1
|
Jordano MDA, Nagata RM, Morandini AC. A review of the role played by cilia in medusozoan feeding mechanics. Biol Rev Camb Philos Soc 2024; 99:950-964. [PMID: 38305571 DOI: 10.1111/brv.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Cilia are widely present in metazoans and have various sensory and motor functions, including collection of particles through feeding currents in suspensivorous animals. Suspended particles occur at low densities and are too small to be captured individually, and therefore must be concentrated. Animals that feed on these particles have developed different mechanisms to encounter and capture their food. These mechanisms occur in three phases: (i) encounter; (ii) capture; and (iii) particle handling, which occurs by means of a cilia-generated current or the movement of capturing structures (e.g. tentacles) that transport the particle to the mouth. Cilia may be involved in any of these phases. Some cnidarians, as do other suspensivorous animals, utilise cilia in their feeding mechanisms. However, few studies have considered ciliary flow when examining the biomechanics of cnidarian feeding. Anthozoans (sessile cnidarians) are known to possess flow-promoting cilia, but these are absent in medusae. The traditional view is that jellyfish capture prey only by means of nematocysts (stinging structures) and mucus, and do not possess cilia that collect suspended particles. Herein, we first provide an overview of suspension feeding in invertebrates, and then critically analyse the presence, distribution, and function of cilia in the Cnidaria (mainly Medusozoa), with a focus on particle collection (suspension feeding). We analyse the different mechanisms of suspension feeding and sort them according to our proposed classification framework. We present a scheme for the phases of pelagic jellyfish suspension feeding based on this classification. There is evidence that cilia create currents but act only in phases 1 and 3 of suspension feeding in medusozoans. Research suggests that some scyphomedusae must exploit other nutritional sources besides prey captured by nematocysts and mucus, since the resources provided by this diet alone are insufficient to meet their energy requirements. Therefore, smaller particles and prey may be captured through other phase-2 mechanisms that could involve ciliary currents. We hypothesise that medusae, besides capturing prey by nematocysts (present in the tentacles and oral arms), also capture small particles with their cilia, therefore expanding their trophic niche and suggesting reinterpretation of the trophic role of medusoid cnidarians as exclusively plankton predators. We suggest further study of particle collection by ciliary action and its influence on the biomechanics of jellyfishes, to expand our understanding of the ecology of this group.
Collapse
Affiliation(s)
- Mayara de A Jordano
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, n. 101, São Paulo, 05508-090, Brazil
| | - Renato M Nagata
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Av. Itália, km 8, Rio Grande, 96203-000, Brazil
| | - André C Morandini
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, n. 101, São Paulo, 05508-090, Brazil
- Centro de Biologia Marinha, Universidade de São Paulo, Rodovia Manuel Hipólito do Rego km 131.5, São Sebastião, 11612-109, Brazil
| |
Collapse
|
2
|
Costello JH, Colin SP, Gemmell BJ, Dabiri JO, Kanso EA. Turning kinematics of the scyphomedusa Aurelia aurita. BIOINSPIRATION & BIOMIMETICS 2024; 19:026005. [PMID: 38211351 DOI: 10.1088/1748-3190/ad1db8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Scyphomedusae are widespread in the oceans and their swimming has provided valuable insights into the hydrodynamics of animal propulsion. Most of this research has focused on symmetrical, linear swimming. However, in nature, medusae typically swim circuitous, nonlinear paths involving frequent turns. Here we describe swimming turns by the scyphomedusaAurelia auritaduring which asymmetric bell margin motions produce rotation around a linearly translating body center. These jellyfish 'skid' through turns and the degree of asynchrony between opposite bell margins is an approximate predictor of turn magnitude during a pulsation cycle. The underlying neuromechanical organization of bell contraction contributes substantially to asynchronous bell motions and inserts a stochastic rotational component into the directionality of scyphomedusan swimming. These mechanics are important for natural populations because asynchronous bell contraction patterns are commonin situand result in frequent turns by naturally swimming medusae.
Collapse
Affiliation(s)
- J H Costello
- Biology Department, Providence College, Providence, RI 02918, United States of America
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, United States of America
| | - S P Colin
- Marine Biology and Environmental Science, Roger Williams University, Bristol, RI 02809, United States of America
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, United States of America
| | - B J Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, United States of America
| | - J O Dabiri
- Graduate Aerospace Laboratories and Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - E A Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
| |
Collapse
|
3
|
Moon J, Caron JB, Moysiuk J. A macroscopic free-swimming medusa from the middle Cambrian Burgess Shale. Proc Biol Sci 2023; 290:20222490. [PMID: 37528711 PMCID: PMC10394413 DOI: 10.1098/rspb.2022.2490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
Cnidarians are regarded as one of the earliest-diverging animal phyla. One of the hallmarks of the cnidarian body plan is the evolution of a free-swimming medusa in some medusozoan classes, but the origin of this innovation remains poorly constrained by the fossil record and molecular data. Previously described macrofossils, putatively representing medusa stages of crown-group medusozoans from the Cambrian of Utah and South China, are here reinterpreted as ctenophore-grade organisms. Other putative Ediacaran to Cambrian medusozoan fossils consist mainly of microfossils and tubular forms. Here we describe Burgessomedusa phasmiformis gen. et sp. nov., the oldest unequivocal macroscopic free-swimming medusa in the fossil record. Our study is based on 182 exceptionally preserved body fossils from the middle Cambrian Burgess Shale (Raymond Quarry, British Columbia, Canada). Burgessomedusa possesses a cuboidal umbrella up to 20 cm high and over 90 short, finger-like tentacles. Phylogenetic analysis supports a medusozoan affinity, most likely as a stem group to Cubozoa or Acraspeda (a group including Staurozoa, Cubozoa and Scyphozoa). Burgessomedusa demonstrates an ancient origin for the free-swimming medusa life stage and supports a growing number of studies showing an early evolutionary diversification of Medusozoa, including of the crown group, during the late Precambrian-Cambrian transition.
Collapse
Affiliation(s)
- Justin Moon
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6
| | - Jean-Bernard Caron
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3B1
| | - Joseph Moysiuk
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6
| |
Collapse
|
4
|
Exploring the sensitivity in jellyfish locomotion under variations in scale, frequency, and duty cycle. J Math Biol 2021; 83:56. [PMID: 34731319 DOI: 10.1007/s00285-021-01678-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Jellyfish have been called one of the most energy-efficient animals in the world due to the ease in which they move through their fluid environment, by product of their bell kinematics coupled with their morphological, muscular, material properties. We investigated jellyfish locomotion by conducting in silico comparative studies and explored swimming performance across different fluid scales (i.e., Reynolds Number), bell contraction frequencies, and contraction phase kinematics (duty cycle) for a jellyfish with a fineness ratio of 1 (ratio of bell height to bell diameter). To study these relationships, an open source implementation of the immersed boundary method was used (IB2d) to solve the fully coupled fluid-structure interaction problem of a flexible jellyfish bell in a viscous fluid. Thorough 2D parameter subspace explorations illustrated optimal parameter combinations in which give rise to enhanced swimming performance. All performance metrics indicated a higher sensitivity to bell actuation frequency than fluid scale or duty cycle, via Sobol sensitivity analysis, on a higher performance parameter subspace. Moreover, Pareto-like fronts were identified in the overall performance space involving the cost of transport and forward swimming speed. Patterns emerged within these performance spaces when highlighting different parameter regions, which complemented the global sensitivity results. Lastly, an open source computational model for jellyfish locomotion is offered to the science community that can be used as a starting place for future numerical experimentation.
Collapse
|
5
|
Baldwin T, Battista NA. Hopscotching jellyfish: combining different duty cycle kinematics can lead to enhanced swimming performance. BIOINSPIRATION & BIOMIMETICS 2021; 16:066021. [PMID: 34584025 DOI: 10.1088/1748-3190/ac2afe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Jellyfish (Medusozoa) have been deemed the most energy-efficient animals in the world. Their bell morphology and relatively simple nervous systems make them attractive to robotocists. Although, the science community has devoted much attention to understanding their swimming performance, there is still much to be learned about the jet propulsive locomotive gait displayed by prolate jellyfish. Traditionally, computational scientists have assumed uniform duty cycle kinematics when computationally modeling jellyfish locomotion. In this study we used fluid-structure interaction modeling to determine possible enhancements in performance from shuffling different duty cycles together across multiple Reynolds numbers and contraction frequencies. Increases in speed and reductions in cost of transport were observed as high as 80% and 50%, respectively. Generally, the net effects were greater for cases involving lower contraction frequencies. Overall, robust duty cycle combinations were determined that led to enhanced or impeded performance.
Collapse
Affiliation(s)
- Tierney Baldwin
- Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road, Ewing Township, NJ 08628, United States of America
| | - Nicholas A Battista
- Department of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Road, Ewing Township, NJ 08628, United States of America
| |
Collapse
|
6
|
Gemmell BJ, Dabiri JO, Colin SP, Costello JH, Townsend JP, Sutherland KR. Cool your jets: biological jet propulsion in marine invertebrates. J Exp Biol 2021; 224:269180. [PMID: 34137893 DOI: 10.1242/jeb.222083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pulsatile jet propulsion is a common swimming mode used by a diverse array of aquatic taxa from chordates to cnidarians. This mode of locomotion has interested both biologists and engineers for over a century. A central issue to understanding the important features of jet-propelling animals is to determine how the animal interacts with the surrounding fluid. Much of our knowledge of aquatic jet propulsion has come from simple theoretical approximations of both propulsive and resistive forces. Although these models and basic kinematic measurements have contributed greatly, they alone cannot provide the detailed information needed for a comprehensive, mechanistic overview of how jet propulsion functions across multiple taxa, size scales and through development. However, more recently, novel experimental tools such as high-speed 2D and 3D particle image velocimetry have permitted detailed quantification of the fluid dynamics of aquatic jet propulsion. Here, we provide a comparative analysis of a variety of parameters such as efficiency, kinematics and jet parameters, and review how they can aid our understanding of the principles of aquatic jet propulsion. Research on disparate taxa allows comparison of the similarities and differences between them and contributes to a more robust understanding of aquatic jet propulsion.
Collapse
Affiliation(s)
- Brad J Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, USA
| | - John O Dabiri
- Graduate Aerospace Laboratories and Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sean P Colin
- Department of Marine Biology and Environmental Science, Roger Williams University, Bristol, Rhode Island 02809, USA
| | - John H Costello
- Department of Biology, Providence College, Providence, Rhode Island 02918, USA
| | - James P Townsend
- Department of Biology, Providence College, Providence, Rhode Island 02918, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
7
|
Schlaefer JA, Wolanski E, Lambrechts J, Kingsford MJ. Behavioural and oceanographic isolation of an island-based jellyfish (Copula sivickisi, Class Cubozoa) population. Sci Rep 2021; 11:10280. [PMID: 33986430 PMCID: PMC8119444 DOI: 10.1038/s41598-021-89755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 04/27/2021] [Indexed: 11/09/2022] Open
Abstract
Cubozoan jellyfish are classified as plankton despite the strong swimming and orientation abilities of cubomedusae. How these capabilities could affect cubozoan population structures is poorly understood. Medusae of the cubozoan Copula sivickisi can uniquely attach to surfaces with the sticky pads on their bells. Biophysical modelling was used to investigate the spatial scales of connectivity in a C. sivickisi population. When the medusae were active at night they could maintain their observed distribution on fringing reef if they attached to the reef when the current speed exceeded a moderate threshold. This behaviour facilitated the isolation of a C. sivickisi population on reefs fringing Magnetic Island, Queensland, Australia. Within this distribution, there was considerable within bay retention and medusae rarely travelled > 3 km. The few (< 0.1%) medusae lost from the island habitat were largely advected into open water and away from the mainland coast which lies 8 km from the island. Given that successful emigration is unlikely, the island population probably represents a stock that is ecologically distinct from any mainland populations. The cosmopolitan distribution of C. sivickisi could contain incipient or cryptic species given the small scales of connectivity demonstrated here.
Collapse
Affiliation(s)
- Jodie A Schlaefer
- Research Hub for Coral Reef Ecosystem Functions, James Cook University, Townsville, QLD, 4811, Australia. .,College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia. .,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.
| | - Eric Wolanski
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,TropWATER, James Cook University, Townsville, QLD, 4811, Australia
| | - Jonathan Lambrechts
- Institute of Mechanics, Materials and Civil Engineering, Université de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Michael J Kingsford
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
8
|
Bordehore C, Fonfría ES, Alonso C, Rubio-Tortosa B, Acevedo MJ, Canepa A, Falcó S, Rodilla M, Fuentes V. Effects of environmental variables on the distribution of juvenile cubomedusae Carybdea marsupialis in the coastal Western Mediterranean. PLoS One 2020; 15:e0230768. [PMID: 32555581 PMCID: PMC7299366 DOI: 10.1371/journal.pone.0230768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/29/2020] [Indexed: 01/22/2023] Open
Abstract
Relationships between environmental factors and oscillations in jellyfish abundance, especially in the early life stages, could help to interpret past increases and also predict scenarios in a changing future. For the first time, we present cubozoan spatial and temporal distributions in the earliest stages and their relationships with different factors. Abundances of Carybdea marsupialis medusae showed high interannual variability from 2008 to 2014 along the Dénia coast (SE Spain, W Mediterranean). During 2015, samples were collected from 11 beaches along 17 km of coastline, 8 times from January to November in order to determine the effects of environmental factors on the distribution of juvenile C. marsupialis. Juveniles (≤ 15 mm diagonal bell width) were present from May to July, with more sampled near shore (0-15 m). Most of them occurred in June when their numbers were unequal among beaches (average 0.05 ind m-3, maximum 6.71 ind m-3). We tested distributions of juveniles over time and space versus temperature, salinity, nutrients (N, P and Si), chlorophyll-a (Chl-a), and zooplankton abundance. Temperature and cladocerans (zooplankton group) were significantly positively correlated with juvenile distribution, whereas Chl-a concentration was weakly negative. By contrast, in 2014, high productivity areas (Chl-a and zooplankton) overlapped the maximum adult abundance (5.2 ind m-3). The distribution of juveniles during 2015 did not spatially coincide with the areas where ripe adults were located the previous year, suggesting that juveniles drift with the currents upon release from the cubopolyps. Our results yield important insights into the complexity of cubozoan distributions.
Collapse
Affiliation(s)
- Cesar Bordehore
- “Ramon Margalef” Environmental Research Institute (IMEM) University of Alicante, San Vicente del Raspeig, Spain
- Department of Ecology, University of Alicante, San Vicente del Raspeig, Spain
- * E-mail:
| | - Eva S. Fonfría
- “Ramon Margalef” Environmental Research Institute (IMEM) University of Alicante, San Vicente del Raspeig, Spain
| | - Cristina Alonso
- “Ramon Margalef” Environmental Research Institute (IMEM) University of Alicante, San Vicente del Raspeig, Spain
| | - Beatriz Rubio-Tortosa
- “Ramon Margalef” Environmental Research Institute (IMEM) University of Alicante, San Vicente del Raspeig, Spain
| | | | - Antonio Canepa
- Polytechnic School, Universidad de Burgos, Burgos, Spain
| | - Silvia Falcó
- Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Gandia, Spain
| | - Miguel Rodilla
- Research Institute for Integrated Management of Coastal Areas, Universitat Politècnica de València, Gandia, Spain
| | | |
Collapse
|
9
|
Naut Your Everyday Jellyfish Model: Exploring How Tentacles and Oral Arms Impact Locomotion. FLUIDS 2019. [DOI: 10.3390/fluids4030169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Jellyfish are majestic, energy-efficient, and one of the oldest species that inhabit the oceans. It is perhaps the second item, their efficiency, that has captivated scientists for decades into investigating their locomotive behavior. Yet, no one has specifically explored the role that their tentacles and oral arms may have on their potential swimming performance. We perform comparative in silico experiments to study how tentacle/oral arm number, length, placement, and density affect forward swimming speeds, cost of transport, and fluid mixing. An open source implementation of the immersed boundary method was used (IB2d) to solve the fully coupled fluid–structure interaction problem of an idealized flexible jellyfish bell with poroelastic tentacles/oral arms in a viscous, incompressible fluid. Overall tentacles/oral arms inhibit forward swimming speeds, by appearing to suppress vortex formation. Nonlinear relationships between length and fluid scale (Reynolds Number) as well as tentacle/oral arm number, density, and placement are observed, illustrating that small changes in morphology could result in significant decreases in swimming speeds, in some cases by upwards of 80–90% between cases with or without tentacles/oral arms.
Collapse
|
10
|
Sinatra NR, Teeple CB, Vogt DM, Parker KK, Gruber DF, Wood RJ. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci Robot 2019; 4:4/33/eaax5425. [DOI: 10.1126/scirobotics.aax5425] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/05/2019] [Indexed: 11/02/2022]
Abstract
Here, we present ultragentle soft robotic actuators capable of grasping delicate specimens of gelatinous marine life. Although state-of-the-art soft robotic manipulators have demonstrated gentle gripping of brittle animals (e.g., corals) and echinoderms (e.g., sea cucumbers) in the deep sea, they are unable to nondestructively grasp more fragile soft-bodied organisms, such as jellyfish. Through an exploration of design parameters and laboratory testing of individual actuators, we confirmed that our nanofiber-reinforced soft actuators apply sufficiently low contact pressure to ensure minimal harm to typical jellyfish species. We then built a gripping device using several actuators and evaluated its underwater grasping performance in the laboratory. By assessing the gripper’s region of acquisition and robustness to external forces, we gained insight into the necessary precision and speed with which grasping maneuvers must be performed to achieve successful collection of samples. Last, we demonstrated successful manipulation of three live jellyfish species in an aquarium setting using a hand-held prototype gripper. Overall, our ultragentle gripper demonstrates an improvement in gentle sample collection compared with existing deep-sea sampling devices. Extensions of this technology may improve a variety of in situ characterization techniques used to study the ecological and genetic features of deep-sea organisms.
Collapse
|
11
|
Costello JH, Colin SP, Gemmell BJ, Dabiri JO. Hydrodynamics of Vortex Generation during Bell Contraction by the Hydromedusa Eutonina indicans (Romanes, 1876). Biomimetics (Basel) 2019; 4:biomimetics4030044. [PMID: 31284395 PMCID: PMC6784291 DOI: 10.3390/biomimetics4030044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 02/01/2023] Open
Abstract
Swimming bell kinematics and hydrodynamic wake structures were documented during multiple pulsation cycles of a Eutonina indicans (Romanes, 1876) medusa swimming in a predominantly linear path. Bell contractions produced pairs of vortex rings with opposite rotational sense. Analyses of the momentum flux in these wake structures demonstrated that vortex dynamics related directly to variations in the medusa swimming speed. Furthermore, a bulk of the momentum flux in the wake was concentrated spatially at the interfaces between oppositely rotating vortices rings. Similar thrust-producing wake structures have been described in models of fish swimming, which posit vortex rings as vehicles for energy transport from locations of body bending to regions where interacting pairs of opposite-sign vortex rings accelerate the flow into linear propulsive jets. These findings support efforts toward soft robotic biomimetic propulsion.
Collapse
Affiliation(s)
- John H Costello
- Biology Department, Providence College, Providence, RI 02918, USA
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sean P Colin
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Marine Biology/Environmental Sciences, Roger Williams University, Bristol, RI 02809, USA
| | - Brad J Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, FL 66320, USA
| | - John O Dabiri
- School of Engineering, Stanford University, Stanford, CA 94306, USA.
| |
Collapse
|
12
|
Gemmell BJ, Colin SP, Costello JH, Sutherland KR. A ctenophore (comb jelly) employs vortex rebound dynamics and outperforms other gelatinous swimmers. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181615. [PMID: 31032019 PMCID: PMC6458386 DOI: 10.1098/rsos.181615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/31/2019] [Indexed: 06/08/2023]
Abstract
Gelatinous zooplankton exhibit a wide range of propulsive swimming modes. One of the most energetically efficient is the rowing behaviour exhibited by many species of schyphomedusae, which employ vortex interactions to achieve this result. Ctenophores (comb jellies) typically use a slow swimming, cilia-based mode of propulsion. However, species within the genus Ocyropsis have developed an additional propulsive strategy of rowing the lobes, which are normally used for feeding, in order to rapidly escape from predators. In this study, we used high-speed digital particle image velocimetry to examine the kinematics and fluid dynamics of this rarely studied propulsive mechanism. This mechanism allows Ocyropsis to achieve size-adjusted speeds that are nearly double those of other large gelatinous swimmers. The investigation of the fluid dynamic basis of this escape mode reveals novel vortex interactions that have not previously been described for other biological propulsion systems. The arrangement of vortices during escape swimming produces a similar configuration and impact as that of the well-studied 'vortex rebound' phenomenon which occurs when a vortex ring approaches a solid wall. These results extend our understanding of how animals use vortex-vortex interactions and provide important insights that can inform the bioinspired engineering of propulsion systems.
Collapse
Affiliation(s)
- Brad J. Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Sean P. Colin
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Marine Biology/Environmental Sciences, Roger Williams University, Bristol, RI 02809, USA
| | - John H. Costello
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Biology Department, Providence College, Providence, RI 02908, USA
| | | |
Collapse
|
13
|
Abstract
Medusae (aka jellyfish) have multiphasic life cycles and a propensity to adapt to, and proliferate in, a plethora of aquatic habitats, connecting them to a number of ecological and societal issues. Now, in the midst of the genomics era, affordable next-generation sequencing (NGS) platforms coupled with publically available bioinformatics tools present the much-anticipated opportunity to explore medusa taxa as potential model systems. Genome-wide studies of medusae would provide a remarkable opportunity to address long-standing questions related to the biology, physiology, and nervous system of some of the earliest pelagic animals. Furthermore, medusae have become key targets in the exploration of marine natural products, in the development of marine biomarkers, and for their application to the biomedical and robotics fields. Presented here is a synopsis of the current state of medusa research, highlighting insights provided by multi-omics studies, as well as existing knowledge gaps, calling upon the scientific community to adopt a number of medusa taxa as model systems in forthcoming research endeavors.
Collapse
Affiliation(s)
- Cheryl Lewis Ames
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, NW, Washington, DC, USA.
| |
Collapse
|
14
|
Gemmell BJ, Colin SP, Costello JH. Widespread utilization of passive energy recapture in swimming medusae. J Exp Biol 2017; 221:jeb.168575. [DOI: 10.1242/jeb.168575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/20/2017] [Indexed: 11/20/2022]
Abstract
Recently, it has been shown that some medusae are capable of swimming very efficiently, i.e.; with a low cost of transport, and that this is in part due to passive energy recapture (PER) which occurs during bell relaxation. We compared the swimming kinematics among a diverse array of medusae, varying in taxonomy, morphology and propulsive and foraging modes, in order to evaluate the prevalence of PER in medusae. We found that while PER is commonly observed among taxa, the magnitude of the contribution to overall swimming varied greatly. The ability of medusae to utilize PER was not related to morphology and swimming performance but was controlled by their swimming kinematics. Utilizing PER required the medusae to pause after bell expansion and individuals could modulate their PER by changing their pause duration. Passive energy recapture can greatly enhance swimming efficiency but there appear to be trade-offs associated with utilizing PER.
Collapse
Affiliation(s)
- Brad J. Gemmell
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Sean P. Colin
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Marine Biology/Environmental Sciences, Roger Williams University, Bristol, RI 02809, USA
| | - John H. Costello
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Biology Department, Providence College, Providence, RI 02908, USA
| |
Collapse
|
15
|
Gemmell BJ, Troolin DR, Costello JH, Colin SP, Satterlie RA. Control of vortex rings for manoeuvrability. J R Soc Interface 2016; 12:20150389. [PMID: 26136226 DOI: 10.1098/rsif.2015.0389] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Manoeuvrability is critical to the success of many species. Selective forces acting over millions of years have resulted in a range of capabilities currently unmatched by machines. Thus, understanding animal control of fluids for manoeuvring has both biological and engineering applications. Within inertial fluid regimes, propulsion involves the formation and interaction of vortices to generate thrust. We use both volumetric and planar imaging techniques to quantify how jellyfish (Aurelia aurita) modulate vortex rings during turning behaviour. Our results show that these animals distort individual vortex rings during turns to alter the force balance across the animal, primarily through kinematic modulation of the bell margin. We find that only a portion of the vortex ring separates from the body during turns, which may increase torque. Using a fluorescent actin staining method, we demonstrate the presence of radial muscle fibres lining the bell along the margin. The presence of radial muscles provides a mechanistic explanation for the ability of scyphomedusae to alter their bell kinematics to generate non-symmetric thrust for manoeuvring. These results illustrate the advantage of combining imaging methods and provide new insights into the modulation and control of vorticity for low-speed animal manoeuvring.
Collapse
Affiliation(s)
- Brad J Gemmell
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA Biology Department, Providence College, Providence, RI 02908, USA
| | | | - John H Costello
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA Biology Department, Providence College, Providence, RI 02908, USA
| | - Sean P Colin
- Eugene Bell Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA Marine Biology and Environmental Science, Roger Williams University, Bristol, RI 02809, USA
| | - Richard A Satterlie
- Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| |
Collapse
|
16
|
Satterlie RA. The search for ancestral nervous systems: an integrative and comparative approach. ACTA ACUST UNITED AC 2015; 218:612-7. [PMID: 25696824 DOI: 10.1242/jeb.110387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Even the most basal multicellular nervous systems are capable of producing complex behavioral acts that involve the integration and combination of simple responses, and decision-making when presented with conflicting stimuli. This requires an understanding beyond that available from genomic investigations, and calls for a integrative and comparative approach, where the power of genomic/transcriptomic techniques is coupled with morphological, physiological and developmental experimentation to identify common and species-specific nervous system properties for the development and elaboration of phylogenomic reconstructions. With careful selection of genes and gene products, we can continue to make significant progress in our search for ancestral nervous system organizations.
Collapse
Affiliation(s)
- Richard A Satterlie
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, USA
| |
Collapse
|
17
|
Courtney R, Sachlikidis N, Jones R, Seymour J. Prey Capture Ecology of the Cubozoan Carukia barnesi. PLoS One 2015; 10:e0124256. [PMID: 25970583 PMCID: PMC4429964 DOI: 10.1371/journal.pone.0124256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
Adult Carukia barnesi medusae feed predominantly on larval fish; however, their mode of prey capture seems more complex than previously described. Our findings revealed that during light conditions, this species extends its tentacles and ‘twitches’ them frequently. This highlights the lure-like nematocyst clusters in the water column, which actively attract larval fish that are consequently stung and consumed. This fishing behavior was not observed during dark conditions, presumably to reduce energy expenditure when they are not luring visually oriented prey. We found that larger medusae have longer tentacles; however, the spacing between the nematocyst clusters is not dependent on size, suggesting that the spacing of the nematocyst clusters is important for prey capture. Additionally, larger specimens twitch their tentacles more frequently than small specimens, which correlate with their recent ontogenetic prey shift from plankton to larval fish. These results indicate that adult medusae of C. barnesi are not opportunistically grazing in the water column, but instead utilize sophisticated prey capture techniques to specifically target larval fish.
Collapse
Affiliation(s)
- Robert Courtney
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- * E-mail:
| | | | - Rhondda Jones
- College of Marine & Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Jamie Seymour
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
18
|
Bending rules for animal propulsion. Nat Commun 2014; 5:3293. [DOI: 10.1038/ncomms4293] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/22/2014] [Indexed: 11/08/2022] Open
|