1
|
Lee CS, Chen S, Berry CT, Kelly AR, Herman PJ, Oh S, O'Connor RS, Payne AS, Ellebrecht CT. Fate induction in CD8 CAR T cells through asymmetric cell division. Nature 2024; 633:670-677. [PMID: 39198645 PMCID: PMC11410665 DOI: 10.1038/s41586-024-07862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Early expansion and long-term persistence predict efficacy of chimeric antigen receptor T cells (CARTs)1-7, but mechanisms governing effector versus memory CART differentiation and whether asymmetric cell division induces differential fates in human CARTs remain unclear. Here we show that target-induced proximity labelling enables isolation of first-division proximal-daughter and distal-daughter CD8 CARTs that asymmetrically distribute their surface proteome and transcriptome, resulting in divergent fates. Target-engaged CARs remain on proximal daughters, which inherit a surface proteome resembling activated-undivided CARTs, whereas the endogenous T cell receptor and CD8 enrich on distal daughters, whose surface proteome resembles resting CARTs, correlating with glycolytic and oxidative metabolism, respectively. Despite memory-precursor phenotype and in vivo longevity, distal daughters demonstrate transient potent cytolytic activity similar to proximal daughters, uncovering an effector-like state in distal daughters destined to become memory CARTs. Both partitioning of pre-existing transcripts and changes in RNA velocity contribute to asymmetry of fate-determining factors, resulting in diametrically opposed transcriptional trajectories. Independent of naive, memory or effector surface immunophenotype, proximal-daughter CARTs use core sets of transcription factors known to support proliferation and effector function. Conversely, transcription factors enriched in distal daughters restrain differentiation and promote longevity, evidenced by diminished long-term in vivo persistence and function of distal-daughter CARTs after IKZF1 disruption. These studies establish asymmetric cell division as a framework for understanding mechanisms of CART differentiation and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Casey S Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sisi Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corbett T Berry
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andre R Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Herman
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangwook Oh
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Garner LC, Amini A, FitzPatrick MEB, Lett MJ, Hess GF, Filipowicz Sinnreich M, Provine NM, Klenerman P. Single-cell analysis of human MAIT cell transcriptional, functional and clonal diversity. Nat Immunol 2023; 24:1565-1578. [PMID: 37580605 PMCID: PMC10457204 DOI: 10.1038/s41590-023-01575-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize microbial metabolites through a semi-invariant T cell receptor (TCR). Major questions remain regarding the extent of human MAIT cell functional and clonal diversity. To address these, we analyzed the single-cell transcriptome and TCR repertoire of blood and liver MAIT cells and developed functional RNA-sequencing, a method to integrate function and TCR clonotype at single-cell resolution. MAIT cell clonal diversity was comparable to conventional memory T cells, with private TCR repertoires shared across matched tissues. Baseline functional diversity was low and largely related to tissue site. MAIT cells showed stimulus-specific transcriptional responses in vitro, with cells positioned along gradients of activation. Clonal identity influenced resting and activated transcriptional profiles but intriguingly was not associated with the capacity to produce IL-17. Overall, MAIT cells show phenotypic and functional diversity according to tissue localization, stimulation environment and clonotype.
Collapse
Affiliation(s)
- Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin J Lett
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriel F Hess
- Division of Visceral Surgery, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Magdalena Filipowicz Sinnreich
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
- Gastroenterology and Hepatology, University Department of Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
3
|
Liu C, Omilusik K, Toma C, Kurd NS, Chang JT, Goldrath AW, Wang W. Systems-level identification of key transcription factors in immune cell specification. PLoS Comput Biol 2022; 18:e1010116. [PMID: 36156073 PMCID: PMC9536753 DOI: 10.1371/journal.pcbi.1010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/06/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023] Open
Abstract
Transcription factors (TFs) are crucial for regulating cell differentiation during the development of the immune system. However, the key TFs for orchestrating the specification of distinct immune cells are not fully understood. Here, we integrated the transcriptomic and epigenomic measurements in 73 mouse and 61 human primary cell types, respectively, that span the immune cell differentiation pathways. We constructed the cell-type-specific transcriptional regulatory network and assessed the global importance of TFs based on the Taiji framework, which is a method we have previously developed that can infer the global impact of TFs using integrated transcriptomic and epigenetic data. Integrative analysis across cell types revealed putative driver TFs in cell lineage-specific differentiation in both mouse and human systems. We have also identified TF combinations that play important roles in specific developmental stages. Furthermore, we validated the functions of predicted novel TFs in murine CD8+ T cell differentiation and showed the importance of Elf1 and Prdm9 in the effector versus memory T cell fate specification and Kdm2b and Tet3 in promoting differentiation of CD8+ tissue resident memory (Trm) cells, validating the approach. Thus, we have developed a bioinformatic approach that provides a global picture of the regulatory mechanisms that govern cellular differentiation in the immune system and aids the discovery of novel mechanisms in cell fate decisions.
Collapse
Affiliation(s)
- Cong Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Kyla Omilusik
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Clara Toma
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nadia S. Kurd
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ananda W. Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
4
|
Read KA, Jones DM, Freud AG, Oestreich KJ. Established and emergent roles for Ikaros transcription factors in lymphoid cell development and function. Immunol Rev 2020; 300:82-99. [PMID: 33331000 DOI: 10.1111/imr.12936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Ikaros zinc finger transcription factors are important regulators of the gene programs underlying the development of hematopoietic cell lineages. The family consists of five members: Ikaros, Helios, Aiolos, Eos, and Pegasus, which engage in both homo- and heterotypic intrafamilial interactions to exert diverse functional effects. Pioneering studies focused on the role of these factors in early lymphoid development, as their absence resulted in severe defects in lymphocyte populations. More recent work has now begun to define nuanced, stage-specific roles for Ikaros family members in the differentiation and function of mature T, B, and innate lymphoid cell populations including natural killer (NK) cells. The precise transcriptional mechanisms by which these factors function, both independently and collaboratively, is an area of active investigation. However, several key themes appear to be emerging regarding the pathways influenced by Ikaros family members, including the end-to-end regulation of cytokine signaling. Here, we review roles for Ikaros factors in lymphoid cell development, differentiation, and function, including a discussion of the current understanding of the transcriptional mechanisms they employ and considerations for the future study of this important transcription factor family.
Collapse
Affiliation(s)
- Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Biomedical Sciences Graduate Program, Columbus, OH, USA
| | - Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Biomedical Sciences Graduate Program, Columbus, OH, USA
| | - Aharon G Freud
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.,Department of Pathology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
5
|
Franssen LE, Mutis T, Lokhorst HM, van de Donk NWCJ. Immunotherapy in myeloma: how far have we come? Ther Adv Hematol 2019; 10:2040620718822660. [PMID: 30719268 PMCID: PMC6348514 DOI: 10.1177/2040620718822660] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The treatment of multiple myeloma (MM) has evolved substantially over the past decades, leading to a significantly improved outcome of MM patients. The introduction of high-dose therapy, especially, and autologous stem cell transplantation, as well as the development of new drugs, such as immunomodulatory drugs (IMiDs) and proteasome inhibitors have contributed to the improvement in survival. However, eventually most MM patients relapse, which indicates that there is a need for new agents and novel treatment strategies. Importantly, the long-term survival in a subset of MM patients after allogeneic stem cell transplantation illustrates the potential of immunotherapy in MM, but allogeneic stem cell transplantation is also associated with a high rate of treatment-related mortality. Recently, a better insight into several immune-evasion mechanisms, which contribute to tumor progression, has resulted in the development of active and well-tolerated novel forms of immunotherapy. These immunotherapeutic agents can be used as monotherapy, or, even more successfully, in combination with other established anti-MM agents to further improve depth and duration of response by preventing the outgrowth of resistant clones. This review will discuss the mechanisms used by MM cells to evade the immune system, and also provide an overview of currently approved immunotherapeutic drugs, such as IMiDs (e.g. lenalidomide and pomalidomide) and monoclonal antibodies that target cell surface antigens present on the MM cell (e.g. elotuzumab and daratumumab), as well as novel immunotherapies (e.g. chimeric antigen receptor T-cells, bispecific antibodies and checkpoint inhibitors) currently in clinical development in MM.
Collapse
Affiliation(s)
- Laurens E Franssen
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henk M Lokhorst
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Franssen LE, Nijhof IS, Bjorklund CC, Chiu H, Doorn R, van Velzen J, Emmelot M, van Kessel B, Levin MD, Bos GMJ, Broijl A, Klein SK, Koene HR, Bloem AC, Beeker A, Faber LM, van der Spek E, Raymakers R, Sonneveld P, Zweegman S, Lokhorst HM, Thakurta A, Qian X, Mutis T, van de Donk NWCJ. Lenalidomide combined with low-dose cyclophosphamide and prednisone modulates Ikaros and Aiolos in lymphocytes, resulting in immunostimulatory effects in lenalidomide-refractory multiple myeloma patients. Oncotarget 2018; 9:34009-34021. [PMID: 30338042 PMCID: PMC6188055 DOI: 10.18632/oncotarget.26131] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/10/2018] [Indexed: 11/25/2022] Open
Abstract
We recently showed that the outcome of multiple myeloma (MM) patients treated in the REPEAT study (evaluation of lenalidomide combined with low-dose cyclophosphamide and prednisone (REP) in lenalidomide-refractory MM) was markedly better than what has been described with cyclophosphamide-prednisone alone. The outcome with REP was not associated with plasma cell Cereblon expression levels, suggesting that the effect of REP treatment may involve mechanisms independent of plasma cell Cereblon-mediated direct anti-tumor activity. We therefore hypothesized that immunomodulatory effects contribute to the anti-MM activity of REP treatment, rather than plasma cell Cereblon-mediated effects. Consequently, we now characterized the effect of REP treatment on immune cell subsets in peripheral blood samples collected on day 1 and 14 of cycle 1, as well as on day 1 of cycle 2. We observed a significant mid-cycle decrease in the Cereblon substrate proteins Ikaros and Aiolos in diverse lymphocyte subsets, which was paralleled by an increase in T-cell activation. These effects were restored to baseline at day one of the second cycle, one week after lenalidomide interruption. In vitro, lenalidomide enhanced peripheral blood mononuclear cell-mediated killing of both lenalidomide-sensitive and lenalidomide-resistant MM cells in a co-culture system. These results indicate that the Cereblon-mediated immunomodulatory properties of lenalidomide are maintained in lenalidomide-refractory MM patients and may contribute to immune-mediated killing of MM cells. Therefore, combining lenalidomide with other drugs can have potent effects through immunomodulation, even in patients considered to be lenalidomide-refractory.
Collapse
Affiliation(s)
- Laurens E Franssen
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Inger S Nijhof
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Chad C Bjorklund
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Hsiling Chiu
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Ruud Doorn
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen van Velzen
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten Emmelot
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Berris van Kessel
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Gerard M J Bos
- Department of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Annemiek Broijl
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Saskia K Klein
- Department of Internal Medicine, Meander Medical Center, Amersfoort, The Netherlands
| | - Harry R Koene
- Department of Hematology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Andries C Bloem
- Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aart Beeker
- Department of Internal Medicine, Spaarne Hospital, Hoofddorp, The Netherlands
| | - Laura M Faber
- Department of Internal Medicine, Rode Kruis Hospital, Beverwijk, The Netherlands
| | - Ellen van der Spek
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, The Netherlands
| | - Reinier Raymakers
- Department of Hematology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
| | - Pieter Sonneveld
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk M Lokhorst
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Anjan Thakurta
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Xiaozhong Qian
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA
| | - Tuna Mutis
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This review highlights the control of transcriptional networks, including induction of inhibitory receptors, by T cell-specific transcription factors in exhausted T cells that accumulate in chronic viral infections including HIV. RECENT FINDINGS Transcriptional profiling has established distinct molecular phenotypes for exhausted CD4 and CD8 T cells in chronic viral infection models. There exists a subset of transcription factors associated with exhaustion, notably Blimp-1, basic leucine zipper transcription factor, ATF-like and Helios. Epigenetic phenomena are likely important in regulating gene expression networks during exhaustion as illustrated by programmed death 1 promoter methylation patterns. SUMMARY Following chronic viral infections, CD4 and CD8 T cells defined functionally and phenotypically as exhausted have distinct transcriptional profiles. These studies have identified a core set of transcription factors that have been implicated in promoting exhaustion. However, no single factor appears to be an exhaustion determining factor, suggesting that T cell exhaustion reflects a combinatorial mechanism with multiple transcription factors interacting to influence the development of functionally exhausted T cells as well as different T effector populations.
Collapse
|
8
|
O'Brien S, Thomas RM, Wertheim GB, Zhang F, Shen H, Wells AD. Ikaros imposes a barrier to CD8+ T cell differentiation by restricting autocrine IL-2 production. THE JOURNAL OF IMMUNOLOGY 2014; 192:5118-29. [PMID: 24778448 DOI: 10.4049/jimmunol.1301992] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Naive CD4(+) T cells require signals from the TCR and CD28 to produce IL-2, expand, and differentiate. However, these same signals are not sufficient to induce autocrine IL-2 production by naive CD8(+) T cells, which require cytokines provided by other cell types to drive their differentiation. The basis for failed autocrine IL-2 production by activated CD8(+) cells is unclear. We find that Ikaros, a transcriptional repressor that silences IL-2 in anergic CD4(+) T cells, also restricts autocrine IL-2 production by CD8(+) T cells. We find that CD8(+) T cell activation in vitro in the absence of exogenous cytokines and CD4 help leads to marked induction of Ikaros, a known repressor of the Il2 gene. Naive murine CD8 T cells haplo-insufficient for Ikzf1 failed to upregulate Ikaros, produced autocrine IL-2, and differentiated in an IL-2-dependent manner into IFN-γ-producing CTLs in response to TCR/CD28 stimulation alone. Furthermore, Ikzf1 haplo-insufficient CD8(+) T cells were more effective at controlling Listeria infection and B16 melanoma growth in vivo, and they could provide help to neighboring, non-IL-2-producing cells to differentiate into IFN-γ-producing effectors. Therefore, by repressing autocrine IL-2 production, Ikaros ensures that naive CD8(+) T cells remain dependent on licensing by APCs and CD4(+) T cells, and it may therefore act as a cell-intrinsic safeguard against inappropriate CTL differentiation and immunopathology.
Collapse
Affiliation(s)
- Shaun O'Brien
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rajan M Thomas
- Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104; and
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104; and
| | - Fuqin Zhang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hao Shen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104; and
| |
Collapse
|