1
|
Vreven T, Vangaveti S, Borrman TM, Gaines JC, Weng Z. Performance of ZDOCK and IRAD in CAPRI rounds 39-45. Proteins 2020; 88:1050-1054. [PMID: 31994784 DOI: 10.1002/prot.25873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/15/2019] [Accepted: 01/22/2020] [Indexed: 12/23/2022]
Abstract
We report docking performance on the six targets of Critical Assessment of PRedicted Interactions (CAPRI) rounds 39-45 that involved heteromeric protein-protein interactions and had the solved structures released since the rounds were held. Our general strategy involved protein-protein docking using ZDOCK, reranking using IRAD, and structural refinement using Rosetta. In addition, we made extensive use of experimental data to guide our docking runs. All the experimental information at the amino-acid level proved correct. However, for two targets, we also used protein-complex structures as templates for modeling interfaces. These resulted in incorrect predictions, presumably due to the low sequence identity between the targets and templates. Albeit a small number of targets, the performance described here compared somewhat less favorably with our previous CAPRI reports, which may be due to the CAPRI targets being increasingly challenging.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sweta Vangaveti
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tyler M Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jennifer C Gaines
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
2
|
Vreven T, Schweppe DK, Chavez JD, Weisbrod CR, Shibata S, Zheng C, Bruce JE, Weng Z. Integrating Cross-Linking Experiments with Ab Initio Protein-Protein Docking. J Mol Biol 2018; 430:1814-1828. [PMID: 29665372 DOI: 10.1016/j.jmb.2018.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 12/23/2022]
Abstract
Ab initio protein-protein docking algorithms often rely on experimental data to identify the most likely complex structure. We integrated protein-protein docking with the experimental data of chemical cross-linking followed by mass spectrometry. We tested our approach using 19 cases that resulted from an exhaustive search of the Protein Data Bank for protein complexes with cross-links identified in our experiments. We implemented cross-links as constraints based on Euclidean distance or void-volume distance. For most test cases, the rank of the top-scoring near-native prediction was improved by at least twofold compared with docking without the cross-link information, and the success rate for the top 5 predictions nearly tripled. Our results demonstrate the delicate balance between retaining correct predictions and eliminating false positives. Several test cases had multiple components with distinct interfaces, and we present an approach for assigning cross-links to the interfaces. Employing the symmetry information for these cases further improved the performance of complex structure prediction.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Devin K Schweppe
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Juan D Chavez
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Chad R Weisbrod
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Sayaka Shibata
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Chunxiang Zheng
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - James E Bruce
- Department of Chemistry and Department of Genome Sciences, University of Washington, Seattle, WA 98109, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
3
|
Chen H, Sun Y, Shen Y. Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility. Proteins 2016; 85:544-556. [PMID: 27862345 DOI: 10.1002/prot.25212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/14/2022]
Abstract
Predicting protein conformational changes from unbound structures or even homology models to bound structures remains a critical challenge for protein docking. Here we present a study directly addressing the challenge by reducing the dimensionality and narrowing the range of the corresponding conformational space. The study builds on cNMA-our new framework of partner- and contact-specific normal mode analysis that exploits encounter complexes and considers both intrinsic and induced flexibility. First, we established over a CAPRI (Critical Assessment of PRedicted Interactions) target set that the direction of conformational changes from unbound structures and homology models can be reproduced to a great extent by a small set of cNMA modes. In particular, homology-to-bound interface root-mean-square deviation (iRMSD) can be reduced by 40% on average with the slowest 30 modes. Second, we developed novel and interpretable features from cNMA and used various machine learning approaches to predict the extent of conformational changes. The models learned from a set of unbound-to-bound conformational changes could predict the actual extent of iRMSD with errors around 0.6 Å for unbound proteins in a held-out benchmark subset, around 0.8 Å for unbound proteins in the CAPRI set, and around 1 Å even for homology models in the CAPRI set. Our results shed new insights into origins of conformational differences between homology models and bound structures and provide new support for the low-dimensionality of conformational adjustment during protein associations. The results also provide new tools for ensemble generation and conformational sampling in unbound and homology docking. Proteins 2017; 85:544-556. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haoran Chen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, 77843
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, 77843
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, 77843.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, Texas, 77843
| |
Collapse
|
4
|
Vreven T, Pierce BG, Borrman TM, Weng Z. Performance of ZDOCK and IRAD in CAPRI rounds 28-34. Proteins 2016; 85:408-416. [PMID: 27718275 DOI: 10.1002/prot.25186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 11/11/2022]
Abstract
We report the performance of our protein-protein docking pipeline, including the ZDOCK rigid-body docking algorithm, on 19 targets in CAPRI rounds 28-34. Following the docking step, we reranked the ZDOCK predictions using the IRAD scoring function, pruned redundant predictions, performed energy landscape analysis, and utilized our interface prediction approach RCF. In addition, we applied constraints to the search space based on biological information that we culled from the literature, which increased the chance of making a correct prediction. For all but two targets we were able to find and apply biological information and we found the information to be highly accurate, indicating that effective incorporation of biological information is an important component for protein-protein docking. Proteins 2017; 85:408-416. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Brian G Pierce
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Tyler M Borrman
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| |
Collapse
|
5
|
Oliwa T, Shen Y. cNMA: a framework of encounter complex-based normal mode analysis to model conformational changes in protein interactions. Bioinformatics 2015; 31:i151-60. [PMID: 26072477 PMCID: PMC4765865 DOI: 10.1093/bioinformatics/btv252] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION It remains both a fundamental and practical challenge to understand and anticipate motions and conformational changes of proteins during their associations. Conventional normal mode analysis (NMA) based on anisotropic network model (ANM) addresses the challenge by generating normal modes reflecting intrinsic flexibility of proteins, which follows a conformational selection model for protein-protein interactions. But earlier studies have also found cases where conformational selection alone could not adequately explain conformational changes and other models have been proposed. Moreover, there is a pressing demand of constructing a much reduced but still relevant subset of protein conformational space to improve computational efficiency and accuracy in protein docking, especially for the difficult cases with significant conformational changes. METHOD AND RESULTS With both conformational selection and induced fit models considered, we extend ANM to include concurrent but differentiated intra- and inter-molecular interactions and develop an encounter complex-based NMA (cNMA) framework. Theoretical analysis and empirical results over a large data set of significant conformational changes indicate that cNMA is capable of generating conformational vectors considerably better at approximating conformational changes with contributions from both intrinsic flexibility and inter-molecular interactions than conventional NMA only considering intrinsic flexibility does. The empirical results also indicate that a straightforward application of conventional NMA to an encounter complex often does not improve upon NMA for an individual protein under study and intra- and inter-molecular interactions need to be differentiated properly. Moreover, in addition to induced motions of a protein under study, the induced motions of its binding partner and the coupling between the two sets of protein motions present in a near-native encounter complex lead to the improved performance. A study to isolate and assess the sole contribution of intermolecular interactions toward improvements against conventional NMA further validates the additional benefit from induced-fit effects. Taken together, these results provide new insights into molecular mechanisms underlying protein interactions and new tools for dimensionality reduction for flexible protein docking. AVAILABILITY AND IMPLEMENTATION Source codes are available upon request.
Collapse
Affiliation(s)
- Tomasz Oliwa
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Yang Shen
- Toyota Technological Institute at Chicago, Chicago, IL 60637, USA and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA Toyota Technological Institute at Chicago, Chicago, IL 60637, USA and Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Abstract
We report the performance of our approaches for protein-protein docking and interface analysis in CAPRI rounds 20-26. At the core of our pipeline was the ZDOCK program for rigid-body protein-protein docking. We then reranked the ZDOCK predictions using the ZRANK or IRAD scoring functions, pruned and analyzed energy landscapes using clustering, and analyzed the docking results using our interface prediction approach RCF. When possible, we used biological information from the literature to apply constraints to the search space during or after the ZDOCK runs. For approximately half of the standard docking challenges we made at least one prediction that was acceptable or better. For the scoring challenges we made acceptable or better predictions for all but one target. This indicates that our scoring functions are generally able to select the correct binding mode.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | | | | | | |
Collapse
|
7
|
Huang SY. Search strategies and evaluation in protein–protein docking: principles, advances and challenges. Drug Discov Today 2014; 19:1081-96. [DOI: 10.1016/j.drudis.2014.02.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/04/2014] [Accepted: 02/24/2014] [Indexed: 01/10/2023]
|
8
|
Popov P, Grudinin S. Rapid determination of RMSDs corresponding to macromolecular rigid body motions. J Comput Chem 2014; 35:950-6. [PMID: 24615729 DOI: 10.1002/jcc.23569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 11/08/2022]
Abstract
Finding the root mean sum of squared deviations (RMSDs) between two coordinate vectors that correspond to the rigid body motion of a macromolecule is an important problem in structural bioinformatics, computational chemistry, and molecular modeling. Standard algorithms compute the RMSD with time proportional to the number of atoms in the molecule. Here, we present RigidRMSD, a new algorithm that determines a set of RMSDs corresponding to a set of rigid body motions of a macromolecule in constant time with respect to the number of atoms in the molecule. Our algorithm is particularly useful for rigid body modeling applications, such as rigid body docking, and also for high-throughput analysis of rigid body modeling and simulation results. We also introduce a constant-time rotation RMSD as a similarity measure for rigid molecules. A C++ implementation of our algorithm is available at http://nano-d.inrialpes.fr/software/RigidRMSD.
Collapse
Affiliation(s)
- Petr Popov
- NANO-D, INRIA Grenoble-Rhone-Alpes, 38334 Saint Ismier Cedex, Montbonnot, France; Laboratoire Jean Kuntzmann, B.P. 53, 38041 Grenoble Cedex 9, France
| | | |
Collapse
|
9
|
Hwang H, Vreven T, Weng Z. Binding interface prediction by combining protein-protein docking results. Proteins 2013; 82:57-66. [PMID: 23836482 DOI: 10.1002/prot.24354] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 06/05/2013] [Accepted: 06/17/2013] [Indexed: 11/10/2022]
Abstract
We developed a method called residue contact frequency (RCF), which uses the complex structures generated by the protein-protein docking algorithm ZDOCK to predict interface residues. Unlike interface prediction algorithms that are based on monomers alone, RCF is binding partner specific. We evaluated the performance of RCF using the area under the precision-recall (PR) curve (AUC) on a large protein docking Benchmark. RCF (AUC = 0.44) performed as well as meta-PPISP (AUC = 0.43), which is one of the best monomer-based interface prediction methods. In addition, we test a support vector machine (SVM) to combine RCF with meta-PPISP and another monomer-based interface prediction algorithm Evolutionary Trace to further improve the performance. We found that the SVM that combined RCF and meta-PPISP achieved the best performance (AUC = 0.47). We used RCF to predict the binding interfaces of proteins that can bind to multiple partners and RCF was able to correctly predict interface residues that are unique for the respective binding partners. Furthermore, we found that residues that contributed greatly to binding affinity (hotspot residues) had significantly higher RCF than other residues.
Collapse
Affiliation(s)
- Howook Hwang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, 01605
| | | | | |
Collapse
|
10
|
Vreven T, Hwang H, Pierce BG, Weng Z. Evaluating template-based and template-free protein-protein complex structure prediction. Brief Bioinform 2013; 15:169-76. [PMID: 23818491 DOI: 10.1093/bib/bbt047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We compared the performance of template-free (docking) and template-based methods for the prediction of protein-protein complex structures. We found similar performance for a template-based method based on threading (COTH) and another template-based method based on structural alignment (PRISM). The template-based methods showed similar performance to a docking method (ZDOCK) when the latter was allowed one prediction for each complex, but when the same number of predictions was allowed for each method, the docking approach outperformed template-based approaches. We identified strengths and weaknesses in each method. Template-based approaches were better able to handle complexes that involved conformational changes upon binding. Furthermore, the threading-based and docking methods were better than the structural-alignment-based method for enzyme-inhibitor complex prediction. Finally, we show that the near-native (correct) predictions were generally not shared by the various approaches, suggesting that integrating their results could be the superior strategy.
Collapse
Affiliation(s)
- Thom Vreven
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, ASC-5th floor room 1069, 368 Plantation St., Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|