; 9:toxins9060181. [PMID: 28556797 PMCID: PMC5488031 DOI: 10.3390/toxins9060181] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/09/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022] Open
Abstract
Non-coding small RNAs (sRNAs) have been identified in the wide range of bacteria (also pathogenic species) and found to play an important role in the regulation of many processes, including toxin gene expression. The best characterized prokaryotic sRNAs regulate gene expression by base pairing with mRNA targets and fall into two broad classes: cis-encoded sRNAs (also called antisense RNA) and trans-acting sRNAs. Molecules from the second class are frequently considered as the most related to eukaryotic microRNAs. Interestingly, typical microRNA-size RNA molecules have also been reported in prokaryotic cells, although they have received little attention up to now. In this work we have collected information about all three types of small prokaryotic RNAs in the context of the regulation of toxin gene expression.
Collapse
|
13
|
Role of microRNA in diabetic cardiomyopathy: From mechanism to intervention. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2070-2077. [PMID: 28344129 DOI: 10.1016/j.bbadis.2017.03.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/06/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Diabetic cardiomyopathy is a chronic and irreversible heart complication in diabetic patients, and is characterized by complex pathophysiologic events including early diastolic dysfunction, cardiac hypertrophy, ventricular dilation and systolic dysfunction, eventually resulting in heart failure. Despite these characteristics, the underlying mechanisms leading to diabetic cardiomyopathy are still elusive. Recent studies have implicated microRNA, a small and highly conserved non-coding RNA molecule, in the etiology of diabetes and its complications, suggesting a potentially novel approach for the diagnosis and treatment of diabetic cardiomyopathy. This brief review aims at capturing recent studies related to the role of microRNA in diabetic cardiomyopathy. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.
Collapse
|
14
|
Nalluri JJ, Barh D, Azevedo V, Ghosh P. miRsig: a consensus-based network inference methodology to identify pan-cancer miRNA-miRNA interaction signatures. Sci Rep 2017; 7:39684. [PMID: 28045122 PMCID: PMC5206712 DOI: 10.1038/srep39684] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/25/2016] [Indexed: 01/17/2023] Open
Abstract
Decoding the patterns of miRNA regulation in diseases are important to properly realize its potential in diagnostic, prog- nostic, and therapeutic applications. Only a handful of studies computationally predict possible miRNA-miRNA interactions; hence, such interactions require a thorough investigation to understand their role in disease progression. In this paper, we design a novel computational pipeline to predict the common signature/core sets of miRNA-miRNA interactions for different diseases using network inference algorithms on the miRNA-disease expression profiles; the individual predictions of these algorithms were then merged using a consensus-based approach to predict miRNA-miRNA associations. We next selected the miRNA-miRNA associations across particular diseases to generate the corresponding disease-specific miRNA-interaction networks. Next, graph intersection analysis was performed on these networks for multiple diseases to identify the common signature/core sets of miRNA interactions. We applied this pipeline to identify the common signature of miRNA-miRNA inter- actions for cancers. The identified signatures when validated using a manual literature search from PubMed Central and the PhenomiR database, show strong relevance with the respective cancers, providing an indirect proof of the high accuracy of our methodology. We developed miRsig, an online tool for analysis and visualization of the disease-specific signature/core miRNA-miRNA interactions, available at: http://bnet.egr.vcu.edu/miRsig.
Collapse
Affiliation(s)
- Joseph J Nalluri
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia,USA
| | - Debmalya Barh
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Purba Medinipur, West Bengal, India.,Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil.,Xcode Life Sciences, 3D Eldorado, 112 Nungambakkam High Road, Nungambakkam, Chennai, Tamil Nadu-600034, India
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Preetam Ghosh
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, Virginia,USA
| |
Collapse
|
15
|
Epigenetic studies in Developmental Origins of Health and Disease: pitfalls and key considerations for study design and interpretation. J Dev Orig Health Dis 2016; 8:30-43. [DOI: 10.1017/s2040174416000507] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The field of Developmental Origins of Health and Disease (DOHaD) seeks to understand the relationships between early-life environmental exposures and long-term health and disease. Until recently, the molecular mechanisms underlying these phenomena were poorly understood; however, epigenetics has been proposed to bridge the gap between the environment and phenotype. Epigenetics involves the study of heritable changes in gene expression, which occur without changes to the underlying DNA sequence. Different types of epigenetic modifications include DNA methylation, post-translational histone modifications and non-coding RNAs. Increasingly, changes to the epigenome have been associated with early-life exposures in both humans and animal models, offering both an explanation for how the environment may programme long-term health, as well as molecular changes that could be developed as biomarkers of exposure and/or future disease. As such, epigenetic studies in DOHaD hold much promise; however, there are a number of factors which should be considered when designing and interpreting such studies. These include the impact of the genome on the epigenome, the tissue-specificity of epigenetic marks, the stability (or lack thereof) of epigenetic changes over time and the importance of associating epigenetic changes with changes in transcription or translation to demonstrate functional consequences. In this review, we discuss each of these key concepts and provide practical strategies to mitigate some common pitfalls with the aim of providing a useful guide for future epigenetic studies in DOHaD.
Collapse
|
16
|
Gargantini PR, Serradell MDC, Ríos DN, Tenaglia AH, Luján HD. Antigenic variation in the intestinal parasite Giardia lamblia. Curr Opin Microbiol 2016; 32:52-58. [DOI: 10.1016/j.mib.2016.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/25/2023]
|
17
|
Chan WF, Parks-Dely JA, Magor BG, Magor KE. The Minor MHC Class I Gene UDA of Ducks Is Regulated by Let-7 MicroRNA. THE JOURNAL OF IMMUNOLOGY 2016; 197:1212-20. [DOI: 10.4049/jimmunol.1600332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/08/2016] [Indexed: 01/10/2023]
|
18
|
Choi I, Woo JH, Jou I, Joe EH. PINK1 Deficiency Decreases Expression Levels of mir-326, mir-330, and mir-3099 during Brain Development and Neural Stem Cell Differentiation. Exp Neurobiol 2016; 25:14-23. [PMID: 26924929 PMCID: PMC4766110 DOI: 10.5607/en.2016.25.1.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
PTEN-induced putative kinase 1 (PINK1) is a Parkinson's disease (PD) gene. We examined miRNAs regulated by PINK1 during brain development and neural stem cell (NSC) differentiation, and found that lvels of miRNAs related to tumors and inflammation were different between 1-day-old-wild type (WT) and PINK1-knockout (KO) mouse brains. Notably, levels of miR-326, miR-330 and miR-3099, which are related to astroglioma, increased during brain development and NSC differentiation, and were significantly reduced in the absence of PINK1. Interestingly, in the presence of ciliary neurotrophic factor (CNTF), which pushes differentiation of NSCs into astrocytes, miR-326, miR-330, and miR-3099 levels in KO NSCs were also lower than those in WT NSCs. Furthermore, mimics of all three miRNAs increased expression of the astrocytic marker glial fibrillary acidic protein (GFAP) during differentiation of KO NSCs, but inhibitors of these miRNAs decreased GFAP expression in WT NSCs. Moreover, these miRNAs increased the translational efficacy of GFAP through the 3'-UTR of GFAP mRNA. Taken together, these results suggest that PINK1 deficiency reduce expression levels of miR-326, miR-330 and miR-3099, which may regulate GFAP expression during NSC differentiation and brain development.
Collapse
Affiliation(s)
- Insup Choi
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Joo Hong Woo
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Ilo Jou
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.; Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Eun-Hye Joe
- Neuroscience Graduate Program Department of Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.; Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.; Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.; Department of Brain Science, Ajou University School of Medicine, Suwon 16499, Korea.; Brain Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
19
|
miR-28-5p Involved in LXR-ABCA1 Pathway is Increased in the Plasma of Unstable Angina Patients. Heart Lung Circ 2015; 24:724-30. [DOI: 10.1016/j.hlc.2014.12.160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
|
20
|
Biggar KK, Storey KB. Insight into post-transcriptional gene regulation: stress-responsive microRNAs and their role in the environmental stress survival of tolerant animals. J Exp Biol 2015; 218:1281-9. [DOI: 10.1242/jeb.104828] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT
Living animals are constantly faced with various environmental stresses that challenge normal life, including: oxygen limitation, very low or high temperature, as well as restriction of water and food. It has been well established that in response to these stresses, tolerant organisms regularly respond with a distinct suite of cellular modifications that involve transcriptional, translational and post-translational modification. In recent years, a new mechanism of rapid and reversible transcriptome regulation, via the action of non-coding RNA molecules, has emerged into post-transcriptional regulation and has since been shown to be part of the survival response. However, these RNA-based mechanisms by which tolerant organisms respond to stressed conditions are not well understood. Recent studies have begun to show that non-coding RNAs control gene expression and translation of mRNA to protein, and can also have regulatory influence over major cellular processes. For example, select microRNAs have been shown to have regulatory influence over the cell cycle, apoptosis, signal transduction, muscle atrophy and fatty acid metabolism during periods of environmental stress. As we are on the verge of dissecting the roles of non-coding RNA in environmental stress adaptation, this Commentary summarizes the hallmark alterations in microRNA expression that facilitate stress survival.
Collapse
Affiliation(s)
- Kyle K. Biggar
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada N6A 5C1
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
21
|
Nyayanit D, Gadgil CJ. Mathematical modeling of combinatorial regulation suggests that apparent positive regulation of targets by miRNA could be an artifact resulting from competition for mRNA. RNA (NEW YORK, N.Y.) 2015; 21:307-319. [PMID: 25576498 PMCID: PMC4338329 DOI: 10.1261/rna.046862.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
MicroRNAs bind to and regulate the abundance and activity of target messenger RNA through sequestration, enhanced degradation, and suppression of translation. Although miRNA have a predominantly negative effect on the target protein concentration, several reports have demonstrated a positive effect of miRNA, i.e., increase in target protein concentration on miRNA overexpression and decrease in target concentration on miRNA repression. miRNA-target pair-specific effects such as protection of mRNA degradation owing to miRNA binding can explain some of these effects. However, considering such pairs in isolation might be an oversimplification of the RNA biology, as it is known that one miRNA interacts with several targets, and conversely target mRNA are subject to regulation by several miRNAs. We formulate a mathematical model of this combinatorial regulation of targets by multiple miRNA. Through mathematical analysis and numerical simulations of this model, we show that miRNA that individually have a negative effect on their targets may exhibit an apparently positive net effect when the concentration of one miRNA is experimentally perturbed by repression/overexpression in such a multi-miRNA multitarget situation. We show that this apparent unexpected effect is due to competition and will not be observed when miRNA interact noncompetitively with the target mRNA. This result suggests that some of the observed unusual positive effects of miRNA may be due to the combinatorial complexity of the system rather than due to any inherently unusual positive effect of the miRNA on its target.
Collapse
Affiliation(s)
- Dimpal Nyayanit
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Chetan J Gadgil
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, India Academy of Scientific and Innovative Research, New Delhi 110001, India CSIR-Institute of Genomics and Integrative Biology, New Delhi 110020, India
| |
Collapse
|
22
|
Thomson DW, Pillman KA, Anderson ML, Lawrence DM, Toubia J, Goodall GJ, Bracken CP. Assessing the gene regulatory properties of Argonaute-bound small RNAs of diverse genomic origin. Nucleic Acids Res 2015; 43:470-81. [PMID: 25452337 PMCID: PMC4288155 DOI: 10.1093/nar/gku1242] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/23/2014] [Accepted: 11/11/2014] [Indexed: 12/21/2022] Open
Abstract
High-throughput sequencing reveals an abundance of microRNA-sized fragments derived from larger non-coding RNAs. Roles for these small RNAs in gene silencing are suggested by their co-precipitation with Argonaute, the microRNA effector protein, though the extent to which they suppress gene expression endogenously remains unclear. To address this, we used luciferase reporters to determine the endogenous functionality of small RNAs from a diverse range of sources. We demonstrate small RNAs derived from snoRNAs have the capacity to act in a microRNA-like manner, though we note the vast majority of these are bound to Argonaute at levels below that required for detectable silencing activity. We show Argonaute exhibits a high degree of selectivity for the small RNAs with which it interacts and note that measuring Argonaute-associated levels is a better indicator of function than measuring total expression. Although binding to Argonaute at sufficient levels is necessary for demonstrating microRNA functionality in our reporter assay, this alone is not enough as some small RNAs derived from other non-coding RNAs (tRNAs, rRNAs, Y-RNAs) are associated with Argonaute at very high levels yet do not serve microRNA-like roles.
Collapse
Affiliation(s)
- Daniel W Thomson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Matthew L Anderson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia Australian Cancer Research Foundation (ACRF) Cancer Genomics Facility, Adelaide, SA 5005, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA 5005, Australia School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
23
|
Saraiya AA, Li W, Wu J, Chang CH, Wang CC. The microRNAs in an ancient protist repress the variant-specific surface protein expression by targeting the entire coding sequence. PLoS Pathog 2014; 10:e1003791. [PMID: 24586143 PMCID: PMC3937270 DOI: 10.1371/journal.ppat.1003791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022] Open
Abstract
microRNAs (miRNA) have been detected in the deeply branched protist, Giardia lamblia, and shown to repress expression of the family of variant-specific surface proteins (VSPs), only one of which is expressed in Giardia trophozoite at a given time. Three next-generation sequencing libraries of Giardia Argonaute-associated small RNAs were constructed and analyzed. Analysis of the libraries identified a total of 99 new putative miRNAs with a size primarily in the 26 nt range similar to the size previously predicted by the Giardia Dicer crystal structure and identified by our own studies. Bioinformatic analysis identified multiple putative miRNA target sites in the mRNAs of all 73 VSPs. The effect of miRNA target sites within a defined 3′-region were tested on two vsp mRNAs. All the miRNAs showed partial repression of the corresponding vsp expression and were additive when the targeting sites were separately located. But the combined repression still falls short of 100%. Two other relatively short vsp mRNAs with 15 and 11 putative miRNA target sites identified throughout their ORFs were tested with their corresponding miRNAs. The results indicate that; (1) near 100% repression of vsp mRNA expression can be achieved through the combined action of multiple miRNAs on target sites located throughout the ORF; (2) the miRNA machinery could be instrumental in repressing the expression of vsp genes in Giardia; (3) this is the first time that all the miRNA target sites in the entire ORF of a mRNA have been tested and shown to be functional. Giardia lamblia is a protozoan parasite causing the diarrheal disease giardiasis. Variant-specific surface proteins (VSP) in Giardia are likely involved in its evasion of host immune response. Their expression is regulated by microRNAs (miRNA). To determine the full complement of miRNAs in Giardia, three cDNA libraries of Giardia Argonaute associated small RNAs were constructed and analyzed to identify a total of 105 miRNAs. Bioinformatic target identification showed that 102 of the 105 miRNAs find their putative target sites in vsp mRNAs. When only the target sites within the 3′ region,100 nts upstream of the stop codon, were tested against their corresponding miRNAs, however, only partial repression of VSP expression was observed. When all the miRNA target sites in the open reading frames of vsp mRNAs were examined, however, they all turned out to be functional. A saturation of them with the corresponding miRNAs resulted in a full repression of VSP expression, suggesting that this is the mechanism of miRNA repression of VSP expression in Giardia. The ability of miRNAs to regulate target sites throughout the entire open reading frame also provides the first indication that all the miRNA target sites in an mRNA are functional.
Collapse
Affiliation(s)
- Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, United States of America
| | - Wei Li
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, United States of America
| | - Jesse Wu
- Institute for Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chuan H. Chang
- Institute for Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Guo J, Zheng W, Wang Y, Li Y, Lu S, Feng X. Coexistence of sense and anti-sense mRNAs of variant surface protein in Giardia lamblia trophozoites. Biochem Biophys Res Commun 2014; 444:439-44. [PMID: 24472547 DOI: 10.1016/j.bbrc.2014.01.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 01/20/2014] [Indexed: 12/26/2022]
Abstract
A strategy of the parasitic protozoan Giardia lamblia to evade attack from the host immune system is periodic changes of its surface antigen, a member of the variant surface protein (VSP) family. A post-transcriptional gene silencing mechanism has been proposed to explain the presence of only one among many possible VSPs at any time. To investigate this phenomenon further, we extracted total RNA from cultured trophozoites of the G. lamblia C2 isolate, and cDNA was reverse-transcribed from the RNA. Sense and anti-sense VSPs were amplified from the total cDNA using nested PCR with primers designed from the 3'-conserved region and the known 5' or 3' end of the cDNA library. Sequence analyses of the amplified products revealed more than 34 full-length antisense VSPs and a smear of sense VSPs. Sequence alignments and comparisons revealed that these VSPs contained variable N-termini and conserved C-termini, and could be classified into 5 clades based on the sizes and variations of the N-terminal sequence. All antisense VSPs existed in the sense forms, but no corresponding antisense VSP existed for sense RNA (snsRNA) 16. The coexistence of sense and antisense VSP mRNAs in cultured G. lamblia supports the post-transcriptional regulation of VSP expression. We propose that VSPs transcribed simultaneously in the sense and antisense forms form double-stranded RNAs (dsRNAs) which are degraded by the Dicer endonuclease, while a VSP without an antisense transcription (e.g., snsRNA16) will be expressed on the surface of Giardia. In addition, in the course of this investigation VSPs were identified that were previously not known. PCR-based amplification of specific sense and antisense VSP cDNAs can be used to identify the specific VSP on G. lamblia trophozoites, which is easier than using specific monoclonal antibody approaches.
Collapse
Affiliation(s)
- Junli Guo
- School of Laboratory Medicine, Jilin Medical College, Jilin, Jilin 132013, China; Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199, China
| | - Wenyu Zheng
- Department of Hand Microsurgery, Central Hospital of Jilin City, Jilin, Jilin 132000, China
| | - Yuehua Wang
- School of Laboratory Medicine, Jilin Medical College, Jilin, Jilin 132013, China
| | - Yao Li
- School of Laboratory Medicine, Jilin Medical College, Jilin, Jilin 132013, China
| | - Siqi Lu
- Department of Parasitology, Capital Medical University, Beijing 100069, China
| | - Xianmin Feng
- School of Laboratory Medicine, Jilin Medical College, Jilin, Jilin 132013, China.
| |
Collapse
|
25
|
Ishtiaq M, Campos-Melo D, Volkening K, Strong MJ. Analysis of novel NEFL mRNA targeting microRNAs in amyotrophic lateral sclerosis. PLoS One 2014; 9:e85653. [PMID: 24454911 PMCID: PMC3893244 DOI: 10.1371/journal.pone.0085653] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/29/2013] [Indexed: 02/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by progressive motor neuron degeneration and neurofilament aggregate formation. Spinal motor neurons in ALS also show a selective suppression in the levels of low molecular weight neurofilament (NEFL) mRNA. We have been interested in investigating the role of microRNAs (miRNAs) in NEFL transcript stability. MiRNAs are small, 20–25 nucleotide, non-coding RNAs that act as post-transcriptional gene regulators by targeting the 3′ untranslated region (3′UTR) of mRNA resulting in mRNA decay or translational silencing. In this study, we characterized putative novel miRNAs from a small RNA library derived from control and sporadic ALS (sALS) spinal cords. We detected 80 putative novel miRNAs, 24 of which have miRNA response elements (MREs) within the NEFL mRNA 3′UTR. From this group, we determined by real-time PCR that 10 miRNAs were differentially expressed in sALS compared to controls. Functional analysis by reporter gene assay and relative quantitative RT-PCR showed that two novel miRNAs, miR-b1336 and miR-b2403, were downregulated in ALS spinal cord and that both stabilize NEFL mRNA. We confirmed the direct effect of these latter miRNAs using anit-miR-b1336 and anti-miR-b2403. These results demonstrate that the expression of two miRNAs (miRNAs miR-b1336 and miR-b2403) whose effect is to stabilize NEFL mRNA are down regulated in ALS, the net effect of which is predicted to contribute directly to the loss of NEFL steady state mRNA which is pathognomic of spinal motor neurons in ALS.
Collapse
Affiliation(s)
- Muhammad Ishtiaq
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Danae Campos-Melo
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Kathryn Volkening
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael J. Strong
- Molecular Medicine Research Group, Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Francis JC, Kolomeyevskaya N, Mach CM, Dietrich JE, Anderson ML. MicroRNAs and Recent Insights into Pediatric Ovarian Cancers. Front Oncol 2013; 3:95. [PMID: 23641362 PMCID: PMC3639433 DOI: 10.3389/fonc.2013.00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/07/2013] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the most common pediatric gynecologic malignancy. When diagnosed in children, ovarian cancers present unique challenges that differ dramatically from those faced by adults. Here, we review the spectrum of ovarian cancers found in young women and girls and discuss the biology of these diseases. A number of advances have recently shed significant new understanding on the potential causes of ovarian cancer in this unique population. Particular emphasis is placed on understanding how altered expression of non-coding RNA transcripts known as microRNAs play a key role in the etiology of ovarian germ cell and sex cord-stromal tumors. Emerging transgenic models for these diseases are also reviewed. Lastly, future challenges and opportunities for understanding pediatric ovarian cancers, delineating clinically useful biomarkers, and developing targeted therapies are discussed.
Collapse
Affiliation(s)
- Jessica C Francis
- Department of Obstetrics and Gynecology, Baylor College of Medicine Houston, TX, USA
| | | | | | | | | |
Collapse
|