1
|
Duan G, Wang J, Sun H, Dong Z, Zhang Y, Wang Z, Chen Y, Chen Y, Huang Y, Xu S. Overexpression of EphB2 in the basolateral amygdala is crucial for inducing visceral pain sensitization in rats subjected to water avoidance stress. CNS Neurosci Ther 2024; 30:e14611. [PMID: 38353051 PMCID: PMC10865153 DOI: 10.1111/cns.14611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/13/2023] [Accepted: 01/07/2024] [Indexed: 02/16/2024] Open
Abstract
AIMS Basolateral amygdala (BLA), as a center for stress responses and emotional regulation, is involved in visceral hypersensitivity of irritable bowel syndrome (IBS) induced by stress. In the present study, we aimed to investigate the role of EphB2 receptor (EphB2) in BLA and explore the underlying mechanisms in this process. METHODS Visceral hypersensitivity was induced by water avoidance stress (WAS). Elevated plus maze test, forced swimming test, and sucrose preference test were applied to assess anxiety- and depression-like behaviors. Ibotenic acid or lentivirus was used to inactivate BLA in either the induction or maintenance stage of visceral hypersensitivity. The expression of protein was determined by quantitative PCR, immunofluorescence, and western blot. RESULTS EphB2 expression was increased in BLA in WAS rats. Inactivation of BLA or downregulation of EphB2 in BLA failed to induce visceral hypersensitivity as well as anxiety-like behaviors. However, during the maintenance stage of visceral pain, visceral hypersensitivity was only partially relieved but anxiety-like behaviors were abolished by inactivation of BLA or downregulation of EphB2 in BLA. Chronic WAS increased the expression of EphB2, N-methyl-D-aspartate receptors (NMDARs), and postsynaptic density protein (PSD95) in BLA. Downregulation of EphB2 in BLA reduced NMDARs and PSD95 expression in WAS rats. However, activation of NMDARs after the knockdown of EphB2 expression still triggered visceral hypersensitivity and anxiety-like behaviors. CONCLUSIONS Taken together, the results suggest that EphB2 in BLA plays an essential role in inducing visceral hypersensitivity. In the maintenance stage, the involvement of EphB2 is crucial but not sufficient. The increase in EphB2 induced by WAS may enhance synaptic plasticity in BLA through upregulating NMDARs, which results in IBS-like symptoms. These findings may give insight into the treatment of IBS and related psychological distress.
Collapse
Affiliation(s)
- Guang‐Bing Duan
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jun‐Wen Wang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Hui‐Hui Sun
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhi‐Yu Dong
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Yan Zhang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhen‐Xiang Wang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ye Chen
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ying Chen
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ying Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Ministry of Education), Department of Physiology and Pharmacology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Shu‐Chang Xu
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
2
|
Shaidullov IF, Sorokina DM, Sitdikov FG, Hermann A, Abdulkhakov SR, Sitdikova GF. Short chain fatty acids and colon motility in a mouse model of irritable bowel syndrome. BMC Gastroenterol 2021; 21:37. [PMID: 33499840 PMCID: PMC7836204 DOI: 10.1186/s12876-021-01613-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) is defined as a multifactorial disorder associated with visceral hypersensitivity, altered gut motility and dysfunction of the brain-gut axis. Gut microbiota and its metabolites are proposed as possible etiological factors of IBS. Short chain fatty acids (SCFAs) induce both inhibitory and stimulatory action on colon motility, however, their effects on the IBS model were not investigated. The aim of our study was to investigate the level of SFCAs in feces and their effects on colon motility in a mouse model of IBS. Methods IBS model was induced in mice by intracolonic infusion of 1% acetic acid during the early postnatal period. Mice colon hypersensitivity was assessed by the threshold of the abdominal withdrawal reflex in response to colorectal distention. Colon contractility was studied using proximal colon specimens in isometric conditions. Transit rates were assessed by the pellet propulsion in the isolated colon. Concentrations of SCFAs in feces were measured using gas–liquid chromatography. Results The concentration of SCFAs in feces of IBS model mice was higher compared to the control group. Visceral sensitivity to colorectal distension and colonic transit rate were increased indicating IBS with predominant diarrhea. The frequency and amplitude of spontaneous contractions of proximal colon segments from IBS mice were higher, but carbachol induced contractions were lower compared to control. During acute application of SCFAs (sodium propionate, sodium acetate or butyric acid) dose-dependently (0.5–30 mM) decreased tonic tension, frequency and amplitude of spontaneous and carbachol-evoked contractions. In the mouse IBS group the inhibitory effects SCFAs on spontaneous and carbachol-evoked contractions were less pronounced. At the same time intraluminal administration of butyrate (5 mM) increased the transit rate in the colon of both groups, but its stimulatory effect was more pronounced in mouse IBS model group. Conclusion Our data indicate that the increased transit rate in the mouse IBS model group is associated with a disbalance of activating and inhibiting action of SCFAs due to chronically elevated SCFA levels, which may impact the pathogenesis of IBS with predominant diarrhea syndrome.
Collapse
Affiliation(s)
- Ilnar F Shaidullov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Dina M Sorokina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Farit G Sitdikov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Anton Hermann
- Department of Biosciences, University of Salzburg, Hellbrunnerstr.34, 5020, Salzburg, Austria
| | - Sayar R Abdulkhakov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia
| | - Guzel F Sitdikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18, Kremlevskaya str., 420008, Kazan, Russia.
| |
Collapse
|
3
|
Yuan F, Tan W, Ren H, Yan L, Wang Y, Luo H. The Effects of Short-Chain Fatty Acids on Rat Colonic Hypermotility Induced by Water Avoidance Stress. Drug Des Devel Ther 2020; 14:4671-4684. [PMID: 33173277 PMCID: PMC7646441 DOI: 10.2147/dddt.s246619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Short-chain fatty acids (SCFAs) have been reported to play an important role in regulating gastrointestinal motility. The aim of this study is to investigate the possible role of SCFAs in water avoidance stress-induced colonic hypermotility. METHODS A rat IBS model was established by water avoidance stress (WAS). Intestinal motility was assessed by fecal pellets expulsion. The fecal SCFA level was detected using gas chromatography-mass spectrometry (GC-MS). Western blotting was performed to assess the expression of SCFAs receptors. To determine the role of SCFAs in gut dysmotility, the rats of the WAS+SCFAS and SCFAs group were administrated with oral SCFAs. The colonic contractile activity was recorded with a RM6240 multichannel physiological signal system. KEY RESULTS WAS induced gastrointestinal hypermotility and increased defecation in rats. After repeated stress, the fecal SCFAs decreased significantly and the proportion of acetic acid, propionic acid, and butyric acid had changed from Control 2.6:1:1.5 to WAS 2:1:2.3. Protein levels of SCFAs receptors in the colon were promoted by WAS. In addition, oral SCFAs partly inhibited the colonic spontaneous motility both for SCFAs and WAS+SCFAs group in vivo. Meanwhile, we observed acetate had no effect on the contractile amplitudes of muscle strips, but it could slow down contractile frequency in a dose-dependent manner (1-100 mM). Propionate significantly inhibited the motor activity of colonic strips (1-30 mM). Butyrate inhibited the contractile amplitude of CM strips in a dose-dependent manner (1-30 mM), but for LM, it exhibited a stimulating effect at low concentrations of butyrate 1 mM-10 mM and was suppressed at high concentrations of 30 mM butyrate. Total SCFAs increased the contractile amplitude at low concentration (5-50 mM) and inhibited it at high concentration (50-150 mM). All SCFAs slowed down the frequency of colonic activity. CONCLUSION The stress-induced colonic hypermotility by WAS could be ameliorated through oral SCFA supplementation. SCFAs may have potential clinical therapeutic use in modulating gut motility.
Collapse
Affiliation(s)
- FangTing Yuan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - HaiXia Ren
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Lin Yan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - Ying Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| | - HeSheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, People’s Republic of China
| |
Collapse
|
4
|
Tang Q, Quan X, Yan L, Ren H, Chen W, Xia H, Luo H. Mechanism of sodium hydrosulfide modulation of L-type calcium channels in rat colonic smooth muscle cells. Eur J Pharmacol 2017; 818:356-363. [PMID: 29104047 DOI: 10.1016/j.ejphar.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) can exert different effects on the gastrointestinal tract by modulating ion channels. Previously, we found that H2S donor sodium hydrosulfide (NaHS) regulates colonic motility through L-type calcium channels, but the molecular mechanism remains unknown. The present study was designed to investigate possible mechanisms underlying the modulation of L-type calcium channels by NaHS in rat colonic smooth muscle cells. L-type calcium currents in colonic smooth muscle cells were recorded using the whole-cell patch-clamp technique. Spontaneous contractions of mid-colonic smooth muscle strips were measured in an organ bath system and a biological signal acquisition system. NaHS evoked a significant rightward shift in the steady-state activation curve of L-type calcium channels, changed the shape of the current-voltage (I-V) curve, and decreased the peak current density at 0mV, although it significantly increased with higher stimulatory voltage. The sulfhydryl-modifying reagent DL-dithiothreitol (DTT) enhanced the effects of NaHS on L-type calcium channels, while diamide (DM) and reduced L-glutathione (GSH) alleviated the effects of NaHS. Additionally, NaHS inhibited the spontaneous high-amplitude contractions of both longitudinal and circular smooth muscle strips in a dose-dependent manner. The inhibitory effects were reversible. DTT and GSH enhanced the effects of NaHS, while DM attenuated the effects of NaHS. In conclusion, NaHS modulates L-type calcium channels in rat colonic smooth muscle cells and regulates the contractile activity of colonic smooth muscle, potentially by modifying the free sulfhydryl groups of L-type calcium channels.
Collapse
Affiliation(s)
- Qincai Tang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China
| | - Xiaojing Quan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080 Shanghai, China
| | - Lin Yan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China
| | - Haixia Ren
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China
| | - Wei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, 430060 Wuhan, Hubei Province, China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, 430060 Wuhan, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, 430060 Wuhan, Hubei Province, China.
| |
Collapse
|
5
|
Jimenez M, Gil V, Martinez‐Cutillas M, Mañé N, Gallego D. Hydrogen sulphide as a signalling molecule regulating physiopathological processes in gastrointestinal motility. Br J Pharmacol 2017; 174. [PMID: 28631296 PMCID: PMC5554320 DOI: 10.1111/bph.13918] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The biology of H2 S is a still developing area of research and several biological functions have been recently attributed to this gaseous molecule in many physiological systems, including the cardiovascular, urogenital, respiratory, digestive and central nervous system (CNS). H2 S exerts anti-inflammatory effects and can be considered an endogenous mediator with potential effects on gastrointestinal motility. During the last few years, we have investigated the role of H2 S as a regulator of gastrointestinal motility using both animal and human tissues. The aim of the present work is to review published data regarding the potential role of H2 S as a signalling molecule regulating physiopathological processes in gastrointestinal motor function. H2 S is endogenously produced by defined enzymic pathways in different cell types of the intestinal wall including neurons and smooth muscle. Inhibition of H2 S biosynthesis increases motility and H2 S donors cause smooth muscle relaxation and inhibition of propulsive motor patterns. Impaired H2 S production has been described in animal models with gastrointestinal motor dysfunction. The mechanism(s) of action underlying these effects may include several ion channels, although no specific receptor has been identified. At this time, even though there is much experimental evidence for H2 S as a modulator of gastrointestinal motility, we still do not have conclusive experimental evidence to definitively propose H2 S as an inhibitory neurotransmitter in the gastrointestinal tract, causing nerve-mediated relaxation.
Collapse
Affiliation(s)
- M Jimenez
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIBarcelonaSpain
| | - V Gil
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - M Martinez‐Cutillas
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - N Mañé
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - D Gallego
- Department of Cell Biology, Physiology and Immunology and Neuroscience InstituteUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIBarcelonaSpain
| |
Collapse
|
6
|
Microbiota alteration is associated with the development of stress-induced despair behavior. Sci Rep 2017; 7:43859. [PMID: 28266612 PMCID: PMC5339726 DOI: 10.1038/srep43859] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/31/2017] [Indexed: 12/29/2022] Open
Abstract
Depressive disorders often run in families, which, in addition to the genetic component, may point to the microbiome as a causative agent. Here, we employed a combination of behavioral, molecular and computational techniques to test the role of the microbiota in mediating despair behavior. In chronically stressed mice displaying despair behavior, we found that the microbiota composition and the metabolic signature dramatically change. Specifically, we observed reduced Lactobacillus and increased circulating kynurenine levels as the most prominent changes in stressed mice. Restoring intestinal Lactobacillus levels was sufficient to improve the metabolic alterations and behavioral abnormalities. Mechanistically, we identified that Lactobacillus-derived reactive oxygen species may suppress host kynurenine metabolism, by inhibiting the expression of the metabolizing enzyme, IDO1, in the intestine. Moreover, maintaining elevated kynurenine levels during Lactobacillus supplementation diminished the treatment benefits. Collectively, our data provide a mechanistic scenario for how a microbiota player (Lactobacillus) may contribute to regulating metabolism and resilience during stress.
Collapse
|
7
|
Cui N, Luo H, Xia H, Chen W, Yu G. Influence of Helicobacter pylori Infection on Gastrointestinal Hormone and Colon Motility of Rats. Am J Med Sci 2016; 351:520-4. [DOI: 10.1016/j.amjms.2016.02.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023]
|
8
|
Saur L, Baptista PPA, Bagatini PB, Neves LT, de Oliveira RM, Vaz SP, Ferreira K, Machado SA, Mestriner RG, Xavier LL. Experimental Post-traumatic Stress Disorder Decreases Astrocyte Density and Changes Astrocytic Polarity in the CA1 Hippocampus of Male Rats. Neurochem Res 2015; 41:892-904. [DOI: 10.1007/s11064-015-1770-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022]
|
9
|
Brain-Derived Neurotrophic Factor Contributes to Colonic Hypermotility in a Chronic Stress Rat Model. Dig Dis Sci 2015; 60:2316-26. [PMID: 25963324 DOI: 10.1007/s10620-015-3695-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) has prokinetic effects on gut motility and is increased in the colonic mucosa of irritable bowel syndrome. AIMS We aimed to investigate the possible involvement of BDNF in stress-induced colonic hypermotility. METHODS Male Wistar rats were exposed to daily 1-h water avoidance stress (WAS) or sham WAS for 10 consecutive days. The presence of BDNF and substance P (SP) in the colonic mucosa was determined using enzyme immunoassay kits. Immunohistochemistry and western blotting were performed to assess the expression of BDNF and its receptor, TrkB. The contractions of muscle strips were studied in an organ bath system. RESULTS Repeated WAS increased the fecal pellet expulsion and spontaneous contractile activities of the colonic muscle strips. Both BDNF and SP in the colonic mucosa were elevated following WAS. Immunohistochemistry revealed the presence of BDNF and TrkB in the mucosa and myenteric plexus. BDNF and TrkB were both up-regulated in colon devoid of mucosa and submucosa from the stressed rats compared with the control. BDNF pretreatment caused an enhancement of the SP-induced contraction of the circular muscle (CM) strips. TrkB antibody significantly inhibited the contraction of the colonic muscle strips and attenuated the excitatory effects of SP on contractions of the CM strips. Repeated WAS increased the contractile activities of the CM strips induced by SP after BDNF pretreatment, and this effect was reversed by TrkB antibody. CONCLUSIONS The colonic hypermotility induced by repeated WAS may be associated with the increased expression of endogenous BDNF and TrkB. BDNF may have potential clinical therapeutic use in modulating gut motility.
Collapse
|
10
|
Quan X, Luo H, Liu Y, Xia H, Chen W, Tang Q. Hydrogen sulfide regulates the colonic motility by inhibiting both L-type calcium channels and BKCa channels in smooth muscle cells of rat colon. PLoS One 2015; 10:e0121331. [PMID: 25811907 PMCID: PMC4374679 DOI: 10.1371/journal.pone.0121331] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
Objective To examine the hypothesis that hydrogen sulfide (H2S) regulates the colonic motility by modulating both L-type voltage-dependent calcium channels and large conductance Ca2+-activated K+ (BKCa) channels. Methods Immunohistochemistry was performed on rat colonic samples to investigate the localization of the H2S-producing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). The contractions of proximal colonic smooth muscle were studied in an organ bath system. The whole-cell patch-clamp technique was used to record both L-type calcium currents (ICa,L) and BKCa currents in colonic smooth muscle cells (SMCs) isolated from male Wistar rats. Results Immunohistochemistry revealed the presence of CBS and CSE in mucosa, smooth muscle cells and myenteric neurons. The H2S donor NaHS inhibited spontaneous contractions of the longitudinal muscle and circular muscle strips in a dose-dependent manner, and the inhibitory effects were not blocked by tetrodotoxin. NaHS inhibited the peak ICa,L in colonic SMCs at a membrane potential of 0 mV. The current-voltage (I-V) relationship of L-type calcium channels was modified by NaHS, and the peak of the I-V curve was shifted to the right. NaHS (200μΜ) evoked a significant rightward shift of the steady-state activation curve and inhibited the inactivation of L-type calcium channels. Furthermore, NaHS reversibly decreased the peak ICa,L in a dose-dependent manner. Likewise, BKCa channels were significantly inhibited by NaHS, and the addition of NaHS caused a time- and dose-dependent reduction in the BKCa current. Conclusion The relaxant effect of H2S on colonic muscle strips may be associated with the direct inhibition of H2S on L-type calcium channels. H2S may be involved in the regulation of calcium homeostasis in colonic SMCs of rat colon.
Collapse
Affiliation(s)
- Xiaojing Quan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- * E-mail:
| | - Yin Liu
- Department of Gastroenterology, the Affiliated Hospital of Guilin Medical College, Guilin, China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qincai Tang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Farrugia G, Szurszewski JH. Carbon monoxide, hydrogen sulfide, and nitric oxide as signaling molecules in the gastrointestinal tract. Gastroenterology 2014; 147:303-13. [PMID: 24798417 PMCID: PMC4106980 DOI: 10.1053/j.gastro.2014.04.041] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 12/24/2022]
Abstract
Carbon monoxide (CO) and hydrogen sulfide (H2S) used to be thought of simply as lethal and (for H2S) smelly gaseous molecules; now they are known to have important signaling functions in the gastrointestinal tract. CO and H2S, which are produced in the gastrointestinal tract by different enzymes, regulate smooth muscle membrane potential and tone, transmit signals from enteric nerves, and can regulate the immune system. The pathways that produce nitric oxide, H2S, and CO interact; each can inhibit and potentiate the level and activity of the other. However, there are significant differences between these molecules, such as in half-lives; CO is more stable and therefore able to have effects distal to the site of production, whereas nitric oxide and H2S are short lived and act only close to sites of production. We review their signaling functions in the luminal gastrointestinal tract and discuss how their pathways interact. We also describe other physiological functions of CO and H2S and how they might be used as therapeutic agents.
Collapse
Affiliation(s)
- Gianrico Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
| | | |
Collapse
|
12
|
Yamane S, Kanno T, Nakamura H, Fujino H, Murayama T. Hydrogen sulfide-mediated regulation of contractility in the mouse ileum with electrical stimulation: roles of L-cysteine, cystathionine β-synthase, and K+ channels. Eur J Pharmacol 2014; 740:112-20. [PMID: 25008073 DOI: 10.1016/j.ejphar.2014.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/20/2023]
Abstract
Hydrogen sulfide (H2S) is considered to be a signaling molecule. The precise mechanisms underlying H2S-related events, including the producing enzymes and target molecules in gastrointestinal tissues, have not been elucidated in detail. We herein examined the involvement of H2S in contractions induced by repeated electrical stimulations (ES). ES-induced contractions were neurotoxin-sensitive and increased by aminooxyacetic acid, an inhibitor of cystathionine β-synthase (CBS) and cystathionine γ-lyase, but not by D,L-propargylglycine, a selective inhibitor of cystathionine γ-lyase, in an ES trial-dependent manner. ES-induced contractions were markedly decreased in the presence of L-cysteine. This response was inhibited by aminooxyacetic acid and an antioxidant, and accelerated by L-methionine, an activator of CBS. The existence of CBS was confirmed. NaHS transiently inhibited ES- and acetylcholine-induced contractions, and sustainably decreased basal tone for at least 20 min after its addition. The treatment with glibenclamide, an ATP-sensitive K+ channel blocker, reduced both the L-cysteine response and NaHS-induced inhibition of contractions. The NaHS-induced decrease in basal tone was inhibited by apamin, a small conductance Ca2+-activated K+ channel blocker. These results suggest that H2S may be endogenously produced via CBS in ES-activated enteric neurons, and regulates contractility via multiple K+ channels in the ileum.
Collapse
Affiliation(s)
- Satoshi Yamane
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Toshio Kanno
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Hiromichi Fujino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
13
|
Wang LL, Gu H, Fan Y, Zhang Y, Wu D, Miao JN, Huang TC, Li H, Yuan ZW. Up-regulated FHL1 expression maybe involved in the prognosis of Hirschsprung's disease. Int J Med Sci 2014; 11:262-7. [PMID: 24516350 PMCID: PMC3917115 DOI: 10.7150/ijms.7287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/02/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In a subset of patients with Hirschsprung's disease (HSCR), gastrointestinal motor dysfunction persisted long after surgical correction. Gastrointestinal motility is achieved through the coordinated activity of the enteric nervous system, interstitial cells of Cajal, and smooth muscle (SMC) cells. Inhibition of four-and-a-half LIM protein-1 (Fhl1) expression by siRNA significantly decreases pulmonary artery SMCs migration and proliferation. Furthermore when up-expressing FHL1 in atrial myocytes, K (+) current density markedly increases, therefore changing myocytes' response to an electrical stimulus. However whether FHL1 in colon SMCs (the final effector organ) influences intestinal motility in HSCR patients has not been clarified. METHODS FHL1 mRNA and protein expressions were analyzed in 32 HSCR colons and 4 normal colons. RESULTS Smooth muscle layers were thicken and disorganized in HSCR. FHL1 was expressed in the ganglion cells of the myenteric plexus, submucosa, as well as in the longitudinal and circular muscle layer of the ganglionic colon. FHL1 mRNA relative expression level in aganglionic colons was 1.06 ± 0.49 (ganglionic colon relative expression level was 1) (P=0.44). FHL1 protein gray level relative to GAPDH in normal colons was 0.83 ± 0.09. FHL1 expression level in ganglionic colon (1.66 ± 0.30) or aganglionic colon (1.81 ± 0.35) was significantly higher than that in normal colons (P=0.045 and P=0.041, respectively). Meanwhile, we found FHL1 expression in aganglionic colon was slightly stronger than that in ganglionic colon (P=0.036). CONCLUSION These data suggested that up-regulated FHL1 in smooth muscle in HSCR might be associated with intestinal wall remodeling in HSCR and might be one of the risk factors for gastrointestinal motor dysfunction.
Collapse
Affiliation(s)
- Li-Li Wang
- Key laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shen yang, 110004, P.R. China
| | - Hui Gu
- Key laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shen yang, 110004, P.R. China
| | - Yang Fan
- Key laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shen yang, 110004, P.R. China
| | - Yi Zhang
- Key laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shen yang, 110004, P.R. China
| | - Di Wu
- Key laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shen yang, 110004, P.R. China
| | - Jia-Ning Miao
- Key laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shen yang, 110004, P.R. China
| | - Tian-Chu Huang
- Key laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shen yang, 110004, P.R. China
| | - Hui Li
- Key laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shen yang, 110004, P.R. China
| | - Zheng-Wei Yuan
- Key laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shen yang, 110004, P.R. China
| |
Collapse
|