1
|
Li X, Guo Y, Ling Q, Guo Z, Lei Y, Feng X, Wu J, Zhang N. Advances in the Structure, Function, and Regulatory Mechanism of Plant Plasma Membrane Intrinsic Proteins. Genes (Basel) 2024; 16:10. [PMID: 39858557 PMCID: PMC11765485 DOI: 10.3390/genes16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Plasma membrane intrinsic proteins (PIPs), as members of the aquaporin (AQPs) family, can transport not only water but also urea, CO2, H2O2, metal ions, and trace elements. They are crucial for maintaining water balance, substance transport, and responding to various stresses. This article delves into the structure, function, response mechanism, molecular mechanism, and regulatory mechanism of PIPs as a result of biological and abiotic stresses. It also summarizes current research trends surrounding PIPs and highlights potential research directions for further exploration. The aim is to assist researchers in related fields in gaining a more comprehensive understanding and precise insight into the advancements in PIP research.
Collapse
Affiliation(s)
- Xueting Li
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Yirong Guo
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Qiuping Ling
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| | - Zhejun Guo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yawen Lei
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Xiaomin Feng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiayun Wu
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
| | - Nannan Zhang
- Guangdong Sugarcane Genetic Improvement Engineering Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China; (X.L.); (J.W.)
- Zhanjiang Research Center, Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Zhanjiang 524300, China
| |
Collapse
|
2
|
Wang D, Ni Y, Xie K, Li Y, Wu W, Shan H, Cheng B, Li X. Aquaporin ZmTIP2;3 Promotes Drought Resistance of Maize through Symbiosis with Arbuscular Mycorrhizal Fungi. Int J Mol Sci 2024; 25:4205. [PMID: 38673792 PMCID: PMC11050007 DOI: 10.3390/ijms25084205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi symbiosis plays important roles in enhancing plant tolerance to biotic and abiotic stresses. Aquaporins have also been linked to improved drought tolerance in plants and the regulation of water transport. However, the mechanisms that underlie this association remain to be further explored. In this study, we found that arbuscular mycorrhiza fungi symbiosis could induce the gene expression of the aquaporin ZmTIP2;3 in maize roots. Moreover, compared with the wild-type plants, the maize zmtip2;3 mutant also showed a lower total biomass, colonization rate, relative water content, and POD and SOD activities after arbuscular mycorrhiza fungi symbiosis under drought stress. qRT-PCR assays revealed reduced expression levels of stress genes including LEA3, P5CS4, and NECD1 in the maize zmtip2;3 mutant. Taken together, these data suggest that ZmTIP2;3 plays an important role in promoting maize tolerance to drought stress during arbuscular mycorrhiza fungi symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Beijiu Cheng
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (D.W.); (Y.N.); (K.X.); (Y.L.); (W.W.); (H.S.)
| | - Xiaoyu Li
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei 230036, China; (D.W.); (Y.N.); (K.X.); (Y.L.); (W.W.); (H.S.)
| |
Collapse
|
3
|
Guo Z, Wei M, Xu C, Wang L, Li J, Liu J, Zhong Y, Chi B, Song S, Zhang L, Song L, Ma D, Zheng HL. Genome-wide identification of Avicennia marina aquaporins reveals their role in adaptation to intertidal habitats and their relevance to salt secretion and vivipary. PLANT, CELL & ENVIRONMENT 2024; 47:832-853. [PMID: 37984066 DOI: 10.1111/pce.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Aquaporins (AQPs) regulate the transport of water and other substrates, aiding plants in adapting to stressful environments. However, the knowledge of AQPs in salt-secreting and viviparous Avicennia marina is limited. In this study, 46 AmAQPs were identified in A. marina genome, and their subcellular localisation and function in transporting H2 O2 and boron were assessed through bioinformatics analysis and yeast transformation. Through analysing their expression patterns via RNAseq and real-time quantitative polymerase chain reaction, we found that most AmAQPs were downregulated in response to salt and tidal flooding. AmPIP (1;1, 1;7, 2;8, 2;9) and AmTIP (1;5, 1;6) as salt-tolerant candidate genes may contribute to salt secretion together with Na+ /H+ antiporters. AmPIP2;1 and AmTIP1;5 were upregulated during tidal flooding and may be regulated by anaerobic-responsive element and ethylene-responsive element cis-elements, aiding in adaptation to tidal inundation. Additionally, we found that the loss of the seed desiccation and dormancy-related TIP3 gene, and the loss of the seed dormancy regulator DOG1 gene, or DOG1 protein lack heme-binding capacity, may be genetic factors contributing to vivipary. Our findings shed light on the role of AQPs in A. marina adaptation to intertidal environments and their relevance to salt secretion and vivipary.
Collapse
Affiliation(s)
- Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jingwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Youhui Zhong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Bingjie Chi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Shiwei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ludan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lingyu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, Zhuang W, Varshney RK. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 2023; 43:1035-1062. [PMID: 35968922 DOI: 10.1080/07388551.2022.2093695] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/08/2022] [Indexed: 01/19/2023]
Abstract
Climate change gives rise to numerous environmental stresses, including soil salinity. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmoprotectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for improving salinity tolerance in plants and accomplish the goal of "zero hunger," a worldwide sustainable development goal proposed by the FAO.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Ali Zeeshan Fakhar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Luo Ju
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Rakesh K Singh
- Crop Diversification and Genetics, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Murdoch's Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| |
Collapse
|
5
|
Safdar T, Tahir MHN, Ali Z, Ur Rahman MH. Exploring the role of HaTIPs genes in enhancing drought tolerance in sunflower. Mol Biol Rep 2023; 50:8349-8359. [PMID: 37606830 DOI: 10.1007/s11033-023-08679-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/14/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Activity of plant aquaporins (AQPs) is extremely sensitive to environmental variables such as temperature, drought, atmospheric vapor pressure deficit, cell water status and also appears to be closely associated with the expression of plant tolerance to various stresses. The spatial and temporal expression patterns of genes of Tonoplast Intrinsic Proteins (TIPs) in various crops indicate the complex and diverse regulation of these proteins and are important in understanding their key role in plant growth, development and stress responses. METHODS AND RESULTS Based on phylogenetic analysis, six distinct HaTIPs were selected for studying their spatial and temporal expression in sunflower (Helianthus annuus). In this study semi quantitative polymerase chain reaction (semi q-PCR) and real time polymerase chain reaction (q-PCR) analysis were used to study the spatial and temporal expression of HaTIPs in sunflower. The results indicated that all of HaTIPs showed differential expression specific to both the tissues and the accessions. Moreover, the expression of all HaTIPs was higher in cross compared to the parents. Results of semi q-PCR and real time PCR indicated an upregulation of expression of HaTIP-RB7 and HaTIP7 in drought tolerant entries at 12 h of 20% polyethylene glycol (PEG) treatment compared to 0 h. CONCLUSION Hence these genes can be utilized as potential target in improving water use efficiency and for further genetic manipulation for the development of drought tolerant sunflower. This study may further contribute to our better understanding regarding the precise role of HaTIPs through their spatial and temporal expression analysis and their application in sunflower drought stress responses.
Collapse
Affiliation(s)
- Tania Safdar
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan, Pakistan.
| | - Muhammad Hammad Nadeem Tahir
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef, University of Agriculture, Multan, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Habib Ur Rahman
- Department of Agronomy, Muhammad Nawaz Shareef, University of Agriculture, Multan, Pakistan
- Institute of crop science and resource conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Salvatierra A, Mateluna P, Toro G, Solís S, Pimentel P. Genome-Wide Identification and Gene Expression Analysis of Sweet Cherry Aquaporins ( Prunus avium L.) under Abiotic Stresses. Genes (Basel) 2023; 14:genes14040940. [PMID: 37107698 PMCID: PMC10138167 DOI: 10.3390/genes14040940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aquaporins (AQPs) are integral transmembrane proteins well known as channels involved in the mobilization of water, small uncharged molecules and gases. In this work, the main objective was to carry out a comprehensive study of AQP encoding genes in Prunus avium (cv. Mazzard F12/1) on a genome-wide scale and describe their transcriptional behaviors in organs and in response to different abiotic stresses. A total of 28 non-redundant AQP genes were identified in Prunus spp. Genomes, which were phylogenetically grouped into five subfamilies (seven PIPs, eight NIPs, eight TIPs, three SIPs and two XIPs). Bioinformatic analyses revealed a high synteny and remarkable conservation of structural features among orthologs of different Prunus genomes. Several cis-acting regulatory elements (CREs) related to stress regulation were detected (ARE, WRE3, WUN, STRE, LTR, MBS, DRE, AT-rich and TC-rich). The above could be accounting for the expression variations associated with plant organs and, especially, each abiotic stress analyzed. Gene expressions of different PruavAQPs were shown to be preferentially associated with different stresses. PruavXIP2;1 and PruavXIP1;1 were up-regulated in roots at 6 h and 72 h of hypoxia, and in PruavXIP2;1 a slight induction of expression was also detected in leaves. Drought treatment strongly down-regulated PruavTIP4;1 but only in roots. Salt stress exhibited little or no variation in roots, except for PruavNIP4;1 and PruavNIP7;1, which showed remarkable gene repression and induction, respectively. Interestingly, PruavNIP4;1, the AQP most expressed in cherry roots subjected to cold temperatures, also showed this pattern in roots under high salinity. Similarly, PruavNIP4;2 consistently was up-regulated at 72 h of heat and drought treatments. From our evidence is possible to propose candidate genes for the development of molecular markers for selection processes in breeding programs for rootstocks and/or varieties of cherry.
Collapse
Affiliation(s)
- Ariel Salvatierra
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Patricio Mateluna
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Guillermo Toro
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Simón Solís
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Paula Pimentel
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| |
Collapse
|
7
|
Raza Q, Rashid MAR, Waqas M, Ali Z, Rana IA, Khan SH, Khan IA, Atif RM. Genomic diversity of aquaporins across genus Oryza provides a rich genetic resource for development of climate resilient rice cultivars. BMC PLANT BIOLOGY 2023; 23:172. [PMID: 37003962 PMCID: PMC10064747 DOI: 10.1186/s12870-023-04151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Plant aquaporins are critical genetic players performing multiple biological functions, especially climate resilience and water-use efficiency. Their genomic diversity across genus Oryza is yet to be explored. RESULTS This study identified 369 aquaporin-encoding genes from 11 cultivated and wild rice species and further categorized these into four major subfamilies, among which small basic intrinsic proteins are speculated to be ancestral to all land plant aquaporins. Evolutionarily conserved motifs in peptides of aquaporins participate in transmembrane transport of materials and their relatively complex gene structures provide an evolutionary playground for regulation of genome structure and transcription. Duplication and evolution analyses revealed higher genetic conservation among Oryza aquaporins and strong purifying selections are assisting in conserving the climate resilience associated functions. Promoter analysis highlighted enrichment of gene upstream regions with cis-acting regulatory elements involved in diverse biological processes, whereas miRNA target site prediction analysis unveiled substantial involvement of osa-miR2102-3p, osa-miR2927 and osa-miR5075 in post-transcriptional regulation of gene expression patterns. Moreover, expression patterns of japonica aquaporins were significantly perturbed in response to different treatment levels of six phytohormones and four abiotic stresses, suggesting their multifarious roles in plants survival under stressed environments. Furthermore, superior haplotypes of seven conserved orthologous aquaporins for higher thousand-grain weight are reported from a gold mine of 3,010 sequenced rice pangenomes. CONCLUSIONS This study unveils the complete genomic atlas of aquaporins across genus Oryza and provides a comprehensive genetic resource for genomics-assisted development of climate-resilient rice cultivars.
Collapse
Affiliation(s)
- Qasim Raza
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Waqas
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Khan
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rana Muhammad Atif
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture Faisalabad, Faisalabad, Pakistan.
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
8
|
Tayade R, Rana V, Shafiqul M, Nabi RBS, Raturi G, Dhar H, Thakral V, Kim Y. Genome-Wide Identification of Aquaporin Genes in Adzuki Bean ( Vigna angularis) and Expression Analysis under Drought Stress. Int J Mol Sci 2022; 23:ijms232416189. [PMID: 36555833 PMCID: PMC9782098 DOI: 10.3390/ijms232416189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The adzuki bean Vigna angularis (Wild.) is an important leguminous crop cultivated mainly for food purposes in Asian countries; it represents a source of carbohydrates, digestible proteins, minerals, and vitamins. Aquaporins (AQPs) are crucial membrane proteins involved in the transmembrane diffusion of water and small solutes in all living organisms, including plants. In this study, we used the whole genome sequence of the adzuki bean for in silico analysis to comprehensively identify 40 Vigna angularis aquaporin (VaAQP) genes and reveal how these plants react to drought stress. VaAQPs were compared with AQPs from other closely-related leguminous plants, and the results showed that mustard (Brassica rapa) (59), barrel medic (Medicago truncatula) (46), soybean (Glycine max) (66), and common bean (Phaseolus vulgaris L.) (41) had more AQP genes. Phylogenetic analysis revealed that forty VaAQPs belong to five subfamilies, with the VaPIPs (fifteen) subfamily the largest, followed by the VaNIPs (ten), VaTIPs (ten), VaSIPs (three), and VaXIPs (two) subfamilies. Furthermore, all AQP subcellular locations were found at the plasma membrane, and intron-exon analysis revealed a relationship between the intron number and gene expression, duplication, evolution, and diversity. Among the six motifs identified, motifs one, two, five, and six were prevalent in VaTIP, VaNIP, VaPIP, and VaXIP, while motifs one, three, and four were not observed in VaPIP1-3 and VaPIP1-4. Under drought stress, two of the VaAQPs (VaPIP2-1 and VaPIP2-5) showed significantly higher expression in the root tissue while the other two genes (VaPIP1-1 and VaPIP1-7) displayed variable expression in leaf tissue. This finding revealed that the selected VaAQPs might have unique molecular functions linked with the uptake of water under drought stress or in the exertion of osmoregulation to transport particular substrates rather than water to protect plants from drought. This study presents the first thorough investigation of VaAQPs in adzuki beans, and it reveals the transport mechanisms and related physiological processes that may be utilized for the development of drought-tolerant adzuki bean cultivars.
Collapse
Affiliation(s)
- Rupesh Tayade
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Varnika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Mohammad Shafiqul
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rizwana Begum Syed Nabi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Hena Dhar
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Vandana Thakral
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Yoonha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel./Fax: +82-53-950-5710
| |
Collapse
|
9
|
Reddy PS, Dhaware MG, Sivasakthi K, Divya K, Nagaraju M, Sri Cindhuri K, Kavi Kishor PB, Bhatnagar-Mathur P, Vadez V, Sharma KK. Pearl Millet Aquaporin Gene PgPIP2;6 Improves Abiotic Stress Tolerance in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:820996. [PMID: 35356115 PMCID: PMC8959815 DOI: 10.3389/fpls.2022.820996] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Pearl millet [Pennisetum glaucum (L) R. Br.] is an important cereal crop of the semiarid tropics, which can withstand prolonged drought and heat stress. Considering an active involvement of the aquaporin (AQP) genes in water transport and desiccation tolerance besides several basic functions, their potential role in abiotic stress tolerance was systematically characterized and functionally validated. A total of 34 AQP genes from P. glaucum were identified and categorized into four subfamilies, viz., plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin-26-like intrinsic proteins (NIPs), and small basic intrinsic proteins (SIPs). Sequence analysis revealed that PgAQPs have conserved characters of AQP genes with a closer relationship to sorghum. The PgAQPs were expressed differentially under high vapor pressure deficit (VPD) and progressive drought stresses where the PgPIP2;6 gene showed significant expression under high VPD and drought stress. Transgenic tobacco plants were developed by heterologous expression of the PgPIP2;6 gene and functionally characterized under different abiotic stresses to further unravel their role. Transgenic tobacco plants in the T2 generations displayed restricted transpiration and low root exudation rates in low- and high-VPD conditions. Under progressive drought stress, wild-type (WT) plants showed a quick or faster decline of soil moisture than transgenics. While under heat stress, PgPIP2;6 transgenics showed better adaptation to heat (40°C) with high canopy temperature depression (CTD) and low transpiration; under low-temperature stress, they displayed lower transpiration than their non-transgenic counterparts. Cumulatively, lower transpiration rate (Tr), low root exudation rate, declined transpiration, elevated CTD, and lower transpiration indicate that PgPIP2;6 plays a role under abiotic stress tolerance. Since the PgPIP2;6 transgenic plants exhibited better adaptation against major abiotic stresses such as drought, high VPD, heat, and cold stresses by virtue of enhanced transpiration efficiency, it has the potential to engineer abiotic stress tolerance for sustained growth and productivity of crops.
Collapse
Affiliation(s)
| | - Mahamaya G. Dhaware
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kaliamoorthy Sivasakthi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kummari Divya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Marka Nagaraju
- Department of Biochemistry, ICMR – National Institute of Nutrition, Hyderabad, India
| | - Katamreddy Sri Cindhuri
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Polavarapu Bilhan Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Kiran K. Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| |
Collapse
|
10
|
Identification of Aquaporin Gene Family in Response to Natural Cold Stress in Ligustrum × vicaryi Rehd. FORESTS 2022. [DOI: 10.3390/f13020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plants are susceptible to a variety of abiotic stresses during the growing period, among which low temperature is one of the more frequent stress factors. Maintaining water balance under cold stress is a difficult and critical challenge for plants. Studies have shown that aquaporins located on the cytomembrane play an important role in controlling water homeostasis under cold stress, and are involved in the tolerance mechanism of plant cells to cold stress. In addition, the aquaporin gene family is closely related to the cold resistance of plants. As a major greening tree species in urban landscaping, Ligustrum× vicaryi Rehd. is more likely to be harmed by low temperature after a harsh winter and a spring with fluctuating temperatures. Screening the target aquaporin genes of Ligustrum × vicaryi responding to cold resistance under natural cold stress will provide a scientific theoretical basis for cold resistance breeding of Ligustrum × vicaryi. In this study, the genome-wide identification of the aquaporin gene family was performed at four different overwintering periods in September, November, January and April, and finally, 58 candidate Ligustrum × vicaryi aquaporin (LvAQP) genes were identified. The phylogenetic analysis revealed four subfamilies of the LvAQP gene family: 32 PIPs, 11 TIPs, 11 NIPs and 4 SIPs. The number of genes in PIPs subfamily was more than that in other plants. Through the analysis of aquaporin genes related to cold stress in other plants and LvAQP gene expression patterns identified 20 LvAQP genes in response to cold stress, and most of them belonged to the PIPs subfamily. The significantly upregulated LvAQP gene was Cluster-9981.114831, and the significantly downregulated LvAQP genes were Cluster-9981.112839, Cluster-9981.107281, and Cluster-9981.112777. These genes might play a key role in responding to cold tolerance in the natural low-temperature growth stage of Ligustrum × vicaryi.
Collapse
|
11
|
Li S, Wang L, Zhang Y, Zhu G, Zhu X, Xia Y, Li J, Gao X, Wang S, Zhang J, Wuyun TN, Mo W. Genome-Wide Identification and Function of Aquaporin Genes During Dormancy and Sprouting Periods of Kernel-Using Apricot ( Prunus armeniaca L.). FRONTIERS IN PLANT SCIENCE 2021; 12:690040. [PMID: 34671366 PMCID: PMC8520955 DOI: 10.3389/fpls.2021.690040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Aquaporins (AQPs) are essential channel proteins that play a major role in plant growth and development, regulate plant water homeostasis, and transport uncharged solutes across biological membranes. In this study, 33 AQP genes were systematically identified from the kernel-using apricot (Prunus armeniaca L.) genome and divided into five subfamilies based on phylogenetic analyses. A total of 14 collinear blocks containing AQP genes between P. armeniaca and Arabidopsis thaliana were identified by synteny analysis, and 30 collinear blocks were identified between P. armeniaca and P. persica. Gene structure and conserved functional motif analyses indicated that the PaAQPs exhibit a conserved exon-intron pattern and that conserved motifs are present within members of each subfamily. Physiological mechanism prediction based on the aromatic/arginine selectivity filter, Froger's positions, and three-dimensional (3D) protein model construction revealed marked differences in substrate specificity between the members of the five subfamilies of PaAQPs. Promoter analysis of the PaAQP genes for conserved regulatory elements suggested a greater abundance of cis-elements involved in light, hormone, and stress responses, which may reflect the differences in expression patterns of PaAQPs and their various functions associated with plant development and abiotic stress responses. Gene expression patterns of PaAQPs showed that PaPIP1-3, PaPIP2-1, and PaTIP1-1 were highly expressed in flower buds during the dormancy and sprouting stages of P. armeniaca. A PaAQP coexpression network showed that PaAQPs were coexpressed with 14 cold resistance genes and with 16 cold stress-associated genes. The expression pattern of 70% of the PaAQPs coexpressed with cold stress resistance genes was consistent with the four periods [Physiological dormancy (PD), ecological dormancy (ED), sprouting period (SP), and germination stage (GS)] of flower buds of P. armeniaca. Detection of the transient expression of GFP-tagged PaPIP1-1, PaPIP2-3, PaSIP1-3, PaXIP1-2, PaNIP6-1, and PaTIP1-1 revealed that the fusion proteins localized to the plasma membrane. Predictions of an A. thaliana ortholog-based protein-protein interaction network indicated that PaAQP proteins had complex relationships with the cold tolerance pathway, PaNIP6-1 could interact with WRKY6, PaTIP1-1 could interact with TSPO, and PaPIP2-1 could interact with ATHATPLC1G. Interestingly, overexpression of PaPIP1-3 and PaTIP1-1 increased the cold tolerance of and protein accumulation in yeast. Compared with wild-type plants, PaPIP1-3- and PaTIP1-1-overexpressing (OE) Arabidopsis plants exhibited greater tolerance to cold stress, as evidenced by better growth and greater antioxidative enzyme activities. Overall, our study provides insights into the interaction networks, expression patterns, and functional analysis of PaAQP genes in P. armeniaca L. and contributes to the further functional characterization of PaAQPs.
Collapse
Affiliation(s)
- Shaofeng Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Lin Wang
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
| | - Yaoxiang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Gaopu Zhu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
| | - Xuchun Zhu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
| | - Yongxiu Xia
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Xu Gao
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Shaoli Wang
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| | - Jianhui Zhang
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Ta-na Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, China
| | - Wenjuan Mo
- State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
12
|
Abstract
Due to climate change, we are forced to face new abiotic stress challenges like cold and heat waves that currently result from global warming. Losses due to frost and low temperatures force us to better understand the physiological, hormonal, and molecular mechanisms of response to such stress to face losses, especially in tropical and subtropical crops like citrus fruit, which are well adapted to certain weather conditions. Many of the responses to cold stress that are found are also conserved in citrus. Hence, this review also intends to show the latest work on citrus. In addition to basic research, there is a great need to employ and cultivate new citrus rootstocks to better adapt to environmental conditions.
Collapse
|
13
|
Liu J, Qin G, Liu C, Liu X, Zhou J, Li J, Lu B, Zhao J. Genome-wide identification of candidate aquaporins involved in water accumulation of pomegranate outer seed coat. PeerJ 2021; 9:e11810. [PMID: 34316414 PMCID: PMC8286702 DOI: 10.7717/peerj.11810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/27/2021] [Indexed: 01/25/2023] Open
Abstract
Aquaporins (AQPs) are a class of highly conserved integral membrane proteins that facilitate the uptake and transport of water and other small molecules across cell membranes. However, little is known about AQP genes in pomegranate (Punica granatum L.) and their potential role in water accumulation of the outer seed coat. We identified 38 PgrAQP genes in the pomegranate genome and divided them into five subfamilies based on a comparative analysis. Purifying selection played a role in the evolution of PgrAQP genes and a whole-genome duplication event in Myrtales may have contributed to the expansion of PgrTIP, PgrSIP, and PgrXIP genes. Transcriptome data analysis revealed that the PgrAQP genes exhibited different tissue-specific expression patterns. Among them, the transcript abundance of PgrPIPs were significantly higher than that of other subfamilies. The mRNA transcription levels of PgrPIP1.3, PgrPIP2.8, and PgrSIP1.2 showed a significant linear relationship with water accumulation in seed coats, indicating that PgrPIP1.3/PgrPIP2.8 located in the plasma membrane and PgrSIP1.2 proteins located on the tonoplast may be involved in water accumulation and contribute to the cell expansion of the outer seed coat, which then develops into juicy edible flesh. Overall, our results provided not only information on the characteristics and evolution of PgrAQPs, but also insights on the genetic improvement of outer seed coats.
Collapse
Affiliation(s)
- Jianjian Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China.,Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China
| | - Gaihua Qin
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chunyan Liu
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiyu Li
- Institute of Horticultural Research (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Anhui Province), Anhui Academy of Agricultural Sciences, Hefei, China.,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Bingxin Lu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jianrong Zhao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
14
|
Ahmed S, Kouser S, Asgher M, Gandhi SG. Plant aquaporins: A frontward to make crop plants drought resistant. PHYSIOLOGIA PLANTARUM 2021; 172:1089-1105. [PMID: 33826759 DOI: 10.1111/ppl.13416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/10/2021] [Accepted: 04/03/2021] [Indexed: 05/25/2023]
Abstract
Drought stress alters gene expression and causes cellular damage in crop plants. Drought inhibits photosynthesis by reducing the content and the activity of the photosynthetic carbon reduction cycle, ultimately decreasing the crop yield. The role of aquaporins (AQP) in improving the growth and adaptation of crop plants under drought stress is of importance. AQP form channels and control water transport in and out of the cells and are associated with drought tolerance mechanisms. The current review addresses: (1) the evolution of AQPs in plants, (2) the classification of plant AQPs, (3) the role of AQPs in drought alleviation in crop plants, and (4) the phytohormone crosstalk with AQPs in crops exposed to drought stress.
Collapse
Affiliation(s)
- Sajad Ahmed
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
| | - Shaista Kouser
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sumit G Gandhi
- Plant Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Jammu, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Ahmed J, Mercx S, Boutry M, Chaumont F. Evolutionary and Predictive Functional Insights into the Aquaporin Gene Family in the Allotetraploid Plant Nicotiana tabacum. Int J Mol Sci 2020; 21:E4743. [PMID: 32635213 PMCID: PMC7370101 DOI: 10.3390/ijms21134743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Aquaporins (AQPs) are a class of integral membrane proteins that facilitate the membrane diffusion of water and other small solutes. Nicotiana tabacum is an important model plant, and its allotetraploid genome has recently been released, providing us with the opportunity to analyze the AQP gene family and its evolution. A total of 88 full-length AQP genes were identified in the N. tabacum genome, and the encoding proteins were assigned into five subfamilies: 34 plasma membrane intrinsic proteins (PIPs); 27 tonoplast intrinsic proteins (TIPs); 20 nodulin26-like intrinsic proteins (NIPs); 3 small basic intrinsic proteins (SIPs); 4 uncharacterized X intrinsic proteins (XIPs), including two splice variants. We also analyzed the genomes of two N. tabacum ancestors, Nicotiana tomentosiformis and Nicotiana sylvestris, and identified 49 AQP genes in each species. Functional prediction, based on the substrate specificity-determining positions (SDPs), revealed significant differences in substrate specificity among the AQP subfamilies. Analysis of the organ-specific AQP expression levels in the N. tabacum plant and RNA-seq data of N. tabacum bright yellow-2 suspension cells indicated that many AQPs are simultaneously expressed, but differentially, according to the organs or the cells. Altogether, these data constitute an important resource for future investigations of the molecular, evolutionary, and physiological functions of AQPs in N. tabacum.
Collapse
Affiliation(s)
| | | | | | - François Chaumont
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud 4-L7.07.14, B-1348 Louvain-la-Neuve, Belgium; (J.A.); (S.M.); (M.B.)
| |
Collapse
|
16
|
Bezerra-Neto JP, de Araújo FC, Ferreira-Neto JRC, da Silva MD, Pandolfi V, Aburjaile FF, Sakamoto T, de Oliveira Silva RL, Kido EA, Barbosa Amorim LL, Ortega JM, Benko-Iseppon AM. Plant Aquaporins: Diversity, Evolution and Biotechnological Applications. Curr Protein Pept Sci 2019; 20:368-395. [PMID: 30387391 DOI: 10.2174/1389203720666181102095910] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The plasma membrane forms a permeable barrier that separates the cytoplasm from the external environment, defining the physical and chemical limits in each cell in all organisms. The movement of molecules and ions into and out of cells is controlled by the plasma membrane as a critical process for cell stability and survival, maintaining essential differences between the composition of the extracellular fluid and the cytosol. In this process aquaporins (AQPs) figure as important actors, comprising highly conserved membrane proteins that carry water, glycerol and other hydrophilic molecules through biomembranes, including the cell wall and membranes of cytoplasmic organelles. While mammals have 15 types of AQPs described so far (displaying 18 paralogs), a single plant species can present more than 120 isoforms, providing transport of different types of solutes. Such aquaporins may be present in the whole plant or can be associated with different tissues or situations, including biotic and especially abiotic stresses, such as drought, salinity or tolerance to soils rich in heavy metals, for instance. The present review addresses several aspects of plant aquaporins, from their structure, classification, and function, to in silico methodologies for their analysis and identification in transcriptomes and genomes. Aspects of evolution and diversification of AQPs (with a focus on plants) are approached for the first time with the aid of the LCA (Last Common Ancestor) analysis. Finally, the main practical applications involving the use of AQPs are discussed, including patents and future perspectives involving this important protein family.
Collapse
Affiliation(s)
- João P Bezerra-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flávia Czekalski de Araújo
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - José R C Ferreira-Neto
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Manassés D da Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Valesca Pandolfi
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Flavia F Aburjaile
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Tetsu Sakamoto
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Roberta L de Oliveira Silva
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Ederson A Kido
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| | - Lidiane L Barbosa Amorim
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Campus Oeiras, Avenida Projetada, s/n, 64.500-000, Oeiras, Piauí, Brazil
| | - José M Ortega
- Universidade Federal de Minas Gerais, Department of Biochemistry and Immunology, Belo Horizonte, Brazil
| | - Ana M Benko-Iseppon
- Universidade Federal de Pernambuco, Genetics Department, Center of Biosciences, Av. Prof. Moraes Rego, 1235, 50.670-423, Recife, Pernambuco, Brazil
| |
Collapse
|
17
|
Qian W, Yang X, Li J, Luo R, Yan X, Pang Q. Genome-wide characterization and expression analysis of aquaporins in salt cress ( Eutrema salsugineum). PeerJ 2019; 7:e7664. [PMID: 31565576 PMCID: PMC6745184 DOI: 10.7717/peerj.7664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Aquaporins (AQPs) serve as water channel proteins and belong to major intrinsic proteins (MIPs) family, functioning in rapidly and selectively transporting water and other small solutes across biological membranes. Importantly, AQPs have been shown to play a critical role in abiotic stress response pathways of plants. As a species closely related to Arabidopsis thaliana, Eutrema salsugineum has been proposed as a model for studying salt resistance in plants. Here we surveyed 35 full-length AQP genes in E. salsugineum, which could be grouped into four subfamilies including 12 plasma membrane intrinsic proteins (PIPs), 11 tonoplast intrinsic proteins (TIPs), nine NOD-like intrinsic proteins (NIPs), and three small basic intrinsic proteins (SIPs) by phylogenetic analysis. EsAQPs were comprised of 237-323 amino acids, with a theoretical molecular weight (MW) of 24.31-31.80 kDa and an isoelectric point (pI) value of 4.73-10.49. Functional prediction based on the NPA motif, aromatic/arginine (ar/R) selectivity filter, Froger's position and specificity-determining position suggested quite differences in substrate specificities of EsAQPs. EsAQPs exhibited global expressions in all organs as shown by gene expression profiles and should be play important roles in response to salt, cold and drought stresses. This study provides comprehensive bioinformation on AQPs in E. salsugineum, which would be helpful for gene function analysis for further studies.
Collapse
Affiliation(s)
- Weiguo Qian
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Xiaomin Yang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Jiawen Li
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Rui Luo
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Xiufeng Yan
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| | - Qiuying Pang
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin, China
| |
Collapse
|
18
|
Li W, Zhang D, Zhu G, Mi X, Guo W. Combining genome-wide and transcriptome-wide analyses reveal the evolutionary conservation and functional diversity of aquaporins in cotton. BMC Genomics 2019; 20:538. [PMID: 31262248 PMCID: PMC6604486 DOI: 10.1186/s12864-019-5928-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/23/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aquaporins (AQPs) are integral membrane proteins from a larger family of major intrinsic proteins (MIPs) and function in a huge variety of processes such as water transport, plant growth and stress response. The availability of the whole-genome data of different cotton species allows us to study systematic evolution and function of cotton AQPs on a genome-wide level. RESULTS Here, a total of 53, 58, 113 and 111 AQP genes were identified in G. arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively. A comprehensive analysis of cotton AQPs, involved in exon/intron structure, functional domains, phylogenetic relationships and gene duplications, divided these AQPs into five subfamilies (PIP, NIP, SIP, TIP and XIP). Comparative genome analysis among 30 species from algae to angiosperm as well as common tandem duplication events in 24 well-studied plants further revealed the evolutionary conservation of AQP family in the organism kingdom. Combining transcriptome analysis and Quantitative Real-time PCR (qRT-PCR) verification, most AQPs exhibited tissue-specific expression patterns both in G. raimondii and G. hirsutum. Meanwhile, a bias of time to peak expression of several AQPs was also detected after treating G. davidsonii and G. hirsutum with 200 mM NaCl. It is interesting that both PIP1;4 h/i/j and PIP2;2a/e showed the highly conserved tandem structure, but differentially contributed to tissue development and stress response in different cotton species. CONCLUSIONS These results demonstrated that cotton AQPs were structural conservation while experienced the functional differentiation during the process of evolution and domestication. This study will further broaden our insights into the evolution and functional elucidation of AQP gene family in cotton.
Collapse
Affiliation(s)
- Weixi Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Dayong Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Xinyue Mi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
19
|
Sahitya UL, Krishna MSR, Suneetha P. Integrated approaches to study the drought tolerance mechanism in hot pepper ( Capsicum annuum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:637-647. [PMID: 31168229 PMCID: PMC6522565 DOI: 10.1007/s12298-019-00655-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/20/2019] [Accepted: 03/13/2019] [Indexed: 05/13/2023]
Abstract
Drought is one of the predominant abiotic stresses which have phenomenal impact on crop productivity. Alterations in aquaporin gene expressions are part of complex molecular responses by plant in response to drought. To better understand the role of aquaporins in economically important crop chilli (Capsicum annuum), drought induced gene expression of twelve aquaporins was determined in drought tolerant-KCa-4884 and drought susceptible-G-4 genotypes. Conjointly, the effect of drought on leaf water status and photosynthetic parameters were evaluated. Gene expression of all examined 12 aquaporins was up-regulated in KCa-4884 and in contrast, all the aquaporin genes were down-regulated in G-4 under drought stress. Significant variations among two chilli genotypes have been recorded in photosynthetic rate (P n ), stomatal conductance (G s ), and relative water content (RWC), sub-stomatal CO2 concentration (C i ). KCa-4884 revealed significantly high rates of P n and RWC and decreased G s under water deficit conditions providing evidence for superior drought adaptive strategies. Differences in physiological parameters illustrate prevention of water loss during drought. Up-regulation of aquaporins in drought tolerant genotype implicates their possible role in water relations and photosynthetic performance even under extended drought conditions.
Collapse
Affiliation(s)
- U. Lakshmi Sahitya
- Department of Biotechnology, KLEF Deemed to be University, Guntur, Andhra Pradesh India
| | - M. S. R. Krishna
- Department of Biotechnology, KLEF Deemed to be University, Guntur, Andhra Pradesh India
| | - P. Suneetha
- Institute of Biotechnology, Professor Jaya Shankar Telangana State Agricultural University, Hyderabad, Telangana India
| |
Collapse
|
20
|
Franzini VI, Azcón R, Ruiz-Lozano JM, Aroca R. Rhizobial symbiosis modifies root hydraulic properties in bean plants under non-stressed and salinity-stressed conditions. PLANTA 2019; 249:1207-1215. [PMID: 30603790 DOI: 10.1007/s00425-018-03076-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/19/2018] [Indexed: 05/10/2023]
Abstract
Rhizobial symbiosis improved the water status of bean plants under salinity-stress conditions, in part by increasing their osmotic root water flow. One of the main problems for agriculture worldwide is the increasing salinization of farming lands. The use of soil beneficial microorganisms stands up as a way to tackle this problem. One approach is the use of rhizobial N2-fixing, nodule-forming bacteria. Salinity-stress causes leaf dehydration due to an imbalance between water lost through stomata and water absorbed by roots. The aim of the present study was to elucidate how rhizobial symbiosis modulates the water status of bean (Phaseolus vulgaris) plants under salinity-stress conditions, by assessing the effects on root hydraulic properties. Bean plants were inoculated or not with a Rhizobium leguminosarum strain and subjected to moderate salinity-stress. The rhizobial symbiosis was found to improve leaf water status and root osmotic water flow under such conditions. Higher content of nitrogen and lower values of sodium concentration in root tissues were detected when compared to not inoculated plants. In addition, a drop in the osmotic potential of xylem sap and increased amount of PIP aquaporins could favour higher root osmotic water flow in the inoculated plants. Therefore, it was found that rhizobial symbiosis may also improve root osmotic water flow of the host plants under salinity stress.
Collapse
Affiliation(s)
- Vinicius Ide Franzini
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Rosario Azcón
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain
| | - Ricardo Aroca
- Department of Soil Microbiology and Symbiotic System, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
21
|
Wei X, Jin X, Ndayambaza B, Min X, Zhang Z, Wang Y, Liu W. Transcriptome-Wide Characterization and Functional Identification of the Aquaporin Gene Family During Drought Stress in Common Vetch. DNA Cell Biol 2019; 38:374-384. [PMID: 30807211 DOI: 10.1089/dna.2018.4562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aquaporins (AQPs) are transmembrane channels that are essential for the movement of water and other small molecules between biofilms in various physiological processes in plants. In this study, based on transcriptome-wide data, we identified and described a total of 21 AQP genes in common vetch (Vicia sativa subsp. sativa), which is an economically important pasture legume worldwide. Based on phylogenetic analyses, the VsAQPs were sorted into four subfamilies, including four plasma membrane intrinsic proteins (PIPs), six tonoplast intrinsic proteins (TIPs), seven NOD26-like intrinsic proteins, and four small basic intrinsic proteins. Furthermore, chemical and physical properties of these VsAQPs, including the isoelectric point and theoretical molecular weight, were analyzed. Analyses of the AQP signature sequences and key residues indicated the substrate specificity of each VsAQP. A set of VsAQPs was selected for gene expression analysis in a number of tissues and after drought stress treatments using real-time quantitative reverse transcription/polymerase chain reaction assays. Most of the PIPs and TIPs were proposed to have critical roles in regulating the flow of water during drought stress. Heterologous expression experiments in yeast indicated that VsPIP1;2 and VsPIP2;2 are key candidate genes for improving drought stress tolerance. The results reported in this study could be a crucial resource for further practical analyses and for genetic improvement of drought stress tolerance in common vetch.
Collapse
Affiliation(s)
- Xingyi Wei
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Xiaoyu Jin
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Boniface Ndayambaza
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Xueyang Min
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P.R. China
| |
Collapse
|
22
|
Feng ZJ, Liu N, Zhang GW, Niu FG, Xu SC, Gong YM. Investigation of the AQP Family in Soybean and the Promoter Activity of TIP2;6 in Heat Stress and Hormone Responses. Int J Mol Sci 2019; 20:E262. [PMID: 30634702 PMCID: PMC6359280 DOI: 10.3390/ijms20020262] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022] Open
Abstract
Aquaporins (AQPs) are one diverse family of membrane channel proteins that play crucial regulatory roles in plant stress physiology. However, the heat stress responsiveness of AQP genes in soybean remains poorly understood. In this study, 75 non-redundant AQP encoding genes were identified in soybean. Multiple sequence alignments showed that all GmAQP proteins possessed the conserved regions, which contained 6 trans-membrane domains (TM1 to TM6). Different GmAQP members consisted of distinct Asn-Pro-Ala (NPA) motifs, aromatic/arginine (ar/R) selectivity filters and Froger's positions (FPs). Phylogenetic analyses distinguished five sub-families within these GmAQPs: 24 GmPIPs, 24 GmTIPs, 17 GmNIPs, 8 GmSIPs, and 2 GmXIPs. Promoter cis-acting elements analyses revealed that distinct number and composition of heat stress and hormone responsive elements existed in different promoter regions of GmAQPs. QRT-PCR assays demonstrated that 12 candidate GmAQPs with relatively extensive expression in various tissues or high expression levels in root or leaf exhibited different expression changes under heat stress and hormone cues (abscisic acid (ABA), l-aminocyclopropane-l-carboxylic acid (ACC), salicylic acid (SA) and methyl jasmonate (MeJA)). Furthermore, the promoter activity of one previously functionally unknown AQP gene-GmTIP2;6 was investigated in transgenic Arabidopsis plants. The beta-glucuronidase (GUS) activity driven by the promoter of GmTIP2;6 was strongly induced in the heat- and ACC-treated transgenic plants and tended to be accumulated in the hypocotyls, vascular bundles, and leaf trichomes. These results will contribute to uncovering the potential functions and molecular mechanisms of soybean GmAQPs in mediating heat stress and hormone signal responses.
Collapse
Affiliation(s)
- Zhi-Juan Feng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Na Liu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Gu-Wen Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Fu-Ge Niu
- Food Safety Key Lab of Zhejiang Province, The School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Sheng-Chun Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Ya-Ming Gong
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
23
|
Naveed ZA, Bibi S, Ali GS. The Phytophthora RXLR Effector Avrblb2 Modulates Plant Immunity by Interfering With Ca 2+ Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2019; 10:374. [PMID: 30984224 PMCID: PMC6447682 DOI: 10.3389/fpls.2019.00374] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 05/03/2023]
Abstract
In plants, subcellular fluctuations in Ca2+ ion concentration are among the earliest responses to biotic and abiotic stresses. Calmodulin, which is a ubiquitous Ca2+ ion sensor in eukaryotes, plays a major role in translating these Ca2+ signatures to cellular responses by interacting with numerous proteins located in plasma membranes, cytoplasm, organelles and nuclei. In this report, we show that one of the Phytophthora RXLR effector, Avrblb2, interacts with calmodulin at the plasma membrane of the plant cells. Using deletion and single amino acid mutagenesis, we found that calmodulin binds to the effector domain of Avrblb2. In addition, we show that most known homologs of Avrblb2 in three different Phytophthora species interact with different isoforms of calmodulin. Type of amino acids at position 69 in Avrblb2, which determines Rbi-blb2 resistance protein-mediated defense responses, is not involved in the Avrblb2-calmodulin interaction. Using in planta functional analyses, we show that calmodulin binding to Avrblb2 is required for its recognition by Rpi-blb2 to incite hypersensitive response. These findings suggest that Avrblb2 by interacting with calmodulin interfere with plant defense associated Ca2+ signaling in plants.
Collapse
|
24
|
Wang R, Wang M, Chen K, Wang S, Mur LAJ, Guo S. Exploring the Roles of Aquaporins in Plant⁻Microbe Interactions. Cells 2018; 7:E267. [PMID: 30545006 PMCID: PMC6316839 DOI: 10.3390/cells7120267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are membrane channel proteins regulating the flux of water and other various small solutes across membranes. Significant progress has been made in understanding the roles of AQPs in plants' physiological processes, and now their activities in various plant⁻microbe interactions are receiving more attention. This review summarizes the various roles of different AQPs during interactions with microbes which have positive and negative consequences on the host plants. In positive plant⁻microbe interactions involving rhizobia, arbuscular mycorrhizae (AM), and plant growth-promoting rhizobacteria (PGPR), AQPs play important roles in nitrogen fixation, nutrient transport, improving water status, and increasing abiotic stress tolerance. For negative interactions resulting in pathogenesis, AQPs help plants resist infections by preventing pathogen ingress by influencing stomata opening and influencing defensive signaling pathways, especially through regulating systemic acquired resistance. Interactions with bacterial or viral pathogens can be directly perturbed through direct interaction of AQPs with harpins or replicase. However, whilst these observations indicate the importance of AQPs, further work is needed to develop a fuller mechanistic understanding of their functions.
Collapse
Affiliation(s)
- Ruirui Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Kehao Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Shiyu Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK.
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
25
|
Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0425-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Khan MA, Tong F, Wang W, He J, Zhao T, Gai J. Analysis of QTL-allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. PLANTA 2018; 248:947-962. [PMID: 29980855 DOI: 10.1007/s00425-018-2952-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/02/2018] [Indexed: 05/20/2023]
Abstract
MAIN CONCLUSION RTM-GWAS identified 111 DT QTLs, 262 alleles with high proportion of QEI and genetic variation accounting for 88.55-95.92% PV in NAM, from which QTL-allele matrices were established and candidate genes annotated. Drought tolerance (DT) is one of the major challenges for world soybean production. A nested association mapping (NAM) population with 403 lines comprising two recombinant inbred line (RIL) populations: M8206 × TongShan and ZhengYang × M8206 was tested for DT using polyethylene-glycol (PEG) treatment under spring and summer environments. The population was sequenced using restriction-site-associated DNA sequencing (RAD-seq) filtered with minor allele frequency (MAF) ≥ 0.01, 55,936 single nucleotide polymorphisms (SNPs) were obtained and organized into 6137 SNP linkage disequilibrium blocks (SNPLDBs). The restricted two-stage multi-locus genome-wide association studies (RTM-GWAS) identified 73 and 38 QTLs with 174 and 88 alleles contributed main effect 40.43 and 26.11% to phenotypic variance (PV) and QTL-environment interaction (QEI) effect 24.64 and 10.35% to PV for relative root length (RRL) and relative shoot length (RSL), respectively. The DT traits were characterized with high proportion of QEI variation (37.52-41.65%), plus genetic variation (46.90-58.40%) in a total of 88.55-95.92% PV. The identified QTLs-alleles were organized into main-effect and QEI-effect QTL-allele matrices, showing the genetic and QEI architecture of the three parents/NAM population. From the matrices, the possible best genotype was predicted to have a weighted average value over two indicators (WAV) of 1.873, while the top ten optimal crosses among RILs with 95th percentile WAV 1.098-1.132, transgressive over the parents (0.651-0.773) but much less than 1.873, implying further pyramiding potential. From the matrices, 134 candidate genes were annotated involved in nine biological processes. The present results provide a novel way for molecular breeding in QTL-allele-based genomic selection for optimal cross selection.
Collapse
Affiliation(s)
- Mueen Alam Khan
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
| | - Fei Tong
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
| | - Wubin Wang
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jianbo He
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China
| | - Tuanjie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Junyi Gai
- Soybean Research Institute, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- National Center for Soybean Improvement, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
- Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, Jiangsu, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
27
|
Ding L, Lu Z, Gao L, Guo S, Shen Q. Is Nitrogen a Key Determinant of Water Transport and Photosynthesis in Higher Plants Upon Drought Stress? FRONTIERS IN PLANT SCIENCE 2018; 9:1143. [PMID: 30186291 PMCID: PMC6113670 DOI: 10.3389/fpls.2018.01143] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/17/2018] [Indexed: 05/19/2023]
Abstract
Drought stress is a major global issue limiting agricultural productivity. Plants respond to drought stress through a series of physiological, cellular, and molecular changes for survival. The regulation of water transport and photosynthesis play crucial roles in improving plants' drought tolerance. Nitrogen (N, ammonium and nitrate) is an essential macronutrient for plants, and it can affect many aspects of plant growth and metabolic pathways, including water relations and photosynthesis. This review focuses on how drought stress affects water transport and photosynthesis, including the regulation of hydraulic conductance, aquaporin expression, and photosynthesis. It also discusses the cross talk between N, water transport, and drought stress in higher plants.
Collapse
Affiliation(s)
- Lei Ding
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Limin Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
28
|
Genome-Wide Identification and Characterization of Aquaporins and Their Role in the Flower Opening Processes in Carnation ( Dianthus caryophyllus). Molecules 2018; 23:molecules23081895. [PMID: 30060619 PMCID: PMC6222698 DOI: 10.3390/molecules23081895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Aquaporins (AQPs) are associated with the transport of water and other small solutes across biological membranes. Genome-wide identification and characterization will pave the way for further insights into the AQPs’ roles in the commercial carnation (Dianthus caryophyllus). This study focuses on the analysis of AQPs in carnation (DcaAQPs) involved in flower opening processes. Thirty DcaAQPs were identified and grouped to five subfamilies: nine PIPs, 11 TIPs, six NIPs, three SIPs, and one XIP. Subsequently, gene structure, protein motifs, and co-expression network of DcaAQPs were analyzed and substrate specificity of DcaAQPs was predicted. qRT-PCR, RNA-seq, and semi-qRTRCR were used for DcaAQP genes expression analysis. The analysis results indicated that DcaAQPs were relatively conserved in gene structure and protein motifs, that DcaAQPs had significant differences in substrate specificity among different subfamilies, and that DcaAQP genes’ expressions were significantly different in roots, stems, leaves and flowers. Five DcaAQP genes (DcaPIP1;3, DcaPIP2;2, DcaPIP2;5, DcaTIP1;4, and DcaTIP2;2) might play important roles in flower opening process. However, the roles they play are different in flower organs, namely, sepals, petals, stamens, and pistils. Overall, this study provides a theoretical basis for further functional analysis of DcaAQPs.
Collapse
|
29
|
Zhou L, Zhou J, Xiong Y, Liu C, Wang J, Wang G, Cai Y. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis. PLoS One 2018; 13:e0198639. [PMID: 29856862 PMCID: PMC5983466 DOI: 10.1371/journal.pone.0198639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022] Open
Abstract
Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.
Collapse
Affiliation(s)
- Lian Zhou
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jing Zhou
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuhan Xiong
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Chaoxian Liu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiuguang Wang
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Guoqiang Wang
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yilin Cai
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
30
|
Kourghi M, Pei JV, De Ieso ML, Nourmohammadi S, Chow PH, Yool AJ. Fundamental structural and functional properties of Aquaporin ion channels found across the kingdoms of life. Clin Exp Pharmacol Physiol 2018; 45:401-409. [PMID: 29193257 DOI: 10.1111/1440-1681.12900] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Aquaporin (AQP) channels in the major intrinsic protein (MIP) family are known to facilitate transmembrane water fluxes in prokaryotes and eukaryotes. Some classes of AQPs also conduct ions, glycerol, urea, CO2 , nitric oxide, and other small solutes. Ion channel activity has been demonstrated for mammalian AQPs 0, 1, 6, Drosophila Big Brain (BIB), soybean nodulin 26, and rockcress AtPIP2;1. More classes are likely to be discovered. Newly identified blockers are providing essential tools for establishing physiological roles of some of the AQP dual water and ion channels. For example, the arylsulfonamide AqB011 which selectively blocks the central ion pore of mammalian AQP1 has been shown to impair migration of HT29 colon cancer cells. Traditional herbal medicines are sources of selective AQP1 inhibitors that also slow cancer cell migration. The finding that plant AtPIP2;1 expressed in root epidermal cells mediates an ion conductance regulated by calcium and protons provided insight into molecular mechanisms of environmental stress responses. Expression of lens MIP (AQP0) is essential for maintaining the structure, integrity and transparency of the lens, and Drosophila BIB contributes to neurogenic signalling pathways to control the developmental fate of fly neuroblast cells; however, the ion channel roles remain to be defined for MIP and BIB. A broader portfolio of pharmacological agents is needed to investigate diverse AQP ion channel functions in situ. Understanding the dual water and ion channel roles of AQPs could inform the development of novel agents for rational interventions in diverse challenges from agriculture to human health.
Collapse
Affiliation(s)
- Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michael L De Ieso
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | | | - Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
31
|
Lu L, Dong C, Liu R, Zhou B, Wang C, Shou H. Roles of Soybean Plasma Membrane Intrinsic Protein GmPIP2;9 in Drought Tolerance and Seed Development. FRONTIERS IN PLANT SCIENCE 2018; 9:530. [PMID: 29755491 PMCID: PMC5932197 DOI: 10.3389/fpls.2018.00530] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 05/21/2023]
Abstract
Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP) genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG)-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9-overexpressing transgenic plants were less stressed than wild-type (WT) plants. Furthermore, field experiments showed that GmPIP2;9-overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9-overexpressing plants in drought stress tolerance and seed development.
Collapse
Affiliation(s)
- Linghong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Changhe Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ruifang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bin Zhou
- Institute of Crop Science, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chuang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Huixia Shou,
| |
Collapse
|
32
|
Are Aquaporins (AQPs) the Gateway that Conduits Nutrients, Persistent Organic Pollutants and Perfluoroalkyl Substances (PFASs) into Plants? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40362-017-0045-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Prediction of arsenic and antimony transporter major intrinsic proteins from the genomes of crop plants. Int J Biol Macromol 2017; 107:2630-2642. [PMID: 29080824 DOI: 10.1016/j.ijbiomac.2017.10.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/17/2023]
Abstract
Major intrinsic proteins (MIPs), commonly known as aquaporins, transport water and non-polar small solutes. Comparing the 3D models and the primary selectivity-related motifs (two Asn-Pro-Ala (NPA) regions, the aromatic/arginine (ar/R) selectivity filter, and Froger's positions (FPs)) of all plant MIPs that have been experimentally proven to transport arsenic (As) and antimony (Sb), some substrate-specific signature sequences (SSSS) or specificity determining sites (SDPs) have been predicted. These SSSS or SDPs were determined in 543 MIPs found in the genomes of 12 crop plants; the As and Sb transporters were predicted to be distributed in noduline-26 like intrinsic proteins (NIPs), and every plant had one or several As and Sb transporter NIPs. Phylogenetic grouping of the NIP subfamily based on the ar/R selectivity filter and FPs were linked to As and Sb transport. We further determined the group-wise substrate selectivity profiles of the NIPs in the 12 crop plants. In addition to two NPA regions, the ar/R filter, and FPs, certain amino acids especially in the pore line, loop D, and termini contribute to the functional distinctiveness of the NIP groups. Expression analysis of transcripts in different organs indicated that most of the As and Sb transporter NIPs were expressed in roots.
Collapse
|
34
|
Zhang D, Huang Y, Kumar M, Wan Q, Xu Z, Shao H, Pandey GK. Heterologous expression of GmSIP1;3 from soybean in tobacco showed and growth retardation and tolerance to hydrogen peroxide. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:210-218. [PMID: 28818377 DOI: 10.1016/j.plantsci.2017.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Aquaporins (AQPs) are transmembrane protein channels that are members of Major Intrinsic Proteins (MIP) superfamily. AQPs play important roles in plant reproduction, cell elongation, osmoregulation, influence leaf physiology and are responsive to drought and salt tolerance. Small intrinsic proteins (SIPs)belongs to one of the groups of AQPs, which are mainly localized to endoplasmic reticulum(ER). While this group of aquaporin is being well studied in Arabidopsis, grape and other plant species, not much is known about the molecular regulatory mechanisms driven by ER-type AQPs in Glycine Max. In this study, the function of GmSIP1;3 is studied in detail by using both yeast and plant systems. GmSIP1;3 showed a ubiquitous expression pattern in all different tissues in Glycine Max. Heterologous expression of GmSIP1;3 in Nicotiana tabacum conferred a short root phenotype,growth retardation at seedling stage and significant tolerance to oxidative stress (H2O2) both in yeast and plant systems. Auxin (IAA) content significantly increased in transgenic plants compared with that of wild type, however, the abscisic acid (ABA) content was significantly reduced. Subcellular localization and colocalization analyses showed GmSIP1;3 localized to ER plasma membrane. On the basis of these observations, we postulate that GmSIP1;3 is involved in oxidative stress pathways.
Collapse
Affiliation(s)
- Dayong Zhang
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China.
| | - Yihong Huang
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China
| | - Manoj Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Qun Wan
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China
| | - Zhaolong Xu
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China
| | - Hongbo Shao
- Salt-Soil Agricultural Center, Institute of Agricultural Resources and Environment Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing 210014, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng City, 224002, China.
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
35
|
Kong W, Yang S, Wang Y, Bendahmane M, Fu X. Genome-wide identification and characterization of aquaporin gene family in Beta vulgaris. PeerJ 2017; 5:e3747. [PMID: 28948097 PMCID: PMC5609522 DOI: 10.7717/peerj.3747] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Aquaporins (AQPs) are essential channel proteins that execute multi-functions throughout plant growth and development, including water transport, uncharged solutes uptake, stress response, and so on. Here, we report the first genome-wide identification and characterization AQP (BvAQP) genes in sugar beet (Beta vulgaris), an important crop widely cultivated for feed, for sugar production and for bioethanol production. Twenty-eight sugar beet AQPs (BvAQPs) were identified and assigned into five subfamilies based on phylogenetic analyses: seven of plasma membrane (PIPs), eight of tonoplast (TIPs), nine of NOD26-like (NIPs), three of small basic (SIPs), and one of x-intrinsic proteins (XIPs). BvAQP genes unevenly mapped on all chromosomes, except on chromosome 4. Gene structure and motifs analyses revealed that BvAQP have conserved exon-intron organization and that they exhibit conserved motifs within each subfamily. Prediction of BvAQPs functions, based on key protein domains conservation, showed a remarkable difference in substrate specificity among the five subfamilies. Analyses of BvAQPs expression, by mean of RNA-seq, in different plant organs and in response to various abiotic stresses revealed that they were ubiquitously expressed and that their expression was induced by heat and salt stresses. These results provide a reference base to address further the function of sugar beet aquaporins and to explore future applications for plants growth and development improvements as well as in response to environmental stresses.
Collapse
Affiliation(s)
- Weilong Kong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| | - Shaozong Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| | - Yulu Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| | - Mohammed Bendahmane
- INRA-CNRS-Lyon1-ENS, Laboratoire Reproduction et Developpement des Plantes, Ecole Normale Supérieure Lyon, France
| | - Xiaopeng Fu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
36
|
An J, Hu Z, Che B, Chen H, Yu B, Cai W. Heterologous Expression of Panax ginseng PgTIP1 Confers Enhanced Salt Tolerance of Soybean Cotyledon Hairy Roots, Composite, and Whole Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1232. [PMID: 28769947 PMCID: PMC5512343 DOI: 10.3389/fpls.2017.01232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/29/2017] [Indexed: 05/03/2023]
Abstract
The Panax ginseng TIP gene PgTIP1 was previously demonstrated to have high water channel activity by its heterologous expression in Xenopus laevis oocytes and in yeast; it also plays a significant role in growth of PgTIP1-transgenic Arabidopsis plants under favorable conditions and has enhanced tolerance toward salt and drought treatment. In this work, we first investigated the physiological effects of heterologous PgTIP1 expression in soybean cotyledon hairy roots or composite plants mediated by Agrobacterium rhizogenes toward enhanced salt tolerance. The PgTIP1-transgenic soybean plants mediated by the pollen tube pathway, represented by the lines N and J11, were analyzed at the physiological and molecular levels for enhanced salt tolerance. The results showed that in terms of root-specific heterologous expression, the PgTIP1-transformed soybean cotyledon hairy roots or composite plants displayed superior salt tolerance compared to the empty vector-transformed ones according to the mitigatory effects of hairy root growth reduction, drop in leaf RWC, and rise in REL under salt stress. Additionally, declines in K+ content, increases in Na+ content and Na+/K+ ratios in the hairy roots, stems, or leaves were effectively alleviated by PgTIP1-transformation, particularly the stems and leaves of composite soybean plants. At the whole plant level, PgTIP1-trasgenic soybean lines were found to possess stronger root vigor, reduced root and leaf cell membrane damage, increased SOD, POD, CAT, and APX activities, steadily increased leaf Tr, RWC, and Pn values, and smaller declines in chlorophyll and carotenoid content when exposed to salt stress compared to wild type. Moreover, the distribution patterns of Na+, K+, and Cl- in the roots, stems, and leaves of salt-stressed transgenic plants were readjusted, in that the absorbed Na+ and Cl- were mainly restricted to the roots to reduce their transport to the shoots, and the transport of root-absorbed K+ to the shoots was simultaneously promoted. PgTIP1 transformation into soybean plants enhanced the expression of some stress-related genes (GmPOD, GmAPX1, GmSOS1, and GmCLC1) in the roots and leaves under salt treatment. This indicates that the causes of enhanced salt tolerance of heterologous PgTIP1-transformed soybean are associated with the positive regulation on water relations, ion homeostasis, and ROS scavenging under salt stress both at root-specific and whole plant levels.
Collapse
Affiliation(s)
- Jing An
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Zhenmin Hu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Benning Che
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Haiying Chen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| | - Bingjun Yu
- Laboratory of Plant Stress Biology, College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
37
|
Zhang DY, Kumar M, Xu L, Wan Q, Huang YH, Xu ZL, He XL, Ma JB, Pandey GK, Shao HB. Genome-wide identification of Major Intrinsic Proteins in Glycine soja and characterization of GmTIP2;1 function under salt and water stress. Sci Rep 2017; 7:4106. [PMID: 28646139 PMCID: PMC5482899 DOI: 10.1038/s41598-017-04253-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
In different plant species, aquaporins (AQPs) facilitate water movement by regulating root hydraulic conductivity under diverse stress conditions such as salt and water stresses. To improve survival and yield of crop plants, a detailed understanding of stress responses is imperative and required. We used Glycine soja genome as a tool to study AQPs, considering it shows abundant genetic diversity and higher salt environment tolerance features and identified 62 Gs AQP genes. Additionally, this study identifies major aquaporins responsive to salt and drought stresses in soybean and elucidates their mode of action through yeast two-hybrid assay and BiFC. Under stress condition, the expression analysis of AQPs in roots and leaves of two contrasting ecotypes of soybean revealed diverse expression patterns suggesting complex regulation at transcriptional level. Based on expression analysis, we identify GmTIP2;1 as a potential candidate involved in salinity and drought responses. The overexpression of GmTIP2;1 in Saccharomyces cerevisiae as well as in-planta enhanced salt and drought tolerance. We identified that GmTIP2;1 forms homodimers as well as interacts with GmTIP1;7 and GmTIP1;8. This study augments our knowledge of stress responsive pathways and also establishes GmTIP2;1 as a new stress responsive gene in imparting salt stress tolerance in soybean.
Collapse
Affiliation(s)
- Da-Yong Zhang
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Manoj Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ling Xu
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Qun Wan
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Yi-Hong Huang
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Zhao-Long Xu
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Xiao-Lan He
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences Urumqi, Urumqi, China
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| | - Hong-Bo Shao
- Salt-soil Agricultural Center, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Zhongling Street No.50, Nanjing, 210014, China.
- JLCBE, Yancheng Teachers University, Xiwang Avenue 1, Yancheng, 224002, China.
| |
Collapse
|
38
|
Kadam S, Abril A, Dhanapal AP, Koester RP, Vermerris W, Jose S, Fritschi FB. Characterization and Regulation of Aquaporin Genes of Sorghum [ Sorghum bicolor (L.) Moench] in Response to Waterlogging Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:862. [PMID: 28611797 PMCID: PMC5447673 DOI: 10.3389/fpls.2017.00862] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/09/2017] [Indexed: 05/25/2023]
Abstract
Waterlogging is a significant environmental constraint to crop production, and a better understanding of plant responses is critical for the improvement of crop tolerance to waterlogged soils. Aquaporins (AQPs) are a class of channel-forming proteins that play an important role in water transport in plants. This study aimed to examine the regulation of AQP genes under waterlogging stress and to characterize the genetic variability of AQP genes in sorghum (Sorghum bicolor). Transcriptional profiling of AQP genes in response to waterlogging stress in nodal root tips and nodal root basal regions of two tolerant and two sensitive sorghum genotypes at 18 and 96 h after waterlogging stress imposition revealed significant gene-specific pattern with regard to genotype, root tissue sample, and time point. For some tissue sample and time point combinations, PIP2-6, PIP2-7, TIP2-2, TIP4-4, and TIP5-1 expression was differentially regulated in tolerant compared to sensitive genotypes. The differential response of these AQP genes suggests that they may play a tissue specific role in mitigating waterlogging stress. Genetic analysis of sorghum revealed that AQP genes were clustered into the same four subfamilies as in maize (Zea mays) and rice (Oryza sativa) and that residues determining the AQP channel specificity were largely conserved across species. Single nucleotide polymorphism (SNP) data from 50 sorghum accessions were used to build an AQP gene-based phylogeny of the haplotypes. Phylogenetic analysis based on single nucleotide polymorphisms of sorghum AQP genes placed the tolerant and sensitive genotypes used for the expression study in distinct groups. Expression analyses suggested that selected AQPs may play a pivotal role in sorghum tolerance to water logging stress. Further experimentation is needed to verify their role and to leverage phylogenetic analyses and AQP expression data to improve waterlogging tolerance in sorghum.
Collapse
Affiliation(s)
- Suhas Kadam
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| | - Alejandra Abril
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida, GainesvilleFL, United States
| | - Arun P. Dhanapal
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| | - Robert P. Koester
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science – Institute of Food and Agricultural Sciences, University of Florida, GainesvilleFL, United States
- University of Florida Genetics Institute, University of Florida, GainesvilleFL, United States
| | - Shibu Jose
- The Center for Agroforestry, University of Missouri, ColumbiaMO, United States
| | - Felix B. Fritschi
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| |
Collapse
|
39
|
Genome-wide identification, characterization, and expression profile of aquaporin gene family in flax (Linum usitatissimum). Sci Rep 2017; 7:46137. [PMID: 28447607 PMCID: PMC5406838 DOI: 10.1038/srep46137] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Membrane intrinsic proteins (MIPs) form transmembrane channels and facilitate transport of myriad substrates across the cell membrane in many organisms. Majority of plant MIPs have water transporting ability and are commonly referred as aquaporins (AQPs). In the present study, we identified aquaporin coding genes in flax by genome-wide analysis, their structure, function and expression pattern by pan-genome exploration. Cross-genera phylogenetic analysis with known aquaporins from rice, arabidopsis, and poplar showed five subgroups of flax aquaporins representing 16 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 13 NOD26-like intrinsic proteins (NIPs), 2 small basic intrinsic proteins (SIPs), and 3 uncharacterized intrinsic proteins (XIPs). Amongst aquaporins, PIPs contained hydrophilic aromatic arginine (ar/R) selective filter but TIP, NIP, SIP and XIP subfamilies mostly contained hydrophobic ar/R selective filter. Analysis of RNA-seq and microarray data revealed high expression of PIPs in multiple tissues, low expression of NIPs, and seed specific expression of TIP3 in flax. Exploration of aquaporin homologs in three closely related Linum species bienne, grandiflorum and leonii revealed presence of 49, 39 and 19 AQPs, respectively. The genome-wide identification of aquaporins, first in flax, provides insight to elucidate their physiological and developmental roles in flax.
Collapse
|
40
|
|
41
|
Baranwal VK, Khurana P. Major intrinsic proteins repertoire of Morus notabilis and their expression profiles in different species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:304-317. [PMID: 27988481 DOI: 10.1016/j.plaphy.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/27/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Leaf moisture content in Morus is a significant trait regulating the yield of silk production. Studies have shown that fresh leaves or leaves with high water content are preferably eaten by silk worm. Water and certain other molecules transport in plants is known to be regulated by aquaporins or Major Intrinsic Proteins (MIPs). Members of the MIP gene family have also been implicated in plant development and stress responsiveness. To understand how members of MIP gene family are regulated and evolved, we carried out an extensive analysis of the gene family. We identified a total of 36 non redundant MIPs in Morus notabilis genome, belonging to five subfamilies PIPs, TIPs, NIPs, XIPs and SIPs) have been identified. We performed a Gene ontology (GO) term enrichment analysis and looked at distribution of cis elements in their 2K upstream regulatory region to reveal their putative roles in various stresses and developmental aspects. Expression analysis in developmental stages revealed their tissue preferential expression pattern in diverse vegetative and reproductive tissues. Comparison of expression profiles in the leaves of three species including Morus notabilis, Morus serrata and Morus laevigata led to identification of differential expression in these species. In all, this study elaborates a basic insight into the structure, function and evolutionary analysis of MIP gene family in Morus which is hitherto unavailable. Our analysis will provide a ready reference to the mulberry research community involved in the Morus improvement program.
Collapse
Affiliation(s)
- Vinay Kumar Baranwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
42
|
Kayum MA, Park JI, Nath UK, Biswas MK, Kim HT, Nou IS. Genome-wide expression profiling of aquaporin genes confer responses to abiotic and biotic stresses in Brassica rapa. BMC PLANT BIOLOGY 2017; 17:23. [PMID: 28122509 PMCID: PMC5264328 DOI: 10.1186/s12870-017-0979-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/17/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plants contain a range of aquaporin (AQP) proteins, which act as transporter of water and nutrient molecules through living membranes. AQPs also participate in water uptake through the roots and contribute to water homeostasis in leaves. RESULTS In this study, we identified 59 AQP genes in the B. rapa database and Br135K microarray dataset. Phylogenetic analysis revealed four distinct subfamilies of AQP genes: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), NOD26-like intrinsic proteins (NIPs) and small basic intrinsic proteins (SIPs). Microarray analysis showed that the majority of PIP subfamily genes had differential transcript abundance between two B. rapa inbred lines Chiifu and Kenshin that differ in their susceptibility to cold. In addition, all BrPIP genes showed organ-specific expression. Out of 22 genes, 12, 7 and 17 were up-regulated in response to cold, drought and salt stresses, respectively. In addition, 18 BrPIP genes were up-regulated under ABA treatment and 4 BrPIP genes were up-regulated upon F. oxysporum f. sp. conglutinans infection. Moreover, all BrPIP genes showed down-regulation under waterlogging stress, reflecting likely the inactivation of AQPs controlling symplastic water movement. CONCLUSIONS This study provides a comprehensive analysis of AQPs in B. rapa and details the expression of 22 members of the BrPIP subfamily. These results provide insight into stress-related biological functions of each PIP gene of the AQP family, which will promote B. rapa breeding programs.
Collapse
Affiliation(s)
- Md. Abdul Kayum
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Jong-In Park
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Ujjal Kumar Nath
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Manosh Kumar Biswas
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Hoy-Taek Kim
- University-Industry Cooperation Foundation, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| | - Ill-Sup Nou
- Department of Horticulture, Sunchon National University, 255 Jungang-ro, Suncheon, Jeonnam 57922 South Korea
| |
Collapse
|
43
|
|
44
|
Shivaraj SM, Deshmukh R, Bhat JA, Sonah H, Bélanger RR. Understanding Aquaporin Transport System in Eelgrass ( Zostera marina L.), an Aquatic Plant Species. FRONTIERS IN PLANT SCIENCE 2017; 8:1334. [PMID: 28824671 PMCID: PMC5541012 DOI: 10.3389/fpls.2017.01334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/17/2017] [Indexed: 05/14/2023]
Abstract
Aquaporins (AQPs) are a class of integral membrane proteins involved in the transport of water and many other small solutes. The AQPs have been extensively studied in many land species obtaining water and nutrients from the soil, but their distribution and evolution have never been investigated in aquatic plant species, where solute assimilation is mostly through the leaves. In this regard, identification of AQPs in the genome of Zostera marina L. (eelgrass), an aquatic ecological model species could reveal important differences underlying solute uptake between land and aquatic species. In the present study, genome-wide analysis led to the identification of 25 AQPs belonging to four subfamilies, plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) in eelgrass. As in other monocots, the XIP subfamily was found to be absent from the eelgrass genome. Further classification of subfamilies revealed a unique distribution pattern, namely the loss of the NIP2 (NIP-III) subgroup, which is known for silicon (Si) transport activity and ubiquitously present in monocot species. This finding has great importance, since the eelgrass population stability in natural niche is reported to be associated with Si concentrations in water. In addition, analysis of available RNA-seq data showed evidence of expression in 24 out of the 25 AQPs across four different tissues such as root, vegetative tissue, male flower and female flower. In contrast to land plants, higher expression of PIPs was observed in shoot compared to root tissues. This is likely explained by the unique plant architecture of eelgrass where most of the nutrients and water are absorbed by shoot rather than root tissues. Similarly, higher expression of the TIP1 and TIP5 families was observed specifically in male flowers suggesting a role in pollen maturation. This genome-wide analysis of AQP distribution, evolution and expression dynamics can find relevance in understanding the adaptation of aquatic and land species to their respective environments.
Collapse
Affiliation(s)
- S. M. Shivaraj
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Rupesh Deshmukh
- Département de Phytologie–Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, QuébecQC, Canada
| | - Javaid A. Bhat
- Department of Genetics and Plant Breeding, The Indian Agricultural Research InstituteNew Delhi, India
| | - Humira Sonah
- Département de Phytologie–Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, QuébecQC, Canada
| | - Richard R. Bélanger
- Département de Phytologie–Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, QuébecQC, Canada
- *Correspondence: Richard R. Bélanger,
| |
Collapse
|
45
|
|
46
|
Lopez D, Amira MB, Brown D, Muries B, Brunel-Michac N, Bourgerie S, Porcheron B, Lemoine R, Chrestin H, Mollison E, Di Cola A, Frigerio L, Julien JL, Gousset-Dupont A, Fumanal B, Label P, Pujade-Renaud V, Auguin D, Venisse JS. The Hevea brasiliensis XIP aquaporin subfamily: genomic, structural and functional characterizations with relevance to intensive latex harvesting. PLANT MOLECULAR BIOLOGY 2016; 91:375-96. [PMID: 27068521 DOI: 10.1007/s11103-016-0462-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/25/2016] [Indexed: 05/22/2023]
Abstract
X-Intrinsic Proteins (XIP) were recently identified in a narrow range of plants as a full clade within the aquaporins. These channels reportedly facilitate the transport of a wide range of hydrophobic solutes. The functional roles of XIP in planta remain poorly identified. In this study, we found three XIP genes (HbXIP1;1, HbXIP2;1 and HbXIP3;1) in the Hevea brasiliensis genome. Comprehensive bioinformatics, biochemical and structural analyses were used to acquire a better understanding of this AQP subfamily. Phylogenetic analysis revealed that HbXIPs clustered into two major groups, each distributed in a specific lineage of the order Malpighiales. Tissue-specific expression profiles showed that only HbXIP2;1 was expressed in all the vegetative tissues tested (leaves, stem, bark, xylem and latex), suggesting that HbXIP2;1 could take part in a wide range of cellular processes. This is particularly relevant to the rubber-producing laticiferous system, where this isoform was found to be up-regulated during tapping and ethylene treatments. Furthermore, the XIP transcriptional pattern is significantly correlated to latex production level. Structural comparison with SoPIP2;1 from Spinacia oleracea species provides new insights into the possible role of structural checkpoints by which HbXIP2;1 ensures glycerol transfer across the membrane. From these results, we discuss the physiological involvement of glycerol and HbXIP2;1 in water homeostasis and carbon stream of challenged laticifers. The characterization of HbXIP2;1 during rubber tree tapping lends new insights into molecular and physiological response processes of laticifer metabolism in the context of latex exploitation.
Collapse
Affiliation(s)
- David Lopez
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Maroua Ben Amira
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Daniel Brown
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Biotechnology Unit, Tun Abdul Razak Research Centre, Brickendonbury, Hertford, UK
| | - Beatriz Muries
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Nicole Brunel-Michac
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Sylvain Bourgerie
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, UPRES EA 1207, INRA-USC1328, 45067, Orléans, France
| | - Benoit Porcheron
- Ecologie, Biologie des Interactions, Equipe SEVE, UMR 7267 CNRS/Université de Poitiers, Bâtiment B31, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Remi Lemoine
- Ecologie, Biologie des Interactions, Equipe SEVE, UMR 7267 CNRS/Université de Poitiers, Bâtiment B31, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Hervé Chrestin
- Institut de Recherche pour le Développement, UR060/CEFE-CNRS, 1029 route de Mende, 34032, Montpellier, France
| | - Ewan Mollison
- Biotechnology Unit, Tun Abdul Razak Research Centre, Brickendonbury, Hertford, UK
| | - Alessandra Di Cola
- Biotechnology Unit, Tun Abdul Razak Research Centre, Brickendonbury, Hertford, UK
| | - Lorenzo Frigerio
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jean-Louis Julien
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Aurélie Gousset-Dupont
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Boris Fumanal
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Philippe Label
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
| | - Valérie Pujade-Renaud
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France
- CIRAD, UMR AGAP, 63000, Clermont-Ferrand, France
| | - Daniel Auguin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d'Orléans, UPRES EA 1207, INRA-USC1328, 45067, Orléans, France.
| | - Jean-Stéphane Venisse
- Clermont Université, Université Blaise Pascal, INRA, UMR 547 PIAF, BP 10448, 63000, Clermont-Ferrand, France.
- Campus Universitaire des Cézeaux, 8 Avenue Blaise Pascal, TSA 60026, CS 60026, 63178, Aubiere Cedex, France.
| |
Collapse
|
47
|
Azad AK, Ahmed J, Alum MA, Hasan MM, Ishikawa T, Sawa Y, Katsuhara M. Genome-Wide Characterization of Major Intrinsic Proteins in Four Grass Plants and Their Non-Aqua Transport Selectivity Profiles with Comparative Perspective. PLoS One 2016; 11:e0157735. [PMID: 27327960 PMCID: PMC4915720 DOI: 10.1371/journal.pone.0157735] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/04/2016] [Indexed: 11/27/2022] Open
Abstract
Major intrinsic proteins (MIPs), commonly known as aquaporins, transport not only water in plants but also other substrates of physiological significance and heavy metals. In most of the higher plants, MIPs are divided into five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs). Herein, we identified 68, 42, 38 and 28 full-length MIPs, respectively in the genomes of four monocot grass plants, specifically Panicum virgatum, Setaria italica, Sorghum bicolor and Brachypodium distachyon. Phylogenetic analysis showed that the grass plants had only four MIP subfamilies including PIPs, TIPs, NIPs and SIPs without XIPs. Based on structural analysis of the homology models and comparing the primary selectivity-related motifs [two NPA regions, aromatic/arginine (ar/R) selectivity filter and Froger's positions (FPs)] of all plant MIPs that have been experimentally proven to transport non-aqua substrates, we predicted the transport profiles of all MIPs in the four grass plants and also in eight other plants. Groups of MIP subfamilies based on ar/R selectivity filter and FPs were linked to the non-aqua transport profiles. We further deciphered the substrate selectivity profiles of the MIPs in the four grass plants and compared them with their counterparts in rice, maize, soybean, poplar, cotton, Arabidopsis thaliana, Physcomitrella patens and Selaginella moellendorffii. In addition to two NPA regions, ar/R filter and FPs, certain residues, especially in loops B and C, contribute to the functional distinctiveness of MIP groups. Expression analysis of transcripts in different organs indicated that non-aqua transport was related to expression of MIPs since most of the unexpressed MIPs were not predicted to facilitate the transport of non-aqua molecules. Among all MIPs in every plant, TIP (BdTIP1;1, SiTIP1;2, SbTIP2;1 and PvTIP1;2) had the overall highest mean expression. Our study generates significant information for understanding the diversity, evolution, non-aqua transport profiles and insight into comparative transport selectivity of plant MIPs, and provides tools for the development of transgenic plants.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md. Asraful Alum
- Forensic DNA Laboratory of Bangladesh Police, Malibagh, Dhaka, Bangladesh
| | - Md. Mahbub Hasan
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Shimane University, Shimane 690–8504, Japan
| | - Yoshihiro Sawa
- Department of Life Science and Biotechnology, Shimane University, Shimane 690–8504, Japan
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Chuo-2-chome, Kurashiki 710–0046, Japan
| |
Collapse
|
48
|
Fercha A, Capriotti AL, Caruso G, Cavaliere C, Stampachiacchiere S, Zenezini Chiozzi R, Laganà A. Shotgun proteomic analysis of soybean embryonic axes during germination under salt stress. Proteomics 2016; 16:1537-46. [PMID: 26969838 DOI: 10.1002/pmic.201500283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/19/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022]
Abstract
Seed imbibition and radicle emergence are generally less affected by salinity in soybean than in other crop plants. In order to unveil the mechanisms underlying this remarkable salt tolerance of soybean at seed germination, a comparative label-free shotgun proteomic analysis of embryonic axes exposed to salinity during germination sensu stricto (GSS) was conducted. The results revealed that the application of 100 and 200 mmol/L NaCl stress was accompanied by significant changes (>2-fold, P<0.05) of 97 and 75 proteins, respectively. Most of these salt-responsive proteins (70%) were classified into three major functional categories: disease/defense response, protein destination and storage and primary metabolism. The involvement of these proteins in salt tolerance of soybean was discussed, and some of them were suggested to be potential salt-tolerant proteins. Furthermore, our results suggest that the cross-protection against aldehydes, oxidative as well as osmotic stress, is the major adaptive response to salinity in soybean.
Collapse
Affiliation(s)
- Azzedine Fercha
- Department of Biology, University of Abbès Laghrour Khenchela, Khenchela, Algeria
| | | | - Giuseppe Caruso
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | | | | | - Aldo Laganà
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
49
|
Zou Z, Yang L, Gong J, Mo Y, Wang J, Cao J, An F, Xie G. Genome-Wide Identification of Jatropha curcas Aquaporin Genes and the Comparative Analysis Provides Insights into the Gene Family Expansion and Evolution in Hevea brasiliensis. FRONTIERS IN PLANT SCIENCE 2016; 7:395. [PMID: 27066041 PMCID: PMC4814485 DOI: 10.3389/fpls.2016.00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 05/18/2023]
Abstract
Aquaporins (AQPs) are channel-forming integral membrane proteins that transport water and other small solutes across biological membranes. Despite the vital role of AQPs, to date, little is known in physic nut (Jatropha curcas L., Euphorbiaceae), an important non-edible oilseed crop with great potential for the production of biodiesel. In this study, 32 AQP genes were identified from the physic nut genome and the family number is relatively small in comparison to 51 in another Euphorbiaceae plant, rubber tree (Hevea brasiliensis Muell. Arg.). Based on the phylogenetic analysis, the JcAQPs were assigned to five subfamilies, i.e., nine plasma membrane intrinsic proteins (PIPs), nine tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), two X intrinsic proteins (XIPs), and four small basic intrinsic proteins (SIPs). Like rubber tree and other plant species, functional prediction based on the aromatic/arginine selectivity filter, Froger's positions, and specificity-determining positions showed a remarkable difference in substrate specificity among subfamilies of JcAQPs. Genome-wide comparative analysis revealed the specific expansion of PIP and TIP subfamilies in rubber tree and the specific gene loss of the XIP subfamily in physic nut. Furthermore, by analyzing deep transcriptome sequencing data, the expression evolution especially the expression divergence of duplicated HbAQP genes was also investigated and discussed. Results obtained from this study not only provide valuable information for future functional analysis and utilization of Jc/HbAQP genes, but also provide a useful reference to survey the gene family expansion and evolution in Euphorbiaceae plants and other plant species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guishui Xie
- Danzhou Investigation and Experiment Station of Tropical Crops, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural SciencesDanzhou, China
| |
Collapse
|
50
|
The Roles of Aquaporins in Plant Stress Responses. J Dev Biol 2016; 4:jdb4010009. [PMID: 29615577 PMCID: PMC5831814 DOI: 10.3390/jdb4010009] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022] Open
Abstract
Aquaporins are membrane channel proteins ubiquitously present in all kingdoms of life. Although aquaporins were originally discovered as water channels, their roles in the transport of small neutral solutes, gasses, and metal ions are now well established. Plants contain the largest number and greatest diversity of aquaporin homologs with diverse subcellular localization patterns, gating properties, and solute specificity. The roles of aquaporins in physiological functions throughout plant growth and development are well known. As an integral regulator of plant–water relations, they are presumed to play an important role in plant defense responses against biotic and abiotic stressors. This review highlights involvement of various aquaporin homologs in plant stress responses against a variety of environmental stresses that disturb plant cell osmotic balance and nutrient homeostasis.
Collapse
|