1
|
Schwarztrauber M, Edwards N, Hiryak J, Chandrasekaran R, Wild J, Bommareddy A. Antitumor and chemopreventive role of major phytochemicals against breast cancer development. Nat Prod Res 2024; 38:3623-3643. [PMID: 37646820 DOI: 10.1080/14786419.2023.2251167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer continues to be one of the most commonly diagnosed cancers around the world. Despite the decrease in mortality, there has been a steady increase in its incidence. There is much evidence that naturally occurring phytochemicals could prove to be safer alternatives aimed at prevention and development of breast cancer. In the present review, we discuss important phytochemicals, namely capsaicin, alpha-santalol and diallyl trisulphide that are shown to have chemopreventive and anti-tumour properties against breast cancer development. We examined current knowledge of their bioavailability, safety and modulation of molecular mechanisms including their ability to induce apoptotic cell death, promote cell cycle arrest, and inhibit cellular proliferation in different breast cancer cell lines and in vivo models. This review emphasises the importance of these naturally occurring phytochemicals and their potential of becoming therapeutic options in the arsenal against breast cancer development provided further scientific and clinical validation.
Collapse
Affiliation(s)
| | - Nathaniel Edwards
- Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA, USA
| | - James Hiryak
- Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA, USA
| | - Ritesh Chandrasekaran
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| | - Jayson Wild
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| | - Ajay Bommareddy
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
2
|
Paudel P, Pandey P, Paris JJ, Ashpole NM, Mahdi F, Tian JM, Lee J, Wang M, Xu M, Chittiboyina AG, Khan IA, Ross SA, Li XC. Cannabinoid Receptor Type II Ligands from Sandalwood Oil and Synthetic α-Santalol Derivatives. JOURNAL OF NATURAL PRODUCTS 2023; 86:1786-1792. [PMID: 37450763 PMCID: PMC11214301 DOI: 10.1021/acs.jnatprod.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Bioassay-guided fractionation of the essential oil of Santalum album led to the identification of α-santalol (1) and β-santalol (2) as new chemotypes of cannabinoid receptor type II (CB2) ligands with Ki values of 10.49 and 8.19 μM, respectively. Nine structurally new α-santalol derivatives (4a-4h and 5) were synthesized to identify more selective and potent CB2 ligands. Compound 4e with a piperazine structural moiety demonstrated a Ki value of 0.99 μM against CB2 receptor and did not show binding activity against cannabinoid receptor type I (CB1) at 10 μM. Compounds 1, 2, and 4e increased intracellular calcium influx in SH-SY5Y human neuroblastoma cells that were attenuated by CB2 antagonism or inverse agonism, supporting the results that these compounds are CB2 agonists. Molecular docking showed that 1 and 4e had similar binding poses, exhibiting a unique interaction with Thr114 within the CB2 receptor, and that the piperazine structural moiety is required for the binding affinity of 4e. A 200 ns molecular dynamics simulation of CB2 complexed with 4e confirmed the stability of the complex. This structural insight lays a foundation to further design and synthesize more potent and selective α-santalol-based CB2 ligands for drug discovery.
Collapse
Affiliation(s)
- Pradeep Paudel
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University, Mississippi 38677, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University, Mississippi 38677, United States
| | - Jason J. Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Nicole M. Ashpole
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Fakhri Mahdi
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Jun-Mian Tian
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University, Mississippi 38677, United States
| | - Joseph Lee
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University, Mississippi 38677, United States
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Mississippi 38677, United States
| | - Min Xu
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University, Mississippi 38677, United States
| | - Ikhlas A. Khan
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University, Mississippi 38677, United States
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Samir A. Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University, Mississippi 38677, United States
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Xing-Cong Li
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University, Mississippi 38677, United States
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
3
|
de Alencar MVOB, Islam MT, da Mata AMOF, Dos Reis AC, de Lima RMT, de Oliveira Ferreira JR, de Castro E Sousa JM, Ferreira PMP, de Carvalho Melo-Cavalcante AA, Rauf A, Hemeg HA, Alsharif KF, Khan H. Anticancer effects of phytol against Sarcoma (S-180) and Human Leukemic (HL-60) cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80996-81007. [PMID: 37308630 DOI: 10.1007/s11356-023-28036-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Phytol (Pyt), a diterpenoid, possesses many important bioactivities. This study evaluates the anticancer effects of Pyt on sarcoma 180 (S-180) and human leukemia (HL-60) cell lines. For this purpose, cells were treated with Pyt (4.72, 7.08, or 14.16 μM) and a cell viability assay was performed. Additionally, the alkaline comet assay and micronucleus test with cytokinesis were also performed using doxorubicin (6 μM) and hydrogen peroxide (10 mM) as positive controls and stressors, respectively. Results revealed that Pyt significantly reduced the viability and rate of division in S-180 and HL-60 cells with IC50 values of 18.98 ± 3.79 and 1.17 ± 0.34 μM, respectively. Pyt at 14.16 μM exerted aneugenic and/or clastogenic effects in S-180 and HL-60 cells, where the number of micronuclei and other nuclear abnormalities (e.g., nucleoplasmic bridges and nuclear buds) were frequently observed. Moreover, Pyt at all concentrations induced apoptosis and showed necrosis at 14.16 μM, suggesting its anticancer effects on the tested cancer cell lines. Taken together, Pyt showed promising anticancer effects, possibly through inducing apoptosis and necrosis mechanisms, and it exerted aneugenic and/or clastogenic effects on the S-180 and HL-60 cell lines.
Collapse
Affiliation(s)
- Marcus Vinícius Oliveira Barros de Alencar
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Biomedical Sciences Research and Innovation Laboratory, Postgraduate Program in Biotechnology, INTA University Center, Sobral, 62.011-230, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Muhammad Torequl Islam
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Ana Maria Oliveira Ferreira da Mata
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Antonielly Campinho Dos Reis
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Rosália Maria Torres de Lima
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | | | - João Marcelo de Castro E Sousa
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO), Federal University of Piauí, Teresina, 64.049-550, Brazil
- Laboratory of Toxicological Genetics, Department of Biochemistry and Pharmacology, Federal University of Piauí, Teresina, Piauí, 64.049-550, Brazil
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi, Khyber Pakhtunkhwa, 23430, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, 41411, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, Taif, 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
4
|
Ibarra-Berumen J, Rosales-Castro M, Ordaz-Pichardo C. Potential use of wood metabolites for cancer treatment. Nat Prod Res 2021; 36:4293-4309. [PMID: 34459687 DOI: 10.1080/14786419.2021.1972420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The study of medicinal plants for cancer treatment has gained attention due to an increasing incidence of cancer worldwide and antineoplastics-related undesirable secondary effects. Most of the natural products of medicinal plants that have been evaluated for cytotoxic activity, are derived from leaves, bark, roots and flowers. However, natural products derived from wood have demonstrated a cytotoxic effect with promising results. Moreover, some fractions and compounds have been isolated of wood in order to increase the effect. This review presents in vitro experimental evidence of cytotoxic effect of natural products from wood against cancer cell lines. It also provides considerations and recommendations to obtain herbal medicines over time.
Collapse
Affiliation(s)
- Jorge Ibarra-Berumen
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Unidad Durango, Durango, Durango, México
| | - Martha Rosales-Castro
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Unidad Durango, Durango, Durango, México
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional, CDMX, México
| |
Collapse
|
5
|
Mohankumar A, Kalaiselvi D, Thiruppathi G, Muthusaravanan S, Nivitha S, Levenson C, Tawata S, Sundararaj P. α- and β-Santalols Delay Aging in Caenorhabditis elegans via Preventing Oxidative Stress and Protein Aggregation. ACS OMEGA 2020; 5:32641-32654. [PMID: 33376901 PMCID: PMC7758982 DOI: 10.1021/acsomega.0c05006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/25/2020] [Indexed: 05/08/2023]
Abstract
α- and β-Santalol (santalol isomers) are the most abundant sesquiterpenoids found in sandalwood, contributing to its pleasant fragrance and wide-spectrum bioactivity. This study aimed at identifying the antiaging and antiaggregation mechanism of α- and β-santalol using the genetic tractability of an in vivo model Caenorhabditis elegans. The results showed that santalol isomers retard aging, improved health span, and inhibited the aggregation of toxic amyloid-β (Aβ1-42) and polyglutamine repeats (Q35, Q40, and HtnQ150) in C. elegans models for Alzheimer's and Huntington's disease, respectively. The genetic study, reporter gene expression, RNA-based reverse genetic approach (RNA interferences/RNAi), and gene expression analysis revealed that santalol isomers selectively regulate SKN-1/Nrf2 and EOR-1/PLZF transcription factors through the RTK/Ras/MAPK-dependent signaling axis that could trigger the expression of several antioxidants and protein aggregation inhibitory genes, viz., gst-4, gcs-1, gst-10, gsr-1, hsp-4, and skr-5, which extend longevity and help minimize age-induced protein oxidation and aggregation. We believe that these findings will further promote α- and β-santalol to become next-generation prolongevity and antiaggregation molecules for longer and healthier life.
Collapse
Affiliation(s)
| | - Duraisamy Kalaiselvi
- Department
of Zoology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
- Department
of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture,
College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | | | - Sundararaj Nivitha
- College
of Science, Northeastern University, Boston, Massachusetts 02115, United States
| | - Corey Levenson
- Santalis
Pharmaceuticals, Inc., 18618 Tuscany Stone, Suite 100, San Antonio, Texas 78258, United States
| | - Shinkichi Tawata
- Department
of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Senbaru 1, Nishihara-cho, Okinawa 903-0213, Japan
| | | |
Collapse
|
6
|
Mutant Kras as a Biomarker Plays a Favorable Role in FL118-Induced Apoptosis, Reactive Oxygen Species (ROS) Production and Modulation of Survivin, Mcl-1 and XIAP in Human Bladder Cancer. Cancers (Basel) 2020; 12:cancers12113413. [PMID: 33217967 PMCID: PMC7698790 DOI: 10.3390/cancers12113413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary FL118 is a novel orally available small molecule anticancer drug. We found that bladder cancer cells with a mutant Kras is highly sensitive to FL118-induced cell growth inhibition and cell death induction through inhibiting the anti-cancer cell death and drug resistance factors (survivin, Mcl-1, XIAP). In the Kras-mutation bladder cancer cells, FL118 can stimulate the reactive oxygen species (ROS) over-production for killing bladder cancer cells and inhibiting bladder cancer cell-established tumor growth. Elimination of mutant Kras by Kras-specific shRNA technology in mutant Kras-containing bladder cancer cell-established tumor decreased FL118 effectiveness to inhibit bladder cancer tumor growth. In this regard, mutant Kras is a potential favorable biomarker for FL118. This finding is significant because mutant Kras is known to be a formidable challenge treatment resistant factor in various types of cancer. Thus, FL118 could use mutant Kras as favorable biomarker for patient selection to carry out precision medicine. Abstract Tumor heterogeneity in key gene mutations in bladder cancer (BC) is a major hurdle for the development of effective treatments. Using molecular, cellular, proteomics and animal models, we demonstrated that FL118, an innovative small molecule, is highly effective at killing T24 and UMUC3 high-grade BC cells, which have Hras and Kras mutations, respectively. In contrast, HT1376 BC cells with wild-type Ras are insensitive to FL118. This concept was further demonstrated in additional BC and colorectal cancer cells with mutant Kras versus those with wild-type Kras. FL118 strongly induced PARP cleavage (apoptosis hallmark) and inhibited survivin, XIAP and/or Mcl-1 in both T24 and UMUC3 cells, but not in the HT1376 cells. Silencing mutant Kras reduced both FL118-induced PARP cleavage and downregulation of survivin, XIAP and Mcl-1 in UMUC3 cells, suggesting mutant Kras is required for FL118 to exhibit higher anticancer efficacy. FL118 increased reactive oxygen species (ROS) production in T24 and UMUC3 cells, but not in HT1376 cells. Silencing mutant Kras in UMUC3 cells reduced FL118-mediated ROS generation. Proteomics analysis revealed that a profound and opposing Kras-relevant signaling protein is changed in UMUC3 cells and not in HT1376 cells. Consistently, in vivo studies indicated that UMUC3 tumors are highly sensitive to FL118 treatment, while HT1376 tumors are highly resistant to this agent. Silencing mutant Kras in UMUC3 cell-derived tumors decreases UMUC3 tumor sensitivity to FL118 treatment. Together, our studies revealed that mutant Kras is a favorable biomarker for FL118 targeted treatment.
Collapse
|
7
|
Younis N, Mohamed M. Sandalwood oil neuroprotective effects on middle cerebral artery occlusion model of ischemic brain stroke. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_398_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Zhang J, Wang Y, Li J, Zhao W, Yang Z, Feng Y. α-Santalol functionalized chitosan nanoparticles as efficient inhibitors of polo-like kinase in triple negative breast cancer. RSC Adv 2020; 10:5487-5501. [PMID: 35498298 PMCID: PMC9049642 DOI: 10.1039/c9ra09084c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022] Open
Abstract
Polo-like kinase 1 (PLK-1) is a protein kinase that plays a significant role in the initiation, maintenance, and completion of mitotic processes in the cell cycle.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology
- Baoding First Central Hospital
- Baoding
- China
| | - Yanan Wang
- Department of Pathology
- Affiliated Hospital of Hebei University
- Baoding
- China
| | - Jinmei Li
- Department of Pathology
- Baoding First Central Hospital
- Baoding
- China
| | - Wenming Zhao
- Department of Pathology
- Baoding First Central Hospital
- Baoding
- China
| | - Zhao Yang
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- China
| | - Yanguang Feng
- Department of Cardiology
- Baoding Qingyuan District People's Hospital
- Baoding
- China
| |
Collapse
|
9
|
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya A, Martorell M, Martins N, Cho WC. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules 2019; 9:E679. [PMID: 31683894 PMCID: PMC6920853 DOI: 10.3390/biom9110679] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer is a heterogeneous disease and one of the major issues of health concern, especially for the public health system globally. Nature is a source of anticancer drugs with abundant pool of diverse chemicals and pharmacologically active compounds. In recent decade, some natural products and synthetic analogs have been investigated for the cancer treatment. This article presents the utilization of natural products as a source of antitumor drugs.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey.
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco.
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco.
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10106, Morocco.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepcion 4070386, Chile.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
10
|
de Alencar MVOB, Islam MT, de Lima RMT, Paz MFCJ, dos Reis AC, da Mata AMOF, Filho JWGDO, Cerqueira GS, Ferreira PMP, e Sousa JMDC, Mubarak MS, Melo-Cavalcante AADC. Phytol as an anticarcinogenic and antitumoral agent: An in vivo study in swiss mice with DMBA-Induced breast cancer. IUBMB Life 2018; 71:200-212. [DOI: 10.1002/iub.1952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology Development; Ton Duc Thang University; Ho Chi Minh City Vietnam
- Faculty of Pharmacy; Ton Duc Thang University; Ho Chi Minh City Vietnam
| | | | | | | | | | | | | | - Paulo Michel Pinheiro Ferreira
- Postgraduate Program in Biotechnology (RENORBIO); Federal University of Piauí; Teresina Piauí Brazil
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Piauí Brazil
- Department of Biophysics and Physiology; Laboratory of Experimental Cancerology, Federal University of Piauí; Teresina Piauí Brazil
| | - João Marcelo de Castro e Sousa
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Piauí Brazil
- Department of Biological Sciences; Federal University of Piauí; Picos Piauí Brazil
| | | | - Ana Amélia de Carvalho Melo-Cavalcante
- Postgraduate Program in Biotechnology (RENORBIO); Federal University of Piauí; Teresina Piauí Brazil
- Postgraduate Program in Pharmaceutical Sciences; Federal University of Piauí; Teresina Piauí Brazil
| |
Collapse
|
11
|
Mohankumar A, Shanmugam G, Kalaiselvi D, Levenson C, Nivitha S, Thiruppathi G, Sundararaj P. East Indian sandalwood ( Santalum album L.) oil confers neuroprotection and geroprotection in Caenorhabditis elegans via activating SKN-1/Nrf2 signaling pathway. RSC Adv 2018; 8:33753-33774. [PMID: 30319772 PMCID: PMC6171454 DOI: 10.1039/c8ra05195j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023] Open
Abstract
East Indian Sandalwood Oil (EISO) has diverse beneficial effects and has been used for thousands of years in traditional folk-medicine for treatment of different human ailments. However, there has been no in-depth scientific investigation to decipher the neuroprotective and geroprotective mechanism of EISO and its principle components, α- and β-santalol. Hence the current study was undertaken to assess the protective effects of EISO, and α- and β-santalol against neurotoxic (6-OHDA/6-hydroxydopamine) and proteotoxic (α-synuclein) stresses in a Caenorhabditis elegans model. Initially, we found that EISO and its principle components exerted an excellent antioxidant and antiapoptotic activity as it was able to extend the lifespan, and inhibit the ROS generation, and germline cell apoptosis in 6-OHDA-intoxicated C. elegans. Further, we showed that supplementation of EISO, and α- and β-santalol reduced the 6-OHDA and α-synuclein-induced Parkinson's disease associated pathologies and improved the physiological functions. The genetic and reporter gene expression analysis revealed that an EISO, or α- and β-santalol-mediated protective effect does not appear to rely on DAF-2/DAF-16, but selectively regulates SKN-1 and its downstream targets involved in antioxidant defense and geroprotective processes. Together, our findings indicated that EISO and its principle components are worth exploring further as a candidate redox-based neuroprotectant for the prevention and management of age-related neurological disorders.
Collapse
Affiliation(s)
- A Mohankumar
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India. ; ; ; Tel: +91-9943340405; Tel: +91-9677667720
| | - G Shanmugam
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India. ; ; ; Tel: +91-9943340405; Tel: +91-9677667720
| | - D Kalaiselvi
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India. ; ; ; Tel: +91-9943340405; Tel: +91-9677667720
| | - C Levenson
- Santalis Pharmaceuticals Inc., 18618 Tuscany Stone, Suite 100, San Antonio, Texas 78258, USA
| | - S Nivitha
- College of Science, Northeastern University, Boston, Massachusetts 02115, USA
| | - G Thiruppathi
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India. ; ; ; Tel: +91-9943340405; Tel: +91-9677667720
| | - P Sundararaj
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamilnadu-641046, India. ; ; ; Tel: +91-9943340405; Tel: +91-9677667720
| |
Collapse
|
12
|
Antifungal and Cytotoxic Activities of Sixty Commercially-Available Essential Oils. Molecules 2018; 23:molecules23071549. [PMID: 29954086 PMCID: PMC6100473 DOI: 10.3390/molecules23071549] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023] Open
Abstract
There is an urgent and unmet need for new antifungal therapies. Global fungal infection rates continue to rise and fungal infections pose increasing burdens on global healthcare systems. Exacerbating the situation, the available antifungal therapeutic arsenal is limited and development of new antifungals has been slow. Current antifungals are known for unwanted side effects including nephrotoxicity and hepatotoxicity. Thus, the need for new antifungals and new antifungal targets is urgent and growing. A collection of 60 commercially-available essential oils has been screened for antifungal activity against Aspergillus niger, Candida albicans, and Cryptococcus neoformans, as well as for cytotoxic activity against MCF-7 and MDA-MB-231 human breast tumor cell lines; the chemical compositions of the essential oils have been determined by gas chromatography-mass spectrometry (GC-MS). Ten essential oils showed remarkable antifungal and cytotoxic activities: Indian, Australian, and Hawaiian sandalwoods; melissa; lemongrass; cilantro; cassia; cinnamon; patchouli; and vetiver.
Collapse
|
13
|
Sharma M, Levenson C, Browning JC, Becker EM, Clements I, Castella P, Cox ME. East Indian Sandalwood Oil Is a Phosphodiesterase Inhibitor: A New Therapeutic Option in the Treatment of Inflammatory Skin Disease. Front Pharmacol 2018; 9:200. [PMID: 29593534 PMCID: PMC5854648 DOI: 10.3389/fphar.2018.00200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/22/2018] [Indexed: 01/01/2023] Open
Abstract
Cyclic adenosine monophosphate phosphodiesterases (PDEs) regulate pro-inflammatory cytokine production. One isoform, PDE4, is overactive in chronic relapsing inflammatory skin diseases: psoriasis and eczema/atopic dermatitis, and in several cancers. East Indian sandalwood oil (EISO) has significant anti-inflammatory properties. Here, we report that 75% of pediatric eczema/atopic dermatitis patients treated with topical EISO formulations achieved a >50% reduction in their Eczema Area and Severity Index score. EISO treatment of a psoriasis model reduced PDE4 expression and reversed histopathology. EISO directly inhibited PDE enzymatic activity in vitro. In lipopolysaccharide-stimulated human dermal fibroblast, BEAS-2B, A549, and THP-1 cells, EISO suppressed total cellular PDE activity, PDE4, and 7 transcript levels, nuclear factor kappa B (NF-κB) activation, and pro-inflammatory cytokines/chemokine production. These results suggest that EISO anti-inflammatory activity is mediated through suppressing PDE activity, thus facilitating cAMP-regulated inhibition of NF-κB and indicate EISO as an attractive natural therapeutic for chronic and acute inflammatory disorders.
Collapse
Affiliation(s)
- Manju Sharma
- The Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Corey Levenson
- Santalis Pharmaceuticals, Inc., San Antonio, TX, United States
| | - John C Browning
- Texas Dermatology and Laser Specialists, San Antonio, TX, United States
| | - Emily M Becker
- Texas Dermatology and Laser Specialists, San Antonio, TX, United States
| | - Ian Clements
- Santalis Pharmaceuticals, Inc., San Antonio, TX, United States
| | - Paul Castella
- Santalis Pharmaceuticals, Inc., San Antonio, TX, United States
| | - Michael E Cox
- The Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada.,Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Dave K, Alsharif FM, Islam S, Dwivedi C, Perumal O. Chemoprevention of Breast Cancer by Transdermal Delivery of α-Santalol through Breast Skin and Mammary Papilla (Nipple). Pharm Res 2017; 34:1897-1907. [PMID: 28589445 DOI: 10.1007/s11095-017-2198-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/30/2017] [Indexed: 01/10/2023]
Abstract
PURPOSE Almost all breast cancers originate from epithelial cells lining the milk ducts in the breast. To this end, the study investigated the feasibility of localized transdermal delivery of α-santalol, a natural chemopreventive agent to the breast. METHODS Different α-santalol formulations (cream, solution and microemulsion) were developed and the in vitro permeability was studied using excised animal (porcine and rat) and human breast skin/mammary papilla (nipple). The in vivo biodistribution and efficacy studies were conducted in female rats. A chemical carcinogenesis model of breast cancer was used for the efficacy studies. RESULTS Phospholipid based α-santalol microemulsion showed the highest penetration through the nipple and breast skin. Delivery of α-santalol through the entire breast (breast skin and nipple) in vivo in rats resulted in significantly higher concentration in the mammary gland compared to transdermal delivery through the breast skin or nipple. There was no measurable α-santalol concentration in the blood. Transdermal delivery of α-santalol reduced the tumor incidence and tumor multiplicity. Furthermore, the tumor size was significantly reduced with α-santalol treatment. CONCLUSIONS The findings from this study demonstrate the feasibility of localized transdermal delivery of α-santalol for chemoprevention of breast cancer.
Collapse
Affiliation(s)
- Kaushalkumar Dave
- Department of Pharmaceutical sciences, College of Pharmacy, South Dakota State University,, Brookings, South Dakota, USA.,Division of Biopharmaceutics, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research,, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Fahd M Alsharif
- Department of Pharmaceutical sciences, College of Pharmacy, South Dakota State University,, Brookings, South Dakota, USA.,College of Pharmacy, Al-Azhar University,, Assiut, Egypt
| | - Saiful Islam
- Department of Pharmaceutical sciences, College of Pharmacy, South Dakota State University,, Brookings, South Dakota, USA
| | - Chandradhar Dwivedi
- Department of Pharmaceutical sciences, College of Pharmacy, South Dakota State University,, Brookings, South Dakota, USA
| | - Omathanu Perumal
- Department of Pharmaceutical sciences, College of Pharmacy, South Dakota State University,, Brookings, South Dakota, USA.
| |
Collapse
|
15
|
Bosco A, Golsteyn RM. Emerging Anti-Mitotic Activities and Other Bioactivities of Sesquiterpene Compounds upon Human Cells. Molecules 2017; 22:molecules22030459. [PMID: 28335397 PMCID: PMC6155193 DOI: 10.3390/molecules22030459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022] Open
Abstract
We review the bio-activities of natural product sesquiterpenes and present the first description of their effects upon mitosis. This type of biological effect upon cells is unexpected because sesquiterpenes are believed to inactivate proteins through Michael-type additions that cause non-specific cytotoxicity. Yet, certain types of sesquiterpenes can arrest cells in mitosis as measured by cell biology, biochemical and imaging techniques. We have listed the sesquiterpenes that arrest cells in mitosis and analyzed the biological data that support those observations. In view of the biochemical complexity of mitosis, we propose that a subset of sesquiterpenes have a unique chemical structure that can target a precise protein(s) required for mitosis. Since the process of mitotic arrest precedes that of cell death, it is possible that some sesquiterpenes that are currently classified as cytotoxic might also induce a mitotic arrest. Our analysis provides a new perspective of sesquiterpene chemical biology.
Collapse
Affiliation(s)
- Alessandra Bosco
- Natural Product and Cancer Cell Laboratories, Department of Biological Sciences, 4401 University Dr, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Roy M Golsteyn
- Natural Product and Cancer Cell Laboratories, Department of Biological Sciences, 4401 University Dr, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
16
|
Antineoplastic Effects of Honokiol on Melanoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5496398. [PMID: 28194418 PMCID: PMC5282456 DOI: 10.1155/2017/5496398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Abstract
Honokiol, a plant lignan has been shown to have antineoplastic effects against nonmelanoma skin cancer developments in mice. In this study, antineoplastic effects of honokiol were investigated in malignant melanoma models. In vitro effects of honokiol treatment on SKMEL-2 and UACC-62 melanoma cells were evaluated by measuring the cell viability, proliferation, apoptosis, cell cycle analysis, and expressions of various proteins associated with cell cycle progression and apoptosis. For the in vivo study, male nude mice inoculated with SKMEL-2 or UACC-62 cells received injections of sesame oil or honokiol for two to seven weeks. In vitro honokiol treatment caused significant decrease in cell viability, proliferation, cell cycle arrest, increased apoptosis, and modulation of apoptotic and cell cycle regulatory proteins. Honokiol caused an accumulation of cells in the G2/M phase of the cell cycle in SKMEL-2 and G0/G1 phase in UACC-62 cells. An elevated level of caspases and PARP were observed in both cell lines treated with honokiol. A decrease in the expression of various cell cycle regulatory proteins was also observed in honokiol treated cells. Honokiol caused a significant reduction of tumor growth in SKMEL-2 and UACC-62 melanoma xenografts. These findings suggest that honokiol is a good candidate for further studies as a possible treatment for malignant melanoma.
Collapse
|
17
|
Parenti S, Casagrande G, Montanari M, Espahbodinia M, Ettari R, Grande A, Corsi L. A novel 2,3-benzodiazepine-4-one derivative AMPA antagonist inhibits G2/M transition and induces apoptosis in human leukemia Jurkat T cell line. Life Sci 2016; 152:117-25. [DOI: 10.1016/j.lfs.2016.03.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/18/2016] [Accepted: 03/27/2016] [Indexed: 10/22/2022]
|
18
|
Kim KH, Kim JY, Kwak JH, Kim BO, Pyo S. Different apoptotic effects of saxifragifolin C in human breast cancer cells. Arch Pharm Res 2016; 39:577-589. [DOI: 10.1007/s12272-016-0729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
|
19
|
Establishment and characterization of a telomerase-immortalized canine bronchiolar epithelial cell line. Appl Microbiol Biotechnol 2015; 99:9135-46. [PMID: 26156242 DOI: 10.1007/s00253-015-6794-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 02/07/2023]
Abstract
Dogs are susceptible to infectious diseases that occur primarily in the respiratory tract. The airway epithelium acts as a first line of defense and is constantly exposed to microorganisms present in the environment. Respiratory epithelial cells have recently gained wide use as a cell model for studying the pathogenesis of human, murine or swine respiratory pathogen infections. However, studies of the pathogenic mechanisms of canine pathogens have been hindered by the lack of reliable respiratory cell lines. Here, we cultured primary canine bronchiolar epithelial cells (CBECs), whose characteristics were confirmed by their expression of the epithelial cell-specific marker cytokeratin 18, and have provided protocols for their isolation and ex vivo expansion. Further, we established immortalized CBECs containing the human telomerase reverse transcriptase (hTERT) gene via transfection of primary CBECs with the recombinant plasmid pEGFP-hTERT. Immortalized bronchiolar epithelial cells (hTERT-CBECs) retain the morphological and functional features of primary CBECs, as indicated by reverse transcriptase polymerase chain reaction, proliferation assays, karyotype analysis, telomerase activity assay, and Western blotting, which demonstrate that hTERT-CBECs have higher telomerase activity, an extended proliferative lifespan, and a diploid complement of chromosomes, even after Passage 50. Moreover, this cell line is not transformed, as evaluated using soft agar assays and tumorigenicity analysis in nude mice, and can therefore be safely used in future studies. The isolation and establishment of stable hTERT-CBECs is of great importance for use as an in vitro model for mechanistic studies of canine pathogenic infections.
Collapse
|
20
|
Lee B, Bohmann J, Reeves T, Levenson C, Risinger AL. α- and β-Santalols Directly Interact with Tubulin and Cause Mitotic Arrest and Cytotoxicity in Oral Cancer Cells. JOURNAL OF NATURAL PRODUCTS 2015; 78:1357-62. [PMID: 25993496 DOI: 10.1021/acs.jnatprod.5b00207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with no major advancements in treatment over the past 40 years. The current study explores the biological effects of East Indian sandalwood oil (EISO) and its two major constituents, α- and β-santalol, against a variety of HNSCC lines. All three agents exhibited cytotoxic effects and caused accumulation of cells in the G2/M phases of the cell cycle. Additionally, treatment with these agents caused formation of multipolar mitotic spindles similar to those observed upon treatment of cells with compounds that affect microtubule polymerization. Indeed, the santalols, as well as EISO, inhibited the polymerization of purified tubulin, indicating for the first time that these compounds have the ability to directly bind to tubulin and affect microtubule formation. Modeling studies suggest that the santalols can weakly bind to the colchicine site on tubulin, and topical administration of EISO to a HNSCC xenograft inhibited tumor growth with no observed toxicities. Therefore, santalols can directly interact with tubulin to inhibit the polymerization of microtubules, similarly to established classes of chemotherapeutic agents, albeit with greatly reduced potency that is not associated with the classic toxicity associated with most other compounds that interact directly with tubulin.
Collapse
Affiliation(s)
- Brigette Lee
- †Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Jonathan Bohmann
- ‡Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238, United States
| | - Tony Reeves
- ‡Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238, United States
| | - Corey Levenson
- §Santalis Pharmaceuticals, 18618 Tuscany Stone, Suite 100, San Antonio, Texas 78258, United States
| | - April L Risinger
- †Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| |
Collapse
|
21
|
Matsuo Y, Sakagami H, Mimaki Y. A rare type of sesquiterpene and β-santalol derivatives from Santalum album and their cytotoxic activities. Chem Pharm Bull (Tokyo) 2014; 62:1192-9. [PMID: 25450628 DOI: 10.1248/cpb.c14-00457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rare type of sesquiterpene with a spiro bicyclic system (1) and seven new (2-8) and four known (9-12) β-santalol derivatives were isolated from the heartwood of Santalum album (Santalaceae). The structures of these new compounds were determined by analysis of extensive spectroscopic data. The isolated compounds and derivatives were evaluated for their cytotoxic activity against HL-60 human promyelocytic leukemia cells, A549 human lung adenocarcinoma cells, HSC-2 and HSC-4 human oral squamous cell carcinoma cell lines, and TIG-3 normal human diploid fibroblasts. cis-β-Santalol (9) and β-santaldiol (10) induced apoptotic cell death in HL-60 cells.
Collapse
Affiliation(s)
- Yukiko Matsuo
- Tokyo University of Pharmacy and Life Sciences, School of Pharmacy
| | | | | |
Collapse
|
22
|
Dickinson SE, Olson ER, Levenson C, Janda J, Rusche JJ, Alberts DS, Bowden GT. A novel chemopreventive mechanism for a traditional medicine: East Indian sandalwood oil induces autophagy and cell death in proliferating keratinocytes. Arch Biochem Biophys 2014. [PMID: 25004464 DOI: 10.1016/j.abb.2014.06.021.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
One of the primary components of the East Indian sandalwood oil (EISO) is α-santalol, a molecule that has been investigated for its potential use as a chemopreventive agent in skin cancer. Although there is some evidence that α-santalol could be an effective chemopreventive agent, to date, purified EISO has not been extensively investigated even though it is widely used in cultures around the world for its health benefits as well as for its fragrance and as a cosmetic. In the current study, we show for the first time that EISO-treatment of HaCaT keratinocytes results in a blockade of cell cycle progression as well as a concentration-dependent inhibition of UV-induced AP-1 activity, two major cellular effects known to drive skin carcinogenesis. Unlike many chemopreventive agents, these effects were not mediated through an inhibition of signaling upstream of AP-1, as EISO treatment did not inhibit UV-induced Akt or MAPK activity. Low concentrations of EISO were found to induce HaCaT cell death, although not through apoptosis as annexin V and PARP cleavage were not found to increase with EISO treatment. However, plasma membrane integrity was severely compromised in EISO-treated cells, which may have led to cleavage of LC3 and the induction of autophagy. These effects were more pronounced in cells stimulated to proliferate with bovine pituitary extract and EGF prior to receiving EISO. Together, these effects suggest that EISO may exert beneficial effects upon skin, reducing the likelihood of promotion of pre-cancerous cells to actinic keratosis (AK) and skin cancer.
Collapse
Affiliation(s)
- Sally E Dickinson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Pharmacology, University of Arizona, Tucson, AZ, United States.
| | - Erik R Olson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Corey Levenson
- Santalis Pharmaceuticals, Inc., San Antonio, TX, United States
| | - Jaroslav Janda
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Jadrian J Rusche
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - David S Alberts
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - G Timothy Bowden
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
23
|
Antognelli C, Palumbo I, Aristei C, Talesa VN. Glyoxalase I inhibition induces apoptosis in irradiated MCF-7 cells via a novel mechanism involving Hsp27, p53 and NF-κB. Br J Cancer 2014; 111:395-406. [PMID: 24918814 PMCID: PMC4102940 DOI: 10.1038/bjc.2014.280] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/24/2014] [Accepted: 04/30/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Glyoxalase I (GI) is a cellular defence enzyme involved in the detoxification of methylglyoxal (MG), a cytotoxic byproduct of glycolysis, and MG-derived advanced glycation end products (AGEs). Argpyrimidine (AP), one of the major AGEs coming from MG modifications of proteins arginines, is a pro-apoptotic agent. Radiotherapy is an important modality widely used in cancer treatment. Exposure of cells to ionising radiation (IR) results in a number of complex biological responses, including apoptosis. The present study was aimed at investigating whether, and through which mechanism, GI was involved in IR-induced apoptosis. METHODS Apoptosis, by TUNEL assay, transcript and protein levels or enzymatic activity, by RT-PCR, western blot and spectrophotometric methods, respectively, were evaluated in irradiated MCF-7 breast cancer cells, also in experiments with appropriate inhibitors or using small interfering RNA. RESULTS Ionising radiation induced a dramatic reactive oxygen species (ROS)-mediated inhibition of GI, leading to AP-modified Hsp27 protein accumulation that, in a mechanism involving p53 and NF-κB, triggered an apoptotic mitochondrial pathway. Inhibition of GI occurred at both functional and transcriptional levels, the latter occurring via ERK1/2 MAPK and ERα modulation. CONCLUSIONS Glyoxalase I is involved in the IR-induced MCF-7 cell mitochondrial apoptotic pathway via a novel mechanism involving Hsp27, p53 and NF-κB.
Collapse
Affiliation(s)
- C Antognelli
- Department of Experimental Medicine, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - I Palumbo
- Radiation Oncology Section, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - C Aristei
- Radiation Oncology Section, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| | - V N Talesa
- Department of Experimental Medicine, University of Perugia, Sant'Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
24
|
Dickinson SE, Olson ER, Levenson C, Janda J, Rusche JJ, Alberts DS, Bowden GT. A novel chemopreventive mechanism for a traditional medicine: East Indian sandalwood oil induces autophagy and cell death in proliferating keratinocytes. Arch Biochem Biophys 2014; 558:143-52. [PMID: 25004464 DOI: 10.1016/j.abb.2014.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
One of the primary components of the East Indian sandalwood oil (EISO) is α-santalol, a molecule that has been investigated for its potential use as a chemopreventive agent in skin cancer. Although there is some evidence that α-santalol could be an effective chemopreventive agent, to date, purified EISO has not been extensively investigated even though it is widely used in cultures around the world for its health benefits as well as for its fragrance and as a cosmetic. In the current study, we show for the first time that EISO-treatment of HaCaT keratinocytes results in a blockade of cell cycle progression as well as a concentration-dependent inhibition of UV-induced AP-1 activity, two major cellular effects known to drive skin carcinogenesis. Unlike many chemopreventive agents, these effects were not mediated through an inhibition of signaling upstream of AP-1, as EISO treatment did not inhibit UV-induced Akt or MAPK activity. Low concentrations of EISO were found to induce HaCaT cell death, although not through apoptosis as annexin V and PARP cleavage were not found to increase with EISO treatment. However, plasma membrane integrity was severely compromised in EISO-treated cells, which may have led to cleavage of LC3 and the induction of autophagy. These effects were more pronounced in cells stimulated to proliferate with bovine pituitary extract and EGF prior to receiving EISO. Together, these effects suggest that EISO may exert beneficial effects upon skin, reducing the likelihood of promotion of pre-cancerous cells to actinic keratosis (AK) and skin cancer.
Collapse
Affiliation(s)
- Sally E Dickinson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Pharmacology, University of Arizona, Tucson, AZ, United States.
| | - Erik R Olson
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| | - Corey Levenson
- Santalis Pharmaceuticals, Inc., San Antonio, TX, United States
| | - Jaroslav Janda
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Jadrian J Rusche
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - David S Alberts
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - G Timothy Bowden
- Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
25
|
Essential oils and their constituents as anticancer agents: a mechanistic view. BIOMED RESEARCH INTERNATIONAL 2014; 2014:154106. [PMID: 25003106 PMCID: PMC4070586 DOI: 10.1155/2014/154106] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
Exploring natural plant products as an option to find new chemical entities as anticancer agents is one of the fastest growing areas of research. Recently, in the last decade, essential oils (EOs) have been under study for their use in cancer therapy and the present review is an attempt to collect and document the available studies indicating EOs and their constituents as anticancer agents. This review enlists nearly 130 studies of EOs from various plant species and their constituents that have been studied so far for their anticancer potential and these studies have been classified as in vitro and in vivo studies for EOs and their constituents. This review also highlights in-depth various mechanisms of action of different EOs and their constituents reported in the treatment strategies for different types of cancer. The current review indicates that EOs and their constituents act by multiple pathways and mechanisms involving apoptosis, cell cycle arrest, antimetastatic and antiangiogenic, increased levels of reactive oxygen and nitrogen species (ROS/RNS), DNA repair modulation, and others to demonstrate their antiproliferative activity in the cancer cell. The effect of EOs and their constituents on tumour suppressor proteins (p53 and Akt), transcription factors (NF- κB and AP-1), MAPK-pathway, and detoxification enzymes like SOD, catalase, glutathione peroxidase, and glutathione reductase has also been discussed.
Collapse
|
26
|
Misra BB, Dey S. Immunolocalization of α-santalol in sandalwood. JOURNAL OF ESSENTIAL OIL RESEARCH 2014. [DOI: 10.1080/10412905.2014.910709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Wu L, Li Q, Liu Y. Polyphyllin D induces apoptosis in K562/A02 cells through G2/M phase arrest. J Pharm Pharmacol 2013; 66:713-21. [PMID: 24325805 DOI: 10.1111/jphp.12188] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Abstract
Abstract
Objectives
The effect of polyphyllin D on inducing cell death of the K562/A02 human leukaemia drug-resistant cells in vitro was examined.
Methods
The effect of polyphyllin D on K562/A02 cells were analysed by studying their cytotoxicity, apoptosis, cell cycle distribution, caspase-3 activity and disruption of mitochondrial membrane potential (MMP).
Key findings
Polyphyllin D, a small molecular monomer extracted from rhizoma of Paris polyphyllin, exhibited strong anticancer activity in a previous study. Our results demonstrate that polyphyllin D exerts a growth inhibitory effect by arresting cells at G2/M phase and by the induction of apoptosis in K562/A02 human leukaemia drug-resistant cells, G2/M phase arrest was found to be associated with up-regulation of p21 and down-regulation of cyclin B1 and cyclin-dependent protein kinase 1. Polyphyllin D-induced apoptosis via the mitochondrial apoptotic pathway as evidenced by decreased Bcl-2 expression levels, disruption of MMP and increased Bax, cytochrome C and cleaved-caspase-3 levels.
Conclusions
These data suggest that polyphyllin D has a potential as a potent therapeutic agent for chronic myeloid leukaemia.
Collapse
Affiliation(s)
- Lina Wu
- Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qiang Li
- Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yong Liu
- Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|