1
|
Di Fiore R, Drago-Ferrante R, Suleiman S, Calleja N, Calleja-Agius J. The role of microRNA-9 in ovarian and cervical cancers: An updated overview. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108546. [PMID: 39030109 DOI: 10.1016/j.ejso.2024.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Ovarian and cervical cancers are the two most frequent kind of gynaecological cancers (GCs). In spite of advances in prevention, screening and treatment, cervical cancer still leads to an increased morbidity and mortality worldwide. Ovarian cancer is often detected at a late stage, which significantly reduces the effectiveness of available treatments. Therefore, novel methods are desperately needed to improve the clinical care of GC patients. MicroRNAs, also known as short noncoding RNAs (miRNAs/miRs), are a diverse group of RNAs with a length of 22 nucleotides. These typically cause translational repression and mRNA degradation by interacting with target mRNAs' 3' untranslated region (3'-UTR), together with other regions and gene promoters. Under certain conditions, they are also able to activate translation or regulate transcription. It has been demonstrated that miRNAs are crucial to several biological processes leading to tumorigenesis, including GCs. Recent research has shown that miR-9 affects carcinogenesis. In this review, we will provide an overview of current research on the potential utility of miR-9 in the diagnosis, prognosis, and therapy of ovarian and cervical malignancies.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA.
| | - Rosa Drago-Ferrante
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta; BioDNA Laboratories, Malta Life Sciences Park, SGN, 3000, San Gwann, Malta.
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| | - Neville Calleja
- Department of Public Health, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD, 2080, Msida, Malta.
| |
Collapse
|
2
|
Han J, Li S, Cao J, Han H, Lu B, Wen T, Bian W. SLC9A2, suppressing by the transcription suppressor ETS1, restrains growth and invasion of osteosarcoma via inhibition of aerobic glycolysis. ENVIRONMENTAL TOXICOLOGY 2024; 39:238-251. [PMID: 37688782 DOI: 10.1002/tox.23963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Recent studies have shown that Solute Carrier Family 9 Member A2 (SLC9A2) could serve as a biomarker for cancer. However, its mechanism of action in osteosarcoma (OS) was still unclear. In this study, the data sets GSE154530 and GSE99671 were downloaded from the Gene Expression Omnibus (GEO) database, and 31 differentially expressed genes (DEGs) related to methylation were screened by bioinformatics analysis tools. Subsequently, SLC9A2 was screened as a candidate gene from DEGs, which was significantly downregulated in OS. CCK-8, transwell, western blotting and Seahorse XFe24 Cell Metabolic Analyzer assays demonstrated that overexpression of SLC9A2 could constrain OS cell proliferation, invasion, and aerobic glycolysis. Dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated ETS proto-oncogene 1 (ETS1) was a transcription suppressor of SLC9A2, and overexpression of ETS1 could promote methylation levels in specific regions of the SLC9A2 promoter. ETS1 could promote the proliferation, invasion, and aerobic glycolysis ability of OS cells, as well as tumor growth in vivo by inhibiting the expression of SLC9A2. In addition, SLC9A2, suppressing by ETS1, restrains growth and invasion of OS via inhibition of aerobic glycolysis. Thus, SLC9A2 can function as a key inhibitory factor in the aerobic glycolysis to inhibit proliferation and invasion of OS. This indicated that SLC9A2 has a potential targeted therapeutic effect on OS.
Collapse
Affiliation(s)
- Jiangbo Han
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Shen Li
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiongzhe Cao
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Hong Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Bin Lu
- Department of Anesthesiology, Xi'an Chang'an District Hospital, Xi'an, China
| | - Tao Wen
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Weiguo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| |
Collapse
|
3
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
4
|
Pessôa R, de Souza DRV, Nukui Y, Pereira J, Fernandes LA, Marcusso RN, de Oliveira ACP, Casseb J, da Silva Duarte AJ, Sanabani SS. Small RNA Profiling in an HTLV-1-Infected Patient with Acute Adult T-Cell Leukemia-Lymphoma at Diagnosis and after Maintenance Therapy: A Case Study. Int J Mol Sci 2023; 24:10643. [PMID: 37445821 DOI: 10.3390/ijms241310643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Small RNAs (sRNAs) are epigenetic regulators of essential biological processes associated with the development and progression of leukemias, including adult T-cell leukemia/lymphoma (ATLL) caused by human T-cell lymphotropic virus type 1 (HTLV-1), an oncogenic human retrovirus originally discovered in a patient with adult T-cell leukemia/lymphoma. Here, we describe the sRNA profile of a 30-year-old woman with ATLL at the time of diagnosis and after maintenance therapy with the aim of correlating expression levels with response to therapy.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Daniela Raguer Valadão de Souza
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Youko Nukui
- Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Juliana Pereira
- Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Lorena Abreu Fernandes
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Rosa Nascimento Marcusso
- Department of Neurology, Emilio Ribas Institute of Infectious Diseases, São Paulo 01246-900, Brazil
| | | | - Jorge Casseb
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
- Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
- Laboratory of Dermatology and Immunodeficiency, LIM56/03, Instituto de Medicina Tropical de São Paulo Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470 3° andar, São Paulo 05403-000, Brazil
| |
Collapse
|
5
|
Otálora-Otálora BA, González Prieto C, Guerrero L, Bernal-Forigua C, Montecino M, Cañas A, López-Kleine L, Rojas A. Identification of the Transcriptional Regulatory Role of RUNX2 by Network Analysis in Lung Cancer Cells. Biomedicines 2022; 10:3122. [PMID: 36551878 PMCID: PMC9775089 DOI: 10.3390/biomedicines10123122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
The use of a new bioinformatics pipeline allowed the identification of deregulated transcription factors (TFs) coexpressed in lung cancer that could become biomarkers of tumor establishment and progression. A gene regulatory network (GRN) of lung cancer was created with the normalized gene expression levels of differentially expressed genes (DEGs) from the microarray dataset GSE19804. Moreover, coregulatory and transcriptional regulatory network (TRN) analyses were performed for the main regulators identified in the GRN analysis. The gene targets and binding motifs of all potentially implicated regulators were identified in the TRN and with multiple alignments of the TFs' target gene sequences. Six transcription factors (E2F3, FHL2, ETS1, KAT6B, TWIST1, and RUNX2) were identified in the GRN as essential regulators of gene expression in non-small-cell lung cancer (NSCLC) and related to the lung tumoral process. Our findings indicate that RUNX2 could be an important regulator of the lung cancer GRN through the formation of coregulatory complexes with other TFs related to the establishment and progression of lung cancer. Therefore, RUNX2 could become an essential biomarker for developing diagnostic tools and specific treatments against tumoral diseases in the lung after the experimental validation of its regulatory function.
Collapse
Affiliation(s)
- Beatriz Andrea Otálora-Otálora
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110131, Colombia
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | | | - Lucia Guerrero
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Camila Bernal-Forigua
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
| | - Martin Montecino
- Institute of Biomedical Sciences, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370134, Chile
| | - Alejandra Cañas
- Departamento de Medicina Interna, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
- Unidad de Neumología, Hospital Universitario San Ignacio, Bogotá 110211, Colombia
| | - Liliana López-Kleine
- Departamento de Estadística, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá 110211, Colombia
| |
Collapse
|
6
|
Xiao W, Wang J, Wang X, Cai S, Guo Y, Ye L, Li D, Hu A, Jin S, Yuan B, Zhou Y, Li Q, Tong Q, Zheng L. Therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression. Autophagy 2022; 18:2615-2635. [PMID: 35253629 PMCID: PMC9629121 DOI: 10.1080/15548627.2022.2044651] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is a conserved cellular process associated with tumorigenesis and aggressiveness, while mechanisms regulating expression of autophagic machinery genes in cancers still remain elusive. Herein, we identified E2F4 (E2F transcription factor 4) as a novel transcriptional activator of cytoprotective autophagy crucial for zinc homeostasis in cancer cells. Gain- and loss-of-function studies showed that E2F4 promoted autophagy in a cell cycle-dependent manner, resulting in facilitated degradation of MT (metallothionein) proteins, elevated distribution of Zn2+ within autophagosomes, decreased labile intracellular zinc ions, and increased growth, invasion, and metastasis of gastric cancer cells. Mechanistically, E2F4 directly regulated the transcription of ATG2A (autophagy related 2A) and ULK2 (unc-51 like autophagy activating kinase 2), leading to autophagic degradation of MT1E, MT1M, and MT1X, while USP2 (ubiquitin specific peptidase 2) stabilized E2F4 protein to induce its transactivation via physical interaction and deubiquitination in cancer cells. Rescue experiments revealed that USP2 harbored oncogenic properties via E2F4-facilitated autophagy and zinc homeostasis. Emetine, a small chemical inhibitor of autophagy, was able to block interaction between UPS2 and E2F4, increase labile intracellular zinc ions, and suppress tumorigenesis and aggressiveness. In clinical gastric cancer specimens, both USP2 and E2F4 were upregulated and associated with poor outcome of patients. These findings indicate that therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression.Abbreviations: 3-MA: 3-methyladenine; ANOVA: analysis of variance; ATG2A: autophagy related 2A; ATG5: autophagy related 5; ATP: adenosine triphosphate; BECN1: beclin 1; BiFC: bimolecular fluorescence complementation; CCND1: cyclin D1; CDK: cyclin dependent kinase; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; E2F4: E2F transcription factor 4; eATP: extracellular adenosine triphosphate; EBSS: Earle's balanced salt solution; FP: first progression; FRET: fluorescence resonance energy transfer; FUCCI: fluorescent ubiquitination-based cell cycle indicator; GFP: green fluorescent protein; GST: glutathione S-transferase; HA: hemagglutinin; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MDM2: MDM2 proto-oncogene; MKI67/Ki-67: marker of proliferation Ki-67; MT: metallothionein; MT1E: metallothionein 1E; MT1M: metallothionein 1M; MT1X: metallothionein 1X; MTT: 3-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide; OS: overall survival; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; qPCR: quantitative PCR; RFP: red fluorescent protein; SQSTM1/p62: sequestosome 1; UBXN1: UBX domain protein 1; Ub: ubiquitin; ULK2: unc-51 like autophagy activating kinase 2; USP14: ubiquitin specific peptidase 14; USP2: ubiquitin specific peptidase 2; USP5: ubiquitin specific peptidase 5; USP7: ubiquitin specific peptidase 7; ZnCl2: zinc chloride.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuang Cai
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Ye
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shikai Jin
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Boling Yuan
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qilan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
Guo X, Chai Y, Zhao Y, Wang D, Ding P, Bian Y. Correlation between mechanism of oxidized-low density lipoprotein-induced macrophage apoptosis and inhibition of target gene platelet derived growth factor receptor-β expression by microRNA-9. Bioengineered 2021; 12:11716-11725. [PMID: 34895040 PMCID: PMC8810159 DOI: 10.1080/21655979.2021.2006864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was to explore the effects of oxidized-low density lipoprotein (ox-LDL) on the proliferation and apoptosis of macrophages, and the role of miRNA-9 in the targeted regulation of platelet-derived growth factor receptor-β (PDGFR-β) expression. Macrophage RAW264.7 cells were cultured and foamed with 100 mg/L ox-LDL to detect the cell proliferation and apoptosis and target protein expression levels. Subsequently, the miRNA-9 mimics and inhibitors were transfected to detect the expression level of PDGFR-β. The dual-luciferase reporter gene was predicted and applied to detect the target-binding effect of miRNA-9 and PDGFR-β in the cells. The results showed that ox-LDL could induce the foaming of macrophages RAW264.7, inhibit the cell proliferation, and promote the cell apoptosis. After ox-LDL induction, expression of Caspase-3 in macrophages RAW264.7 was up-regulated, and that of glucose regulated protein 78 was down-regulated. The transfection of miRNA-9 mimics could greatly inhibit the expression of PDGFR-β mRNA and proteins in the cells. In addition, the results of the dual-luciferase reporter gene showed that the ratio of luciferase activity was significantly reduced after the miRNA-9 mimic and the wild-type PDGFR-β plasmid were co-transfected. In summary, ox-LDL could induce foaming of macrophages and promote cell apoptosis, and miRNA-9 could target and bind to the 3ʹUTR region of PDGFR-β, thereby inhibiting the gene expression.
Collapse
Affiliation(s)
- Xunan Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Chai
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuqing Zhao
- Department of Cardiology, Xinzhou People's Hospital, Xinzhou, China
| | - Dongying Wang
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Peng Ding
- Digestive System Department, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yunfei Bian
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Bahrami A, Jafari A, Ferns GA. The dual role of microRNA-9 in gastrointestinal cancers: oncomiR or tumor suppressor? Biomed Pharmacother 2021; 145:112394. [PMID: 34781141 DOI: 10.1016/j.biopha.2021.112394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
microRNA are noncoding endogenous RNAs of ∼ 25-nucleotide, involved in RNA silencing and controlling of cell function. Recent evidence has highlighted the important role of various in the biology of human cancers. miR-9 is a highly conserved microRNA and abnormal regulation of miR-9 expression has various impacts on disease pathology. miR-9 may play a dual tumor-suppressive or oncomiR activity in several cancers. There have been conflicting reports concerning the role of miR-9 in gastrointestinal cancers. Several signaling pathways including PDK/AKT, Hippo, Wnt/β-catenin and PDGFRB axes are affected by miR-9 in suppressing proliferation, invasion and metastasis of tumor cells. Oncogenic miR-9 triggers migration, metastasis and clinic-pathological characteristics of patients with gastrointestinal malignancy by targeting various enzymes and transcription factors such as E-cadherin, HK2, LMX1A, and CDX2. On the other hand, long non-coding RNAs and circular RNAs can modulate miR-9 expression in human cancers. In this review, we aimed to summarize recent findings about the potential value of miR-9 in gastrointestinal tumors, that include: screening, prognostic and treatment.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| |
Collapse
|
9
|
Liu Y, Zhao Q, Xi T, Zheng L, Li X. MicroRNA-9 as a paradoxical but critical regulator of cancer metastasis: Implications in personalized medicine. Genes Dis 2021; 8:759-768. [PMID: 34522706 PMCID: PMC8427239 DOI: 10.1016/j.gendis.2020.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis, is a development of secondary tumor growths at a distance from the primary site, and closely related to poor prognosis and mortality. However, there is still no effective treatment for metastatic cancer. Therefore, there is an urgent need to find an effective therapy for cancer metastasis. Plenty of evidence indicates that miR-9 can function as a promoter or suppressor in cancer metastasis and coordinate multistep of metastatic process. In this review, we summarize the different roles of miR-9 with the corresponding molecular mechanisms in metastasis of twelve common cancers and the multiple mechanisms underlying miR-9-mediated regulation of metastasis, benefiting the further research of miR-9 and metastasis, and hoping to bridge it with clinical applications.
Collapse
Affiliation(s)
- Yichen Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, PR China.,School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Qiong Zhao
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, Jiangsu Province, 211198, PR China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210023, PR China
| |
Collapse
|
10
|
Ghasemi T, Khalaj-Kondori M, Hosseinpour Feizi MA, Asadi P. Aberrant expression of lncRNAs SNHG6, TRPM2-AS1, MIR4435-2HG, and hypomethylation of TRPM2-AS1 promoter in colorectal cancer. Cell Biol Int 2021; 45:2464-2478. [PMID: 34431156 DOI: 10.1002/cbin.11692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/08/2021] [Accepted: 08/22/2021] [Indexed: 01/30/2023]
Abstract
Accumulating evidence has indicated that deregulation of lncRNAs plays essential roles in colorectal cancer (CRC) carcinogenesis. The goal of this study was to analyze the expression of lncRNAs in colorectal cancer and their association with clinicopathological variables. Bioinformatics analysis of published CRC microarray data was performed to identify the important lncRNAs. The expression levels of candidate genes were assessed in the human colon cancer/normal cell lines, CRC, adenomatous colorectal polyps, and their marginal tissues by qRT-PCR. Moreover, the methylation status of the TRPM2-AS1 promoter was studied using qMSP assay. Furthermore, we investigated the molecular mechanisms of these lncRNAs in CRC progression using in silico analysis. Microarray analysis revealed that lncRNAs SNHG6, MIR4435-2HG, and TRPM2-AS1 were upregulated in CRC. These results were validated in colon cell lines. Moreover, qRT-PCR showed that the expression levels of SNHG6 and TRPM2-AS1 were upregulated in the colorectal tumor tissues compared with their paired tissues. Nonetheless, there was no significant increase in MIR4435-2HG expression in CRC samples. Furthermore, we observed a significant hypomethylation of TRPM2-AS1 promoter and its activation in CRC tissues. By in silico analysis, we found that the lncRNAs upregulation could promote proliferation and drug resistance of colorectal cancer cells via miRNAs sponging and modulation of their targets expression. In conclusion, based on our results upregulation of SNHG6 and TRPM2-AS1, and hypomethylation of TRPM2-AS1 promoter might be considered as potential diagnostic biomarkers for CRC initiation and development.
Collapse
Affiliation(s)
- Tayyebeh Ghasemi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parviz Asadi
- Medical Science Division, Imam Sajjad Hospital, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
11
|
Ghasemi T, Khalaj-Kondori M, Hosseinpour Feizi MA, Asadi P. Long non-coding RNA AGAP2-AS1 is up regulated in colorectal cancer. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:829-844. [PMID: 34308771 DOI: 10.1080/15257770.2021.1956530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has indicated that, aberrant lncRNA expression plays essential roles in the colorectal cancer (CRC) tumorigenesis. AGAP2-AS1 is upregulated in some cancers, however, its involvement in the CRC tumorigenesis in the population of North-West of Iran has remained unknown. In this study, we evaluated its deregulation in CRC microarray datasets, colon cell lines, CRC tumor, adenomatous colorectal polyps and their paired normal tissues. The results showed that AGAP2-AS1 is upregulated in CRC and might be considered as a potential biomarker for CRC development. Moreover, our results suggest AGAP2-AS1 promoted CRC progression by sponging the hsa-miR-15/16 family and upregulation of their targets.
Collapse
Affiliation(s)
- Tayyebeh Ghasemi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parviz Asadi
- Medical Science Division, Imam Sajjad Hospital, Islamic Azad university, Tabriz, Iran
| |
Collapse
|
12
|
Ito T, Igaki T. Yorkie drives Ras-induced tumor progression by microRNA-mediated inhibition of cellular senescence. Sci Signal 2021; 14:14/685/eaaz3578. [PMID: 34074704 DOI: 10.1126/scisignal.aaz3578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The activation of Ras signaling is a major early event of oncogenesis in many contexts, yet paradoxically, Ras signaling induces cellular senescence, which prevents tumorigenesis. Thus, Ras-activated cells must overcome senescence to develop into cancer. Through a genetic screen in Drosophila melanogaster, we found that the ETS family transcriptional activator Pointed (Pnt) was necessary and sufficient to trigger cellular senescence upon Ras activation and blocked Ras-induced tumor growth in eye-antennal discs. Through analyses of mosaic discs using various genetic tools, we identified a mechanism of tumor progression in which loss of cell polarity, a common driver of epithelial oncogenesis, abrogated Ras-induced cellular senescence through microRNA-mediated inhibition of Pnt. Mechanistically, polarity defects in Ras-activated cells caused activation of the Hippo effector Yorkie (Yki), which induced the expression of the microRNA bantam bantam-mediated repression of the E3 ligase-associated protein Tribbles (Trbl) relieved Ras- and Akt-dependent inhibition of the transcription factor FoxO. The restoration of FoxO activity in Ras-activated cells induced the expression of the microRNAs miR-9c and miR-79, which led to reduced pnt expression, thereby abrogating cellular senescence and promoting tumor progression. Our findings provide a mechanistic explanation for how Ras-activated tumors progress toward malignancy by overcoming cellular senescence.
Collapse
Affiliation(s)
- Takao Ito
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Tavakoli S, Gholami M, Ghorban K, Nojoumi F, Faghihloo E, Dadmanesh M, Rouzbahani NH. Transcriptional regulation of T-bet, GATA3, ROR<gamma>T, HERV-K env, Syncytin-1, microRNA-9, 192 and 205 induced by nisin in colorectal cancer cell lines (SW480, HCT116) and human peripheral blood mononuclear cell. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Ishikawa M, Iwasaki M, Sakamoto A, Ma D. Anesthetics may modulate cancer surgical outcome: a possible role of miRNAs regulation. BMC Anesthesiol 2021; 21:71. [PMID: 33750303 PMCID: PMC7941705 DOI: 10.1186/s12871-021-01294-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background microRNAs (miRNAs) are single-stranded and noncoding RNA molecules that control post-transcriptional gene regulation. miRNAs can be tumor suppressors or oncogenes through various mechanism including cancer cell biology, cell-to-cell communication, and anti-cancer immunity. Main Body Anesthetics can affect cell biology through miRNA-mediated regulation of messenger RNA (mRNA). Indeed, sevoflurane was reported to upregulate miR-203 and suppresses breast cancer cell proliferation. Propofol reduces matrix metalloproteinase expression through its impact on miRNAs, leading to anti-cancer microenvironmental changes. Propofol also modifies miRNA expression profile in circulating extracellular vesicles with their subsequent anti-cancer effects via modulating cell-to-cell communication. Conclusion Inhalational and intravenous anesthetics can alter cancer cell biology through various cellular signaling pathways induced by miRNAs’ modification. However, this area of research is insufficient and further study is needed to figure out optimal anesthesia regimens for cancer patients.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan. .,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK.
| | - Masae Iwasaki
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan.,Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo, Tokyo, 113-8603, Japan
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, 369 Fulham Rd, London, SW10 9NH, UK
| |
Collapse
|
15
|
Leonardi L, Scotlandi K, Pettinari I, Benassi MS, Porcellato I, Pazzaglia L. MiRNAs in Canine and Human Osteosarcoma: A Highlight Review on Comparative Biomolecular Aspects. Cells 2021; 10:cells10020428. [PMID: 33670554 PMCID: PMC7922516 DOI: 10.3390/cells10020428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is the most frequent primary malignant tumor of bone in humans and animals. Comparative oncology is a field of study that examines the cancer risk and tumor progression across the species. The canine model is ideally suited for translational cancer research. The biological and clinical characteristics of human and canine OS are common to hypothesize as that several living and environmental common conditions shared between the two species can influence some etiopathogenetic mechanisms, for which the canine species represents an important model of comparison with the human species. In the canine and human species, osteosarcoma is the tumor of bone with the highest frequency, with a value of about 80–85% (in respect to all other bone tumors), a high degree of invasiveness, and a high rate of metastasis and malignancy. Humans and dogs have many genetic and biomolecular similarities such as alterations in the expression of p53 and in some types of microRNAs that our working group has already described previously in several separate works. In this paper, we report and collect new comparative biomolecular features of osteosarcoma in dogs and humans, which may represent an innovative update on the biomolecular profile of this tumor.
Collapse
Affiliation(s)
- Leonardo Leonardi
- Reparto di Patologia Generale e Anatomia Patologica Veterinaria, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (I.P.); (I.P.)
- Correspondence: ; Tel.: +39-075-585-7663
| | - Katia Scotlandi
- Laboratory of experimental Oncology, IRCCS—Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (K.S.); (M.S.B.); (L.P.)
| | - Ilaria Pettinari
- Reparto di Patologia Generale e Anatomia Patologica Veterinaria, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (I.P.); (I.P.)
| | - Maria Serena Benassi
- Laboratory of experimental Oncology, IRCCS—Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (K.S.); (M.S.B.); (L.P.)
| | - Ilaria Porcellato
- Reparto di Patologia Generale e Anatomia Patologica Veterinaria, Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (I.P.); (I.P.)
| | - Laura Pazzaglia
- Laboratory of experimental Oncology, IRCCS—Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (K.S.); (M.S.B.); (L.P.)
| |
Collapse
|
16
|
Palmini G, Romagnoli C, Donati S, Zonefrati R, Galli G, Marini F, Iantomasi T, Aldinucci A, Leoncini G, Franchi A, Beltrami G, Campanacci DA, Capanna R, Brandi ML. Analysis of a Preliminary microRNA Expression Signature in a Human Telangiectatic Osteogenic Sarcoma Cancer Cell Line. Int J Mol Sci 2021; 22:1163. [PMID: 33503899 PMCID: PMC7866083 DOI: 10.3390/ijms22031163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
Telangiectatic osteosarcoma (TOS) is an aggressive variant of osteosarcoma (OS) with distinctive radiographic, gross, microscopic features, and prognostic implications. Despite several studies on OS, we are still far from understanding the molecular mechanisms of TOS. In recent years, many studies have demonstrated not only that microRNAs (miRNAs) are involved in OS tumorigenesis, development, and metastasis, but also that the presence in high-grade types of OS of cancer stem cells (CSCs) plays an important role in tumor progression. Despite these findings, nothing has been described previously about the expression of miRNAs and the presence of CSCs in human TOS. Therefore, we have isolated/characterized a putative CSC cell line from human TOS (TOS-CSCs) and evaluated the expression levels of several miRNAs in TOS-CSCs using real-time quantitative assays. We show, for the first time, the existence of CSCs in human TOS, highlighting the in vitro establishment of this unique stabilized cell line and an identification of a preliminary expression of the miRNA profile, characteristic of TOS-CSCs. These findings represent an important step in the study of the biology of one of the most aggressive variants of OS and the role of miRNAs in TOS-CSC behavior.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Roberto Zonefrati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Alessandra Aldinucci
- Central Laboratory, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Gigliola Leoncini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Giovanni Beltrami
- Ortopedia Oncologica Pediatrica, AOU Careggi-AOU Meyer, 50139 Florence, Italy
| | | | - Rodolfo Capanna
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Fondazione Italiana Ricerca sulle Malattie dell'Osso (FIRMO Onlus), 50141 Florence, Italy
| |
Collapse
|
17
|
Kipkeeva F, Muzaffarova T, Korotaeva A, Nikulin M, Grishina K, Mansorunov D, Apanovich P, Karpukhin A. MicroRNA in Gastric Cancer Development: Mechanisms and Biomarkers. Diagnostics (Basel) 2020; 10:E891. [PMID: 33142817 PMCID: PMC7692123 DOI: 10.3390/diagnostics10110891] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and difficult diseases to treat. The study of signaling pathway regulation by microRNA provides information on the mechanisms of GC development and is the basis for biomarker creation. In this study, a circuit of microRNA interactions with signaling pathways was constructed. The microRNAs, associated with metastasis and chemoresistance, are described. In most cases, microRNAs in GC regulate the Wnt/β-catenin, PI3K/AKT/mTOR, RAS/RAF/ERK/MAPK, NF-kB, TGF-β, and JAK/STAT pathways. Part of the microRNA acts on several target genes that function in different pathways. This often leads to an intensification of the induced processes. MicroRNAs have also been described that have the opposite effect on different pathways, causing different functional consequences. By acting on several target genes, or genes associated with several pathways, microRNAs can function in a signaling network. MicroRNAs associated with metastasis most often interact with the Wnt/β-catenin pathway. MicroRNAs affecting chemoresistance, in most cases, affect the regulators of apoptosis and are associated with the PI3K/AKT/mTOR pathway. The characteristics of microRNAs proposed as candidates for GC biomarkers were analyzed. The currently developed diagnostic and prognostic panels of microRNAs are also considered.
Collapse
Affiliation(s)
- Fatimat Kipkeeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Tatyana Muzaffarova
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexandra Korotaeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Maxim Nikulin
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia;
| | - Kristina Grishina
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Danzan Mansorunov
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Pavel Apanovich
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexander Karpukhin
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| |
Collapse
|
18
|
Gang W, Tanjun W, Yong H, Jiajun Q, Yi Z, Hao H. Inhibition of miR-9 decreases osteosarcoma cell proliferation. Bosn J Basic Med Sci 2020; 20:218-225. [PMID: 31724522 PMCID: PMC7202196 DOI: 10.17305/bjbms.2019.4434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor that affects adolescents and young adults. Disruption of microRNA (miRNA) regulation is well established in the pathophysiology of different cancers, including OS. Increased expression of miR-9 in OS positively correlates with the tumor size, clinical stage, and distant metastasis. In the present study, we used two different OS cell lines, MG-63 and Saos-2, as in vitro models. miR-9 inhibitor and miR-9 mimics were used to study the function of miR-9 in these two cell lines. We determined the effect of miR-9 inhibition on cell proliferation, cell cycle, apoptosis, and the protein expression of different genes. Our results demonstrated that miR-9 inhibition in the human OS cell lines suppresses their metastatic potential, as determined by decreased cell proliferation and cell cycle arrest, decreased invasion, and increased apoptosis. The Western blot analysis showed that E-cadherin, matrix metalloproteinase 13, forkhead box O3, Bcl-2-like protein 11, and β-catenin are involved in miR-9 signaling. Moreover, miR-9 mimics rescued the effects caused by the inhibition of miR-9 in the OS cell lines. Our findings suggest that miR-9 is important for mediating OS cell migration, invasion, metastasis, and apoptosis. Inhibition of miR-9 could be further explored as a therapeutic target to treat OS.
Collapse
Affiliation(s)
- Wu Gang
- Department of Orthopedics, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Wei Tanjun
- Department of Orthopedics, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Huang Yong
- Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Qin Jiajun
- Department of Orthopedics, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Zhang Yi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hu Hao
- Department of Orthopedics, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China; Department of Orthopedics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
19
|
Tavakolian S, Goudarzi H, Faghihloo E. Evaluating the expression level of miR-9-5p and miR-192-5p in gastrointestinal cancer: introducing novel screening biomarkers for patients. BMC Res Notes 2020; 13:226. [PMID: 32307002 PMCID: PMC7168809 DOI: 10.1186/s13104-020-05071-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE It has been indicated that there is a tight association between cancer and different factors, such as environment and genetics, including aberrantly expressed microRNAs. The crucial role of microRNAs in the regulation of diverse signaling pathways in gastrointestinal cancer has been established in several studies. In this study, we aimed to evaluate the expression of microRNA-9 and -192 in colon and gastric cancers. After extracting the RNA from tissues and serum samples of patients, suffering from colon and gastric cancer, cDNA was synthesized. Then by performing quantitative real-time PCR, we evaluated the expression level of miR-9-5p and miR-192-5p in collected samples. RESULTS Unlike to colon cancer in which the expression level of miR-9-5p remained unchanged, the relative expression of this miRNA decreased remarkably in gastric cancer (with P value < 0.05), in comparison with normal adjacent tissues. In agreement with this finding, we also found that the expression level of miR-192-5p was decreased in gastric cancer tissues, compared to normal gastric tissue. Given the reduction in the expression level of miR-9-5p and miR-192-5p in gastric cancer, it could be postulated to consider these miRNAs as promising diagnostic biomarkers.
Collapse
Affiliation(s)
- Shaian Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 37517, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 37517, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 37517, Iran.
| |
Collapse
|
20
|
Luo Y, Liu F, Yan C, Qu W, Zhu L, Guo Z, Zhou F, Zhang W. Long Non-Coding RNA CASC19 Sponges microRNA-532 and Promotes Oncogenicity of Clear Cell Renal Cell Carcinoma by Increasing ETS1 Expression. Cancer Manag Res 2020; 12:2195-2207. [PMID: 32273759 PMCID: PMC7102911 DOI: 10.2147/cmar.s242472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose The long non-coding RNA cancer susceptibility 19 (CASC19) is recognized as an important regulator in gastric cancer, colorectal cancer, and non-small cell lung cancer. Nevertheless, to the best of our knowledge, the expression status and detailed roles of CASC19 in clear cell renal cell carcinoma (ccRCC) have not been elucidated. Hence, we aimed to determine CASC19 expression in ccRCC and investigate its roles in ccRCC oncogenicity. The molecular mechanisms underlying CASC19 functions in ccRCC were also determined. Methods CASC19 expression was measured by using reverse transcription-quantitative polymerase chain reaction. The effects of CASC19 on ccRCC cell proliferation, colony formation, migration, and invasiveness in vitro, as well as on tumor growth in vivo, were examined by the MTT assay, colony formation assay, cell migration and invasiveness assays, and tumor xenograft in nude nice, respectively. Results CASC19 was overexpressed in ccRCC tissues and cell lines. High expression of CASC19 was closely associated with unfavorable clinicopathological parameters and predicted negative clinical outcomes in patients with ccRCC. Knockdown of CASC19 decreased ccRCC cell proliferation, colony formation, migration, and invasiveness, as well as attenuated tumor growth in vivo. Mechanistically, CASC19 functioned as a competing endogenous RNA and upregulated the expression of ETS proto-oncogene 1 (ETS1) through sponging microRNA-532 (miR-532). Furthermore, rescue assays revealed that inhibiting miR-532 or restoring ETS1 expression partially abolished the impacts of CASC19 knockdown on ccRCC cells. Conclusion The CASC19/miR-532/ETS1 regulatory pathway is crucial for the malignant manifestations of ccRCC, which makes it an attractive target for potential treatments of ccRCC.
Collapse
Affiliation(s)
- Yu Luo
- Department of Urology, The 161st Hospital of the People's Liberation Army, Wuhan, Hubei 430010, People's Republic of China
| | - Feng Liu
- Department of Urology, The 161st Hospital of the People's Liberation Army, Wuhan, Hubei 430010, People's Republic of China
| | - Chunhui Yan
- Department of Urology, The 161st Hospital of the People's Liberation Army, Wuhan, Hubei 430010, People's Republic of China
| | - Wei Qu
- Department of Urology, The 161st Hospital of the People's Liberation Army, Wuhan, Hubei 430010, People's Republic of China
| | - Liang Zhu
- Department of Urology, The 161st Hospital of the People's Liberation Army, Wuhan, Hubei 430010, People's Republic of China
| | - Zheng Guo
- Department of Urology, The 161st Hospital of the People's Liberation Army, Wuhan, Hubei 430010, People's Republic of China
| | - Fan Zhou
- Department of Urology, The 161st Hospital of the People's Liberation Army, Wuhan, Hubei 430010, People's Republic of China
| | - Wei Zhang
- Department of Urology, The 161st Hospital of the People's Liberation Army, Wuhan, Hubei 430010, People's Republic of China
| |
Collapse
|
21
|
Zhao X, Li D, Yang F, Lian H, Wang J, Wang X, Fang E, Song H, Hu A, Guo Y, Liu Y, Li H, Chen Y, Huang K, Zheng L, Tong Q. Long Noncoding RNA NHEG1 Drives β-Catenin Transactivation and Neuroblastoma Progression through Interacting with DDX5. Mol Ther 2020; 28:946-962. [PMID: 31982037 DOI: 10.1016/j.ymthe.2019.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that long noncoding RNAs (lncRNAs) play essential roles in tumor progression. However, the functional roles and underlying mechanisms of lncRNAs in neuroblastoma (NB), the most common malignant solid tumor in pediatric population, still remain elusive. Herein, through integrating analysis of a public RNA sequencing dataset, neuroblastoma highly expressed 1 (NHEG1) was identified as a risk-associated lncRNA, contributing to an unfavorable outcome of NB. Depletion of NHEG1 led to facilitated differentiation and decreased growth and aggressiveness of NB cells. Mechanistically, NHEG1 bound to and stabilized DEAD-box helicase 5 (DDX5) protein through repressing proteasome-mediated degradation, resulting in β-catenin transactivation that altered target gene expression associated with NB progression. We further determined a lymphoid enhancer binding factor 1 (LEF1)/transcription factor 7-like 2 (TCF7L2)/NHEG1/DDX5/β-catenin axis with a positive feedback loop and demonstrated that NHEG1 harbored oncogenic properties via its interplay with DDX5. Administration of small interfering RNAs against NHEG1 or DDX5 reduced tumor growth and prolonged survival of nude mice bearing xenografts. High NHEG1 or DDX5 expression was associated with poor survival of NB patients. These results indicate that lncRNA NHEG1 exhibits oncogenic activity that affects NB progression via stabilizing the DDX5 protein, which might serve as a potential therapeutic target for NB.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Heng Lian
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yang Liu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, P.R. China.
| |
Collapse
|
22
|
Cheng K, Feng L, Yu S, Yu C, Chi N. MicroRNA-769-5p Inhibits Pancreatic Ductal Adenocarcinoma Progression by Directly Targeting and Downregulating ETS Proto-Oncogene 1. Onco Targets Ther 2019; 12:11737-11750. [PMID: 32099382 PMCID: PMC6997441 DOI: 10.2147/ott.s218876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose MicroRNA-769-5p (miR-769) is aberrantly expressed and plays crucial roles in non-small cell lung cancer and melanoma. However, the expression pattern, biological role, and mechanisms of action of miR-769 in pancreatic ductal adenocarcinoma (PDAC) are yet to be fully elucidated. Therefore, we attempted to determine the potential regulatory function of miR-769 in PDAC progression and to explore the underlying mechanisms in detail. Methods In this study, reverse-transcription quantitative polymerase chain reaction was carried out to determine the expression profile of miR-769 in PDAC. A series of experiments, including a Cell Counting Kit-8 assay, flow-cytometric analysis, Transwell migration and invasion assays, and a xenograft animal model, were applied to test whether miR-769 affects the malignancy of PDAC. Results We found that miR-769 was significantly underexpressed in PDAC tissues and cell lines. The low miR-769 expression significantly correlated with the TNM stage and lymph node metastasis. Patients with PDAC harboring low miR-769 expression showed shorter overall survival than did the patients with high miR-769 expression. Forced upregulation of miR-769 suppressed PDAC cell proliferation, migration, and invasion in vitro; promoted apoptosis in vitro; and hindered tumor growth in vivo. Experiments on the mechanism identified ETS proto-oncogene 1 (ETS1) as a direct target gene of miR-769 in PDAC cells. Furthermore, ETS1 turned out to be upregulated in PDAC tissue samples, and the upregulation of ETS1 negatively correlated with miR-769 expression. Moreover, ETS1 knockdown simulated the tumor-suppressive effects of miR-769 overexpression on PDAC cells. Besides, ETS1 reintroduction attenuated the antitumor actions of miR-769 upregulation in PDAC cells. Conclusion Our findings indicate that miR-769 performs tumor-suppressive functions in PDAC by directly targeting ETS1, and this miRNA may represent a potential therapeutic target for the development of anticancer therapies.
Collapse
Affiliation(s)
- Kai Cheng
- Department of Gastroenterology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, People's Republic of China
| | - Lan Feng
- Department of Infectious Diseases, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, People's Republic of China
| | - Shuang Yu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, People's Republic of China
| | - Changhong Yu
- Department of Gastroenterology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, People's Republic of China
| | - Nannan Chi
- Department of Gastroenterology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, People's Republic of China
| |
Collapse
|
23
|
Hang C, Yan HS, Gong C, Gao H, Mao QH, Zhu JX. MicroRNA-9 inhibits gastric cancer cell proliferation and migration by targeting neuropilin-1. Exp Ther Med 2019; 18:2524-2530. [PMID: 31572503 PMCID: PMC6755461 DOI: 10.3892/etm.2019.7841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/17/2019] [Indexed: 01/13/2023] Open
Abstract
Gastric cancer (GC) is a global health problem with poor clinical outcomes. The mechanism of its development and progression remains largely unclear. The present study investigated the role of microRNA-9 (miR-9-5p) in the development and progression of GC. Overexpression of miR-9-5p led to reduced expression of neuropilin-1 (NRP-1) in GC cells. Dual-luciferase reporter assay results indicated that miR-9-5p directly targeted NRP-1. Furthermore, overexpression of miR-9-5p in GC cells increased the expression of mesenchymal markers, N-cadherin and vimentin, and decreased the expression of epithelial markers, E-cadherin and β-catenin. Overexpression of miR-9-5p inhibited GC cell proliferation, migration and invasion, and increased the sensitivity of GC cells to the anti-cancer drug cisplatin. By contrast, the opposite effects were observed in GC cells following downregulation of miR-9-5p. Taken together, the present findings suggested that miR-9-5p suppressed NRP-1 expression and inhibited GC cell proliferation and invasion. In addition, miR-9-5p overexpression attenuated GC cell resistance to anti-cancer drugs, which highlighted the potential of miR-9-5p as a target for the treatment of GC.
Collapse
Affiliation(s)
- Cheng Hang
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, Jiangsu 215400, P.R. China
| | - Hui-Shen Yan
- Department of Traditional Chinese Medicine, Medical College of Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, P.R. China
| | - Chen Gong
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, Jiangsu 215400, P.R. China
| | - Hua Gao
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, Jiangsu 215400, P.R. China
| | - Qiu-Hui Mao
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, Jiangsu 215400, P.R. China
| | - Jian-Xin Zhu
- Department of Gastroenterology, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, Jiangsu 215400, P.R. China
| |
Collapse
|
24
|
Zeng Y, Yao X, Liu X, He X, Li L, Liu X, Yan Z, Wu J, Fu BM. Anti-angiogenesis triggers exosomes release from endothelial cells to promote tumor vasculogenesis. J Extracell Vesicles 2019; 8:1629865. [PMID: 31258881 PMCID: PMC6586113 DOI: 10.1080/20013078.2019.1629865] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 02/05/2023] Open
Abstract
Although anti-angiogenic therapies (AATs) have some effects against multiple malignancies, they are limited by subsequent tumor vasculogenesis and progression. To investigate the mechanisms by which tumor vasculogenesis and progression following AATs, we transfected microRNA (miR)-9 into human umbilical vein endothelial cells (HUVECs) to mimic the tumor-associated endothelial cells in hepatocellular carcinoma and simulated the AATs in vitro and in vivo. We found that administration of the angiogenesis inhibitor vandetanib completely abolished miR-9-induced angiogenesis and promoted autophagy in HUVECs, but induced the release of vascular endothelial growth factor (VEGF)-enriched exosomes. These VEGF-enriched exosomes significantly promoted the formation of endothelial vessels and vasculogenic mimicry in hepatocellular carcinoma and its progression in mice. Anti-autophagic therapy is proposed to improve the efficacy of AATs. However, similar effects by AATs were observed with the application of anti-autophagy by 3-methyladenine. Our results revealed that tumor vasculogenesis and progression after AATs and anti-autophagic therapies were due to the cross-talk between endothelial and tumor cells via VEGF-enriched exosomes.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xinghong Yao
- Radiation Therapy Center, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xueling He
- Laboratory Animal Center, Sichuan University, Chengdu, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiping Yan
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jiang Wu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY, USA
| |
Collapse
|
25
|
MicroRNA-9 enhanced radiosensitivity and its mechanism of DNA methylation in non-small cell lung cancer. Gene 2019; 710:178-185. [PMID: 31158449 DOI: 10.1016/j.gene.2019.05.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022]
Abstract
In order to improve the therapeutic effect of non-small cell lung cancer (NSCLC), it is critical to combine radiation and gene therapy. Our study found that the activation of microRNA-9 (miR-9) conferred ionizing radiation (IR) sensitivity in cancer cells. Furthermore, increased microRNA-9 promoter methylation level was observed after IR. Our study combined the IR and microRNA-9 overexpression treatment which leads to a significant enhancement in the therapeutic efficiency in lung cancer both in vitro and in vivo. Therefore, it is plausible that microRNA-9 can be used as a novel therapeutic strategy of NSCLC. MTT assay was performed to detect the effect of microRNA-9 on the survival and growth of NSCLC cells. Flow cytometry results showed that microRNA-9 enhanced the apoptosis of NSCLC cells. Wound healing assay found that microRNA-9 can inhibit the migration of NSCLC cells and enhance the effect of radiation on the migration of NSCLC cells. In addition, bisulfate sequencing PCR was performed to analyze the methylation status of the microRNA-9 promoter. In order to determine the effect of microRNA-9 and its promoter methylation status on proliferation and radio-sensitivity in vivo, a subcutaneous tumor formation assay in nude mice was performed. Results have shown that microRNA-9 overexpression increased the radiosensitivity of A549 cells by inhibiting cell activity and migration, and by increasing apoptosis. In addition, the promoter methylation status of the microRNA-9 gene increased in response to ionizing radiation. Our study demonstrated that microRNA-9 enhanced radiosensitivity in NSCLC and this effect is highly regulated by its promoter methylation status. These results will help to clarify regulatory mechanisms of radiation resistance thus stimulate new methods for improving radiotherapy for NSCLC.
Collapse
|
26
|
The Role of MicroRNAs in the Regulation of Gastric Cancer Stem Cells: A Meta-Analysis of the Current Status. J Clin Med 2019; 8:jcm8050639. [PMID: 31075910 PMCID: PMC6572052 DOI: 10.3390/jcm8050639] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains one of the major causes of cancer-related mortality worldwide. As for other types of cancers, several limitations to the success of current therapeutic GC treatments may be due to cancer drug resistance that leads to tumor recurrence and metastasis. Increasing evidence suggests that cancer stem cells (CSCs) are among the major causative factors of cancer treatment failure. The research of molecular CSC mechanisms and the regulation of their properties have been intensively studied. To date, molecular gastric cancer stem cell (GCSC) characterization remains largely incomplete. Among the GCSC-targeting approaches to overcome tumor progression, recent studies have focused their attention on microRNA (miRNA). The miRNAs are short non-coding RNAs which play an important role in the regulation of numerous cellular processes through the modulation of their target gene expression. In this review, we summarize and discuss recent findings on the role of miRNAs in GCSC regulation. In addition, we perform a meta-analysis aimed to identify novel miRNAs involved in GCSC homeostasis.
Collapse
|
27
|
Yan H, Xin S, Ma J, Wang H, Zhang H, Liu J. A three microRNA-based prognostic signature for small cell lung cancer overall survival. J Cell Biochem 2019; 120:8723-8730. [PMID: 30536412 DOI: 10.1002/jcb.28159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Small-cell lung cancer (SCLC) is one of the most aggressive cancers with mechanisms far from understood. OBJECTIVE We proposed to identify valuable prognostic signature for SCLC prognosis prediction. METHODS microRNA (miRNA) expression profiles of 42 SCLC patients were acquired from the Gene Expression Omnibus. miRNAs that significantly associated with SCLC overall survival (OS-relevant) were identified through univariate Cox regression analysis followed by random survival forest analysis for identification of more reliable miRNA signature. RESULTS Eleven OS-relevant miRNAs were obtained, and hsa-miR-194, hsa-miR-608, and hsa-miR-9 were further refined through RFS. A formula composed of the three miRNAs' expression values weighted by their multivariate Cox regression coefficients was constructed, and based on which, SCLC patients with longer OS could be well distinguished from those with shorter OS. CONCLUSIONS This study should provide a valuable clue for SCLC prognosis evaluation.
Collapse
Affiliation(s)
- Hao Yan
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Shaobin Xin
- Intensive Care Unit, Tianjin Union Medicine Center, Tianjin, China
| | - Jing Ma
- Department of Integrated Chinese and Western Medicine, Tianjin Anding Hospital, Tianjin, China
| | - Hui Wang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Heng Zhang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Jindong Liu
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medicine Center, Tianjin, China
| |
Collapse
|
28
|
Gao S, Wang J, Tian S, Luo J. miR‑9 depletion suppresses the proliferation of osteosarcoma cells by targeting p16. Int J Oncol 2019; 54:1921-1932. [PMID: 31081054 PMCID: PMC6521929 DOI: 10.3892/ijo.2019.4783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/13/2019] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is a common primary malignancy in adolescents and children. MicroRNAs (miRNAs or miRs) can regulate the progression of OS. Herein, we explored the target genes and effects of miR-9 in OS. Cell growth, colony formation and cell cycle were respectively examined using a cell counting kit-8 (CCK-8), crystal violet staining and flow cytometry. The target gene of miR-9 was predicted according to the MicroRNA.org website. Luciferase activity was examined using a dual luciferase reporter gene assay kit. The corresponding factors levels were analyzed by carrying out reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis. A mouse model of OS was also established and the volume and weight of the tumors of the mice with OS were measured. The levels of p16 in the mice with OS were detected by immunohistochemistry (IHC). The data revealed a high expression of miR-9 and a low expression of p16 in the OS tissue. p16 was found to be the target gene for miR-9 in OS. miR-9 depletion decreased the proliferation and colony formation of Saos-2 cells by arresting the cells at the G1 phase, accompanied by the downregulation of cyclin A, cyclin D1 and c-Myc expression levels. Moreover, miR-9 depletion inhibited the phosphorylation of p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). In vivo, miR-9 depletion decreased the tumor volume and weight and increased p16 expression in the mouse tumor tissues. Nevertheless, p16 silencing reversed the suppressive effects of miR-9 inhibitors on OS cells. On the whole, the findings of this study substantiate that miR-9 depletion suppresses cell proliferation by targeting p16 in OS and by mediating the activation of the ERK/p38/JNK pathway.
Collapse
Affiliation(s)
- Song Gao
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jianchao Wang
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Shujian Tian
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jianping Luo
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
29
|
Chen ZL, Qin L, Peng XB, Hu Y, Liu B. INHBA gene silencing inhibits gastric cancer cell migration and invasion by impeding activation of the TGF-β signaling pathway. J Cell Physiol 2019; 234:18065-18074. [PMID: 30963572 DOI: 10.1002/jcp.28439] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/30/2019] [Accepted: 02/01/2019] [Indexed: 11/08/2022]
Abstract
Gastric cancer (GC) is the fourth largest cancer in the world, with a 5-year survival rate of <30%. Thus, this study intends to investigate the effects of inhibin βA (INHBA) gene silencing on the migration and invasion of GC cells via the transforming growth factor-β (TGF-β) signaling pathway. Initially, this study determined the expression of INHBA and the TGF-β signaling pathway-related genes in GC tissues. After that, to assess the effect of INHBA silencing on GC progression, GC cells were transfected with short hairpin RNAs that targeted INHBA in order to detect the expression of INHBA and the TGF-β signaling pathway-related genes, as well as cell migration, invasion, and proliferation abilities. Finally, a tumor xenograft model in nude mice was constructed to verify the effect that the silencing of INHBA had on tumor growth. Highly expressed INHBA and activated TGF-β signaling pathways were observed in GC tissues. In response to shINHBA-1 and shINHBA-2, the TGF-β signaling pathway was inhibited in GC cells, whereas the GC cell migration, invasion, proliferation, and tumor growth were significantly dampened. On the basis of the observations and findings of this study, INHBA gene silencing inhibited the progression of GC by inactivating the TGF-β signaling pathway, which provides a potential target in the treatment of GC.
Collapse
Affiliation(s)
- Zong-Lin Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lu Qin
- Department of Intestinal Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Xu-Bin Peng
- Department of Neurosurgery, The Cancer Hospital Affiliated to Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Yu Hu
- Center for Experimental Medical Research, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Bo Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
30
|
Cao B, Tan S, Tang H, Chen Y, Shu P. miR‑512‑5p suppresses proliferation, migration and invasion, and induces apoptosis in non‑small cell lung cancer cells by targeting ETS1. Mol Med Rep 2019; 19:3604-3614. [PMID: 30896817 PMCID: PMC6471623 DOI: 10.3892/mmr.2019.10022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 02/06/2019] [Indexed: 11/13/2022] Open
Abstract
An increasing number of microRNA (miRNA) have been demonstrated to serve as molecular biomarkers for tumor cell progression. miR-512-5p was revealed as oncogenic regulator in several types of cancer. However, whether and how miR-512-5p regulates non-small cell lung cancer (NSCLC) remains unclear. In the present study, the expression of miR-512-5p was detected in NSCLC tissues and cell lines. Then, the proliferation, migration, invasion and apoptosis in NSCLC A549 and H1299 cell lines were detected when miR-512-5p was overexpressed. Furthermore, the underlying mechanism was identified. The level of miR-512-5p was decreased in NSCLC tissues and in NSCLC cells compared with adjacent normal tissues and normal lung tissue cell lines. miR-512-5p mimics inhibited the cell proliferation, migration, invasion and induced apoptosis in A549 and H1299 cells. In addition, a luciferase reporter assay suggested that overexpression of miR-512-5p may decrease the expression of the E26 transformation specific-1 (ETS1) gene; it was subsequently verified that downregulation of the ETS1 gene inhibited cell proliferation and migration and induced cell apoptosis in A549 and H1299 cells, and ETS1 small interfering RNA in the presence of an miR-512-5p inhibitor reversed the effect. The data described in the present study suggest that miR-512-5p may be a tumor suppressor and a potential treatment target in NSCLC.
Collapse
Affiliation(s)
- Bin Cao
- Department of Cardiothoracic Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210005, P.R. China
| | - Sheng Tan
- Department of Cardio‑Thoracic Surgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China
| | - Huijuan Tang
- Department of Oncology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210005, P.R. China
| | - Yihui Chen
- Department of Oncology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210005, P.R. China
| | - Peng Shu
- Department of Oncology, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210005, P.R. China
| |
Collapse
|
31
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Biomed Pharmacother 2019; 111:873-881. [PMID: 30841466 DOI: 10.1016/j.biopha.2018.12.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Today, cancer is one of the most common causes of death. Osteosarcoma (OS) is a tumor in long bones and its prevalence is high in teenagers and young people. Among the methods that used to treat cancer, one can name chemotherapy, surgery, and radiotherapy. Since these methods have some disadvantages and they are not absolutely successful, the use of microRNAs (miRNAs) is very useful in diagnosis and treatment of OS. MiRNAs are small non-coding RNA molecules, containing 18-25 nucleotides, which are involved in the regulation of gene expression via binding to messenger RNA (mRNA). These RNAs are divided into two classes of suppressors and oncogenes. During OS, there is aberrant expression of several miRNAs. Among these miRNAs are downregulation of miR-193 that has been associated with cancer occurrence. The aim of the current manuscript is to have overview on the treatment approaches of OS with special focus on miR-193.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Park YR, Lee ST, Kim SL, Zhu SM, Lee MR, Kim SH, Kim IH, Lee SO, Seo SY, Kim SW. Down-regulation of miR-9 promotes epithelial mesenchymal transition via regulating anoctamin-1 (ANO1) in CRC cells. Cancer Genet 2018; 231-232:22-31. [PMID: 30803553 DOI: 10.1016/j.cancergen.2018.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022]
Abstract
MicroRNA-9 (miR-9) has been reported to play a suppressive or promoting role according to cancer type. In this study, we investigated the effects of anoctamin-1 (ANO1) and miR-9 on colorectal cancer (CRC) cell proliferation, migration, and invasion and determined the underlying molecular mechanisms. Thirty-two paired CRC tissues and adjacent normal tissues were analyzed for ANO1 expression using quantitative real-time PCR (qRT-PCR). HCT116 cells were transiently transfected with miR-9 mimic, miR-9 inhibitor, or si-ANO1. Cell proliferation was determined by MTT, and flow cytometric analysis, while cell migration and invasion were assayed by trans-well migration and invasion assay in HCT116 cells. ANO1 was validated as a target of miR-9 using luciferase reporter assay and bioinformatics algorithms. We found that ANO1 expression was up-regulated in CRC tissues compared with adjacent normal tissues. ANO1 expression was associated with advanced tumor stage and lymph node metastasis, and there was an inverse relationship between miR-9 and ANO1 mRNA expression in CRC specimens, but no significant difference was found between miR-9 and ANO1 expression. ANO1 is a direct target of miR-9, and overexpression of miR-9 suppressed both mRNA and protein expression of ANO1 and inhibited cell proliferation, migration, and invasion of HCT116 cells. We also showed that overexpression of miR-9 suppressed expression of p-AKT, cyclin D1, and p-ERK in HCT116 cells. We conclude that miR-9 inhibits CRC cell proliferation, migration, and invasion by directly targeting ANO1, and miR-9/ANO1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Young Ran Park
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Soo Teik Lee
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Se Lim Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Shi Mao Zhu
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Min Ro Lee
- Department of Surgery, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong Hun Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - In Hee Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seung Ok Lee
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seung Young Seo
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
33
|
Shabani P, Izadpanah S, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. J Cell Biochem 2018; 120:4783-4793. [PMID: 30450580 DOI: 10.1002/jcb.27857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the bone with a strong tendency to early metastasis, and occurs in growing bones more commonly in children and adolescents. Considering the limited therapeutic methods and lack of 100% success of these methods, developing innovative therapies with high efficacy and lower side effects is needed. Meanwhile, miRNAs and the studies indicating the involvement of miRNAs in OS development have attracted attentions as a result of the frequent abnormalities in expression of miRNAs in cancer. miRNAs are noncoding short sequences with lengths ranging from 18 to 25 nucleotides that play a very important role in cellular processes, such as proliferation, differentiation, migration, and apoptosis. MiRNAs can have either oncogenic or tumor suppressive role based on cellular function and targets. This review aimed to have overview on miR-142 as a tumor suppressor in OS. Moreover, the genes involved in the disease, such as RAC1, HMAG1, MMP9, MMP2, and E-cadherin, which have irregularities as a result of change in miR-142 expression, and, thereby, result in increasing the proliferation, invasion, and metastasis of the cells in the tissues and OS cells will be discussed.
Collapse
Affiliation(s)
- Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Wang H, Chen W, Yang P, Zhou J, Wang K, Tao Q. Knockdown of linc00152 inhibits the progression of gastric cancer by regulating microRNA-193b-3p/ETS1 axis. Cancer Biol Ther 2018; 20:461-473. [PMID: 30404587 PMCID: PMC6422511 DOI: 10.1080/15384047.2018.1529124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is a serious threat for public health worldwide. Long non-coding RNA (lncRNA) linc00152 has been well reported to be an oncogene and a potential biomarker in multiple cancers including GC. However, the molecular mechanisms of linc00152 in GC development need to be further investigated. METHODS RT-qPCR assay was employed to detect the levels of linc00152, microRNA-193b-3p (miR-193b-3p) and ETS1 mRNA. ETS1 protein level was measured by western blot assay. Cell proliferative, migratory and invasive capacities were assessed by colony formation together with CCK-8 assays, transwell migration and invasion assays, respectively. Bioinformatics analyses and luciferase reporter assay were used to explore whether miR-193b-3p could interact with linc00152 or ETS1 3'UTR. The roles and molecular basis of linc00152 silence on the growth of GC xenograft tumors were tested in vivo. RESULTS Linc00152 expression was notably upregulated in GC tissues and cells. The proliferative, migratory and invasive abilities of GC cells were weakened by linc00152 depletion, miR-193b-3p overexpression or ETS1 knockdown. Linc00152 upregulation inhibited miR-193b-3p expression by direct interaction and abolished miR-193b-3p-mediated anti-proliferation, anti-migration and anti-invasion effects in GC cells. ETS1 was a target of miR-193b-3p and linc00152 could promote ETS1 expression by downregulating miR-193b-3p. In vivo experiments further validated that linc00152 knockdown inhibited the growth of GC xenograft tumors by upregulating miR-193b-3p and downregulating ETS1. CONCLUSION Knockdown of linc00152 inhibited GC progression by sequestering miR-193b-3p from ETS1 in vitro and in vivo, elucidating a novel molecular mechanism of linc00152 in promoting GC carcinogenesis.
Collapse
Affiliation(s)
- Haifang Wang
- Department of Chinese and Western Integrative Medicine and Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Wenxiang Chen
- Department of Spine Orthopaedics, Liaocheng Traditional Chinese Medicine hospital, Liaocheng, China
| | - Peng Yang
- Department of Chinese and Western Integrative Medicine and Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jun Zhou
- Department of Chinese and Western Integrative Medicine and Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Kaiyuan Wang
- Chinese Medical Department of Internal respiration, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingchun Tao
- Department of Clinical Laboratory, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
35
|
Song H, Yang J, Zhang Y, Zhou J, Li Y, Hao X. Integrated analysis of pseudogene RP11-564D11.3 expression and its potential roles in hepatocellular carcinoma. Epigenomics 2018; 11:267-280. [PMID: 30362374 DOI: 10.2217/epi-2018-0152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM We aim to identify differentially expressed pseudogenes and investigate their functional roles in carcinogenesis. MATERIALS & METHODS Here, we identify dysregulated pseudogenes, analyze their prognostic values and investigate their potential functions through pseudogene-miRNA-mRNA network from public -omics repositories. RESULTS We identified 16 frequently upregulated pseudogenes among which high expression levels of RP11-564D11.3 was significantly associated with poor overall survival in seven types of human cancers. RP11-564D11.3 was strongly correlated with pathways in cancer, PI3K-Akt signaling pathway and the neurotrophin signaling pathway. Further studies revealed that RP11-564D11.3 functions as a competitive endogenous RNA through targeting VEGFA in hepatocellular carcinoma. CONCLUSION Our findings suggest RP11-564D11.3 as a novel biomarker and therapeutic potential target against hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hui Song
- The Key Laboratory of Endemic & Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, PR China.,The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guizhou Province, Guiyang 550004, PR China
| | - Jue Yang
- The State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province & Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Yongqiang Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, PR China
| | - Jianjiang Zhou
- The Key Laboratory of Endemic & Ethnic Diseases, Guizhou Medical University, Ministry of Education, Guiyang 550004, PR China.,The Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guizhou Province, Guiyang 550004, PR China
| | - Yanmei Li
- The State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province & Chinese Academic of Sciences, Guiyang 550014, PR China
| | - Xiaojiang Hao
- The State Key Laboratory of Functions & Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province & Chinese Academic of Sciences, Guiyang 550014, PR China
| |
Collapse
|
36
|
Bhavsar SP, Løkke C, Flægstad T, Einvik C. Hsa-miR-376c-3p targets Cyclin D1 and induces G1-cell cycle arrest in neuroblastoma cells. Oncol Lett 2018; 16:6786-6794. [PMID: 30405823 DOI: 10.3892/ol.2018.9431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
High-risk neuroblastoma is the most aggressive form of cancer in children. The estimated survival of children with high-risk neuroblastoma is 40-50% compared with low and intermediate risk neuroblastoma, which is >98 and 90-95%, respectively. In addition, patients with high-risk neuroblastoma often experience relapse following intensive treatments with standard chemotherapeutic drugs. Therefore alternative strategies are required to address this problem. MicroRNAs (miRNAs/miRs) are small, endogenously expressed non-coding RNAs, which when deregulated have been demonstrated to serve significant roles in the tumorigenesis of a number of different types of cancer. Results from a previous deep sequencing study identified 22 downregulated miRNAs from the 14q32 miRNA cluster differentially expressed in neuroblastoma cell lines isolated from 6 patients at diagnosis and at relapse following intensive treatments. miR-376c-3p is one of the 22 miRNAs that was downregulated in the majority of the cell lines isolated from patients post treatment. The present study employed reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify the basic expression of miR-376c-3p in 6 neuroblastoma cell lines. The functional role of miR-376c-3p in the neuroblastoma cell lines was evaluated by alamar blue-cell viability and propidium iodide-flow cytometric assays. In addition, luciferase reporter assays, RT-qPCR and western blotting were performed to identify and quantify the targets of miR-376c-3p in neuroblastoma cell lines. Ectopic expression of miR-376c-3p led to significant inhibition of cell viability and G1-cell cycle arrest in multiple neuroblastoma cell lines by reducing the expression of cyclin D1, an oncogene critical for neuroblastoma pathogenesis. The results of the present study provide novel insights into the functional role of miR-376c-3p and suggest new approaches for the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Swapnil Parashram Bhavsar
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway-UiT, NO-9037 Tromsø, Norway
| | - Cecilie Løkke
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway-UiT, NO-9037 Tromsø, Norway
| | - Trond Flægstad
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway-UiT, NO-9037 Tromsø, Norway.,Department of Pediatrics, Division of Child and Adolescent Health, University Hospital of North-Norway, NO-9038 Tromsø, Norway
| | - Christer Einvik
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Science, The Arctic University of Norway-UiT, NO-9037 Tromsø, Norway.,Department of Pediatrics, Division of Child and Adolescent Health, University Hospital of North-Norway, NO-9038 Tromsø, Norway
| |
Collapse
|
37
|
Dai WJ, Qiu J, Sun J, Ma CL, Huang N, Jiang Y, Zeng J, Ren BC, Li WC, Li YH. Downregulation of microRNA-9 reduces inflammatory response and fibroblast proliferation in mice with idiopathic pulmonary fibrosis through the ANO1-mediated TGF-β-Smad3 pathway. J Cell Physiol 2018; 234:2552-2565. [PMID: 30144053 DOI: 10.1002/jcp.26961] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with increasing occurrence, high death rates and unfavorable treatment regimens. In the current study, we identified the expression of microRNA-9 (miR-9) and anoctamin-1 (ANO1) in IPF mouse models induced by bleomycin, and their effects on inflammation and fibroblast proliferation through the transforming growth factor-β (TGF-β)-Smad3 pathway. To verify the targeting relationship between miR-9 and ANO1, we used bioinformatics prediction and conducted a dual-luciferase reporter gene assay. The underlying regulatory mechanisms of miR-9 and the target gene ANO1 were investigated mainly with the treatment of miR-9 mimic, miR-9 inhibitor, or siRNA against ANO1 in fibroblasts isolated from IPF mice. Enzyme-linked immunosorbent assay was performed to investigate the effect of miR-9 or ANO1 on inflammatory factors. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry were used to detect fibroblast proliferation and apoptosis. Reverse transcription quantitative polymerase chain reaction and western blot analysis were applied to measure the expression of the TGF-β-Smad3 pathway-related genes. The determination of luciferase activity suggested that miR-9 targets ANO1. Upregulation of miR-9 or silencing of ANO1 intensified inflammation in IPF, promoted proliferation and inhibited apoptotic ability of lung fibroblasts. MiR-9 negatively modulated ANO1, and thus activated the TGF-β-Smad3 pathway. These findings suggest that miR-9 can indirectly activate the TGF-β-Smad3 pathway by inhibiting the expression of ANO1, thereby aggravating inflammation, promotes proliferation and suppressing apoptosis of lung fibroblasts in mice models of IPF.
Collapse
Affiliation(s)
- Wen-Jing Dai
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jing Qiu
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jian Sun
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chun-Lan Ma
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Na Huang
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Jiang
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Zeng
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Bo-Chen Ren
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wan-Cheng Li
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yun-Hui Li
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
38
|
MicroRNA-9 Enhanced Cisplatin Sensitivity in Nonsmall Cell Lung Cancer Cells by Regulating Eukaryotic Translation Initiation Factor 5A2. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1769040. [PMID: 30175116 PMCID: PMC6098893 DOI: 10.1155/2018/1769040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/11/2018] [Indexed: 01/14/2023]
Abstract
We determined the role of microRNA (miR)-9 in regulating cisplatin chemoresistance in nonsmall cell lung cancer (NSCLC) cells. miR-9 and eukaryotic translation initiation factor 5A2 (eIF5A2) levels were examined by reverse transcription–quantitative PCR. Cell Counting Kit-8 and the 5-ethynyl-2′-deoxyuridine (EdU) assay were used to determine the effects of miR-9 mimic or inhibitor on NSCLC cell proliferation and viability, respectively. Bioinformatics was used to analyze the relationship between miR-9 and eIF5A2. Flow cytometry was used to analyze the percentage of apoptotic cells. miR-9 mimic enhanced cisplatin sensitivity, while miR-9 inhibitor produced the opposite result. eIF5A2 was identified as a potential target of miR-9, where miR-9 regulated eIF5A2 expression at mRNA and protein level. miR-9 mimic decreased the expression of eIF5A2 mRNA and protein, while miR-9 inhibitor increased eIF5A2 expression. eIF5A2 knockdown resolved the effects of miR-9 mimic or inhibitor on cisplatin sensitivity. miR-9 may be a potential biomarker for enhancing cisplatin sensitivity by regulating eIF5A2 in NSCLC cells.
Collapse
|
39
|
Li D, Song H, Mei H, Fang E, Wang X, Yang F, Li H, Chen Y, Huang K, Zheng L, Tong Q. Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun 2018; 9:2829. [PMID: 30026490 PMCID: PMC6053364 DOI: 10.1038/s41467-018-05286-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Recent studies suggest the emerging roles of armadillo (ARM) family proteins in tumor progression. However, the functions and underlying mechanisms of ARM members in tumorigenesis and aggressiveness of neuroblastoma (NB) remain to be determined. Herein, we identify armadillo repeat containing 12 (ARMC12) as an ARM member associated with NB progression. ARMC12 promotes the growth and aggressiveness of NB cell lines. Mechanistically, ARMC12 physically interacts with retinoblastoma binding protein 4 (RBBP4) to facilitate the formation and activity of polycomb repressive complex 2, resulting in transcriptional repression of tumor suppressive genes. Blocking the interaction between ARMC12 and RBBP4 by cell-penetrating inhibitory peptide activates the downstream gene expression and suppresses the tumorigenesis and aggressiveness of NB cells. Both ARMC12 and RBBP4 are upregulated in NB tissues, and are associated with unfavorable outcome of patients. These findings suggest the crucial roles of ARMC12 in tumor progression and a potential therapeutic approach for NB. Armadillo (ARM) family proteins can act as oncogenes or tumor suppressors. Here, the authors show that a new ARM protein (ARMC12) is upregulated in neuroblastoma, binds the PRC2 component RBBP4, and inhibits transcription of tumor suppressive genes.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Huanhuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, P.R. China.
| |
Collapse
|
40
|
Yang S, Sheng N, Pan L, Cao J, Liu J, Ma R. microRNA-3129 promotes cell proliferation in gastric cancer cell line SGC7901 via positive regulation of pRb. Braz J Med Biol Res 2018; 51:e6452. [PMID: 29791595 PMCID: PMC6002138 DOI: 10.1590/1414-431x20186452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/16/2018] [Indexed: 12/11/2022] Open
Abstract
Several microRNAs (miRNAs) have been reported as oncogenes or tumor suppressors in many cancers, including gastric cancer (GC). However, the role and molecular mechanism of miR-3129 in GC is largely unknown. We aimed to explore the function and the underlying molecular mechanism of miR-3129 in GC. Cancer tissues and corresponding adjacent tissues were collected from 50 patients with GC, and the expression of miR-3129 was detected by RT-qPCR. The expression of miR-3129 and pRb in human GC cell line SCG7091 was altered by transient transfection. Thereafter, MTT and flow cytometry assays were used to analyze cell viability and cell cycle. The expression of cyclin E, CDK2, CDK2 inhibitors (p16 and 21), and pRb were detected by RT-qPCR and western blot. A significant up-regulation of miR-3129 was observed in GC tissues compared to adjacent tissues. Overexpression of miR-3129 significantly improved cell viability after 4 days of post-transfection. Flow cytometry assay results showed that the miR-3129 overexpression arrested more SGC7901 cells at S phase. Moreover, overexpression of miR-3129 down-regulated the expression of CDK2 inhibitors while it up-regulated the expression levels of cyclin E, CDK2, and pRb. Interestingly, we found that pRb inhibition reversed the effect of miR-3129 inhibitor on cell proliferation in SGC7901 cells, increased cell viability, reduced cells at G0/1 phase, and modulated the expression of proliferation-related factors. Our results revealed that miR-3129 functioned as an oncogene through positive regulation of pRb and may prove to be a promising option for molecular therapy of GC.
Collapse
Affiliation(s)
- Shaofeng Yang
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| | - Nan Sheng
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| | - Lili Pan
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| | - Jing Cao
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| | - Jiao Liu
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| | - Ran Ma
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, China
| |
Collapse
|
41
|
Li D, Chen Y, Mei H, Jiao W, Song H, Ye L, Fang E, Wang X, Yang F, Huang K, Zheng L, Tong Q. Ets-1 promoter-associated noncoding RNA regulates the NONO/ERG/Ets-1 axis to drive gastric cancer progression. Oncogene 2018; 37:4871-4886. [PMID: 29773901 PMCID: PMC6117270 DOI: 10.1038/s41388-018-0302-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/20/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023]
Abstract
Emerging studies have indicated the essential functions of long noncoding RNAs (lncRNAs) during cancer progression. However, whether lncRNAs contribute to the upregulation of v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1), an established oncogenic protein facilitating tumor invasion and metastasis, in gastric cancer remains elusive. Herein, we identified Ets-1 promoter-associated noncoding RNA (pancEts-1) as a novel lncRNA associated with the gastric cancer progression via mining of publicly available datasets and rapid amplification of cDNA ends. RNA pull-down, RNA immunoprecipitation, in vitro binding, and RNA electrophoretic mobility shift assays indicated the binding of pancEts-1 to non-POU domain containing octamer binding (NONO) protein. Mechanistically, pancEts-1 facilitated the physical interaction between NONO and Ets related gene (ERG), resulting in increased ERG transactivation and transcription of Ets-1 associated with gastric cancer progression. In addition, pancEts-1 facilitated the growth and aggressiveness of gastric cancer cells via interacting with NONO. In gastric cancer tissues, pancEts-1, NONO, and ERG were upregulated and significantly correlated with Ets-1 levels. High levels of pancEts-1, NONO, ERG, or Ets-1 were respectively associated with poor survival of gastric cancer patients, whereas simultaneous expression of all of them (HR = 3.012, P = 0.105) was not an independent prognostic factor for predicting clinical outcome. Overall, these results demonstrate that lncRNA pancEts-1 exhibits oncogenic properties that drive the progression of gastric cancer via regulating the NONO/ERG/Ets-1 axis.
Collapse
Affiliation(s)
- Dan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Hong Mei
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Huajie Song
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Lin Ye
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Erhu Fang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Feng Yang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China.
| | - Qiangsong Tong
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China.
| |
Collapse
|
42
|
Nowek K, Wiemer EA, Jongen-Lavrencic M. The versatile nature of miR-9/9 * in human cancer. Oncotarget 2018; 9:20838-20854. [PMID: 29755694 PMCID: PMC5945517 DOI: 10.18632/oncotarget.24889] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/26/2018] [Indexed: 12/22/2022] Open
Abstract
miR-9 and miR-9* (miR-9/9*) were first shown to be expressed in the nervous system and to function as versatile regulators of neurogenesis. The variable expression levels of miR-9/9* in human cancer prompted researchers to investigate whether these small RNAs may also have an important role in the deregulation of physiological and biochemical networks in human disease. In this review, we present a comprehensive overview of the involvement of miR-9/9* in various human malignancies focusing on their opposing roles in supporting or suppressing tumor development and metastasis. Importantly, it is shown that the capacity of miR-9/9* to impact tumor formation is independent from their influence on the metastatic potential of tumor cells. Moreover, data suggest that miR-9/9* may increase malignancy of one cancer cell population at the expense of another. The functional versatility of miR-9/9* emphasizes the complexity of studying miRNA function and the importance to perform functional studies of both miRNA strands in a relevant cellular context. The possible application of miR-9/9* as targets for miRNA-based therapies is discussed, emphasizing the need to obtain a better understanding of the functional properties of these miRNAs and to develop safe delivery methods to target specific cell populations.
Collapse
Affiliation(s)
- Katarzyna Nowek
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik A.C. Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mojca Jongen-Lavrencic
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Lima JF, Cerqueira L, Figueiredo C, Oliveira C, Azevedo NF. Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biol 2018; 15:338-352. [PMID: 29570036 DOI: 10.1080/15476286.2018.1445959] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. As a consequence of their function towards mRNA, miRNAs are widely associated with the pathogenesis of several human diseases, making miRNAs a target for new therapeutic strategies based on the control of their expression. Indeed, numerous works were published in the past decades showing the potential use of antisense oligonucleotides to target aberrant miRNAs (AMOs) involved in several human pathologies. New classes of chemical-modified-AMOs, including locked nucleic acid oligonucleotides, have recently proved their worth in silencing miRNAs. A correct design of a specific AMOs can help to improve their performance and potency towards the target miRNA by increasing for instance nuclease resistance and target affinity. This review outlines the technologies involved to suppress aberrant miRNAs. From the design strategies used in AMOs to its application in novel miRNA-based therapeutics and detection methodologies.
Collapse
Affiliation(s)
- Joana Filipa Lima
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal.,b Biomode 2, S. A., INL - Avda. Mestre José Veiga s/n, Braga , Portugal.,c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal
| | - Laura Cerqueira
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal.,b Biomode 2, S. A., INL - Avda. Mestre José Veiga s/n, Braga , Portugal
| | - Ceu Figueiredo
- c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal.,e FMUP, Faculty of Medicine of the University of Porto , Al. Prof. Hernâni Monteiro, Porto , Portugal
| | - Carla Oliveira
- c i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto , R. Alfredo Allen, Porto , Portugal.,d IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto , Rua Júlio Amaral de Carvalho, 45, Porto , Portugal.,e FMUP, Faculty of Medicine of the University of Porto , Al. Prof. Hernâni Monteiro, Porto , Portugal
| | - Nuno Filipe Azevedo
- a LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering , Faculty of Engineering of the University of Porto , R. Dr. Roberto Frias, Porto , Portugal
| |
Collapse
|
44
|
Jiao W, Chen Y, Song H, Li D, Mei H, Yang F, Fang E, Wang X, Huang K, Zheng L, Tong Q. HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene 2018; 37:2728-2745. [PMID: 29511351 DOI: 10.1038/s41388-018-0128-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
Recent studies reveal the emerging functions of enhancer RNAs (eRNAs) in gene expression. However, the roles of eRNAs in regulating the expression of heparanase (HPSE), an established endo-β-D-glucuronidase essential for cancer invasion and metastasis, still remain elusive. Herein, through comprehensive analysis of publically available FANTOM5 expression atlas and chromatin interaction dataset, we identified a super enhancer and its derived eRNA facilitating the HPSE expression (HPSE eRNA) in cancers. Gain-of-function and loss-of-function experiments indicated that HPSE eRNA facilitated the in vitro and in vivo tumorigenesis and aggressiveness of cancer cells. Mechanistically, as a p300-regulated nuclear noncoding RNA, HPSE eRNA bond to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with p300 and their enrichment on super enhancer, resulting in chromatin looping between super enhancer and HPSE promoter, p300-mediated transactivation of transcription factor early growth response 1 (EGR1), and subsequent elevation of HPSE expression. In addition, rescue studies in HPSE overexpressing or silencing cancer cells indicated that HPSE eRNA exerted oncogenic properties via driving HPSE expression. In clinical cancer tissues, HPSE eRNA was highly expressed and positively correlated with HPSE levels, and served as an independent prognostic factor for poor outcome of cancer patients. Therefore, these findings indicate that as a novel noncoding RNA, HPSE eRNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis.
Collapse
Affiliation(s)
- Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
45
|
Xiong WC, Han N, Ping GF, Zheng PF, Feng HL, Qin L, He P. microRNA-9 functions as a tumor suppressor in colorectal cancer by targeting CXCR4. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:526-536. [PMID: 31938138 PMCID: PMC6958006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/27/2017] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRs) dysregulation has been proven to play a crucial role in the initiation and progression of colorectal cancer (CRC). miR-9 functions as a tumor suppressor in many cancer types, including CRC. However, the precise role of miR-9 and the underlying molecular mechanisms that miR-9 involves in CRC progression remain largely unknown. In this study, it was reported that miR-9 had lower expression in CRC tissue samples than in those matched adjacent non-tumor tissues. Deregulated miR-9 expression was inverse correlated with the TNM stage, lymph node metastasis, and prognosis of CRC patients. Ectopic miR-9 expression suppressed CRC cell proliferation, migration, and invasion. Dual-Luciferase Reporter Assay confirmed that C-X-C Motif Chemokine Receptor 4 (CXCR4) was a direct miR-9 target, and the effects of miR-9 were mimicked through CXCR4 depletion in vitro. CXCR4 rescue experiments further verified that CXCR4 is a functional target of miR-9. Animal xenograft assays also provided evidence that miR-9 functions as a tumor suppressor via targeting CXCR4 in vivo. Mechanistically, miR-9 overexpression or CXCR4 knockdown influenced cell proliferation and epithelial-mesenchymal transition (EMT). Results suggest that miR-9 acts as a tumor suppressor in CRC progression by regulating CXCR4.
Collapse
Affiliation(s)
- Wan-Cheng Xiong
- Department of General Surgery, First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan, China
| | - Na Han
- Department of Central Laboratory, First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan, China
| | - Guan-Fang Ping
- Department of Pharmacy, First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan, China
| | - Peng-Fei Zheng
- Department of General Surgery, First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan, China
| | - Hai-Long Feng
- Department of General Surgery, First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan, China
| | - Lei Qin
- Department of Gastroenterology, First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan, China
| | - Peng He
- Department of General Surgery, First Affiliated Hospital of Xinxiang Medical UniversityWeihui, Henan, China
| |
Collapse
|
46
|
Khosravi A, Alizadeh S, Jalili A, Shirzad R, Saki N. The impact of Mir-9 regulation in normal and malignant hematopoiesis. Oncol Rev 2018; 12:348. [PMID: 29774136 PMCID: PMC5939831 DOI: 10.4081/oncol.2018.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-9 (MiR-9) dysregulation has been observed in various cancers. Recently, MiR-9 is considered to have a part in hematopoiesis and hematologic malignancies. However, its importance in blood neoplasms is not yet well defined. Thus, this study was conducted in order to assess the significance of MiR-9 role in the development of hematologic neoplasia, prognosis, and treatment approaches. We have shown that a large number of MiR-9 targets (such as FOXOs, SIRT1, CCND1, ID2, CCNG1, Ets, and NFkB) play essential roles in leukemogenesis and that it is overexpressed in different leukemias. Our findings indicated MiR-9 downregulation in a majority of leukemias. However, its overexpression was reported in patients with dysregulated MiR-9 controlling factors (such as MLLr). Additionally, prognostic value of MiR-9 has been reported in some types of leukemia. This study generally emphasizes on the critical role of MiR-9 in hematologic malignancies as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medi-cine, Tehran
| | - Shaban Alizadeh
- Hematology Department, Allied Medical School, Tehran University of Medical Sciences, Tehran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology at Cell Science Re-search Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
| | - Reza Shirzad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jun-dishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
47
|
miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget 2018; 7:40314-40328. [PMID: 27259238 PMCID: PMC5130010 DOI: 10.18632/oncotarget.9739] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/13/2016] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinase 14 (MMP-14), a membrane-anchored MMP that promotes the tumorigenesis and aggressiveness, is highly expressed in gastric cancer. However, the transcriptional regulators of MMP-14 expression in gastric cancer still remain largely unknown. In this study, through mining computational algorithm programs and chromatin immunoprecipitation datasets, we identified adjacent binding sites of myeloid zinc finger 1 (MZF1) and miRNA-337-3p (miR-337-3p) within the MMP-14 promoter. We demonstrated that MZF1 directly bound to the MMP-14 promoter to facilitate its nascent transcription and expression in gastric cancer cell lines. In contrast, endogenous miR-337-3p suppressed the MMP-14 expression through recognizing its binding site within MMP-14 promoter. Mechanistically, miR-337-3p repressed the binding of MZF1 to MMP-14 promoter via recruiting Argonaute 2 and inducing repressive chromatin remodeling. Gain- and loss-of-function studies demonstrated that miR-337-3p suppressed the growth, invasion, metastasis, and angiogenesis of gastric cancer cells in vitro and in vivo through repressing MZF1-facilitated MMP-14 expression. In clinical specimens and cell lines of gastric cancer, MZF1 was highly expressed and positively correlated with MMP-14 expression. Meanwhile, miR-337-3p was under-expressed and inversely correlated with MMP-14 levels. miR-337-3p was an independent prognostic factor for favorable outcome of gastric cancer, and patients with high MZF1 or MMP-14 expression had lower survival probability. Taken together, these data indicate that miR-337-3p directly binds to the MMP-14 promoter to repress MZF1-facilitatd MMP-14 expression, thus suppressing the progression of gastric cancer.
Collapse
|
48
|
Qu H, Zheng L, Song H, Jiao W, Li D, Fang E, Wang X, Mei H, Pu J, Huang K, Tong Q. microRNA-558 facilitates the expression of hypoxia-inducible factor 2 alpha through binding to 5'-untranslated region in neuroblastoma. Oncotarget 2018; 7:40657-40673. [PMID: 27276678 PMCID: PMC5130034 DOI: 10.18632/oncotarget.9813] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Our previous studies have shown that hypoxia-inducible factor 2 alpha (HIF-2α), one member of the bHLH-PAS transcription factor family, facilitates the progression of NB under non-hypoxic conditions. However, the mechanisms underlying HIF-2α expression in NB still remain largely unknown. Herein, through analyzing the computational algorithm programs, we identified microRNA-558 (miR-558) as a crucial regulator of HIF-2α expression in NB. We demonstrated that miR-558 promoted the expression of HIF-2α at translational levels in NB cells through recruiting Argonaute 2 (AGO2). Mechanistically, miR-558 directly bound with its complementary site within 5′-untranslated region (5′-UTR) to facilitate the binding of AGO2 to eukaryotic translation initiation factor 4E (eIF4E) binding protein 1, resulting in increased eIF4E enrichment and HIF-2α translation. In addition, miR-558 promoted the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo, and these biological features were rescued by knockdown of AGO2, eIF4E, or HIF-2α. In clinical NB specimens, miR-558, AGO2, and eIF4E were highly expressed and positively correlated with HIF-2α expression. Patients with high miR-558, HIF-2α, AGO2, or eIF4E levels had lower survival probability. Taken together, these results demonstrate that miR-558 facilitates the expression of HIF-2α through bindingto its 5′-UTR, thus promoting the tumorigenesis and aggressiveness of NB.
Collapse
Affiliation(s)
- Hongxia Qu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Jiarui Pu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
49
|
Yuan KT, Li BX, Yuan YJ, Tan M, Tan JF, Dai WG, Feng WD, Zuo JD. Deregulation of MicroRNA-375 Inhibits Proliferation and Migration in Gastric Cancer in Association With Autophagy-Mediated AKT/mTOR Signaling Pathways. Technol Cancer Res Treat 2018; 17:1533033818806499. [PMID: 30355273 PMCID: PMC6202745 DOI: 10.1177/1533033818806499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/24/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer is a deadly disease. Some microRNAs are involved in tumor invasion and metastasis. Underexpression of miR-375 has been correlated with tumorigenesis, treatment resistance, and poor prognosis. In this study, we first analyzed the profiles and prognostic values of miR-375 expression in gastric cancer tissues from a public database, and the expression level of miR-375 in gastric cancer samples and gastric cancer cell lines was then analyzed by quantitative real- time polymerase chain reaction. Significant underexpression of miR-375 was seen in all the gastric cancer samples compared to paired paracarcinoma tissues, and the expression level of miR-375 in the gastric cancer cell lines was negatively associated with the cell migration ability. A Cell proliferation (CCK-8) assay was performed to examine cell viability. Overexpression of miR-375 suppressed the proliferation of gastric cancer cells. A Western blot analysis was carried out to test protein expression. Overexpression of miR-375 inhibited autophagy through the AKT/ mammalian target of rapamycin signaling pathway. MiR-375 regulated invasion and migration via AKT/ mammalian target of rapamycin pathway-mediated epithelial-to-mesenchymal transition. Wound healing and migration assays were used to determine the motility of gastric cancer cells. A gastric cancer xenograft nude mouse model was used for an in vivo efficacy evaluation. Overexpression of miR-375 significantly suppressed cell proliferation in the established gastric cancer xenograft nude mouse model. Our results demonstrate that increasing the expression level of miR-375 suppresses proliferation in vitro and in vivo, and they provide a mechanistic and applicable rationale for the future clinical evaluation of miR-375 in gastric cancer treatment. Our findings provide not only new information about the molecular mechanism of microRNAs in regulating invasion and migration in gastric cancer but also a theoretical principle for a potential targeted therapy for gastric cancer.
Collapse
Affiliation(s)
- Kai-Tao Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bao-Xia Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Jie Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin-Fu Tan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Gang Dai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Dong Feng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ji-Dong Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Zhao X, Li D, Huang D, Song H, Mei H, Fang E, Wang X, Yang F, Zheng L, Huang K, Tong Q. Risk-Associated Long Noncoding RNA FOXD3-AS1 Inhibits Neuroblastoma Progression by Repressing PARP1-Mediated Activation of CTCF. Mol Ther 2017; 26:755-773. [PMID: 29398485 PMCID: PMC5910666 DOI: 10.1016/j.ymthe.2017.12.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in childhood. Recent studies have implicated the emerging roles of long noncoding RNAs (lncRNAs) in tumorigenesis and aggressiveness. However, the functions and targets of risk-associated lncRNAs in NB progression still remain to be determined. Herein, through mining of public microarray datasets, we identify lncRNA forkhead box D3 antisense RNA 1 (FOXD3-AS1) as an independent prognostic marker for favorable outcome of NB patients. FOXD3-AS1 is downregulated in NB tissues and cell lines, and ectopic expression of FOXD3-AS1 induces neuronal differentiation and decreases the aggressiveness of NB cells in vitro and in vivo. Mechanistically, as a nuclear lncRNA, FOXD3-AS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1) to inhibit the poly(ADP-ribosyl)ation and activation of CCCTC-binding factor (CTCF), resulting in derepressed expression of downstream tumor-suppressive genes. Rescue experiments indicate that FOXD3-AS1 harbors tumor-suppressive properties by inhibiting the oncogenic roles of PARP1 or CTCF and plays crucial roles in all-trans-retinoic-acid-mediated therapeutic effects on NB. Administration of FOXD3-AS1 construct or siRNAs against PARP1 or CTCF reduces the tumor growth and prolongs the survival of nude mice. These findings suggest that as a risk-associated lncRNA, FOXD3-AS1 inhibits the progression of NB through repressing PARP1-mediated CTCF activation.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Dandan Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei Province, China.
| |
Collapse
|