Yeh TH, Huang SY, Lan WY, Liaw GJ, Yu JY. Modulation of cell morphogenesis by tousled-like kinase in the Drosophila follicle cell.
Dev Dyn 2015;
244:852-65. [PMID:
25981356 DOI:
10.1002/dvdy.24292]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
Tousled-like kinase (Tlk) is a conserved serine/threonine kinase regulating DNA replication, chromatin assembly, and DNA repair. Previous studies have suggested that Tlk is involved in cell morphogenesis in vitro. In addition, tlk genetically interact with Rho1, which encodes a key regulator of the cytoskeleton. However, whether Tlk plays a physiological role in cell morphogenesis and cytoskeleton rearrangement remains unknown.
RESULTS
In tlk mutant follicle cells, area of the apical domain was reduced. The density of microtubules was increased in tlk mutant cells. The density of actin filaments was increased in the apical region and decreased in the basal region. Because area of the apical domain was reduced, we examined the levels of proteins located in the apical region by using immunofluorescence. The fluorescence intensities of two adherens junction proteins Armadillo (Arm) and DE-cadherin (DE-cad), atypical protein kinase C (aPKC), and Notch, were all increased in tlk mutant cells. The basolateral localized Discs large (Dlg) shifted apically in tlk mutant cells.
CONCLUSIONS
Increase of protein densities in the apical region might be resulted from disruption of the cytoskeleton and shrinkage of the apical domain. Together, these data suggest a novel role of Tlk in maintaining cell morphology, possibly through modulating the cytoskeleton.
Collapse