1
|
Abstract
Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa 277-8581, Japan;
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya 466-8555, Japan;
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; ,
| |
Collapse
|
2
|
Delhoumi M, Catania V, Zaabar W, Tolone M, Quatrini P, Achouri MS. The gut microbiota structure of the terrestrial isopod Porcellionides pruinosus (Isopoda: Oniscidea). EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1781269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. Delhoumi
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Tunisia
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - V. Catania
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - W. Zaabar
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Tunisia
| | - M. Tolone
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy
| | - P. Quatrini
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - M. S. Achouri
- Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, University of Tunis El Manar, Tunisia
| |
Collapse
|
3
|
Kwon SK, Jun SH, Kim JF. Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins. J Microbiol Biotechnol 2020; 30:633-641. [PMID: 32482928 PMCID: PMC9728251 DOI: 10.4014/jmb.1912.12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022]
Abstract
Microbial rhodopsins are a superfamily of photoactive membrane proteins with covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the 3 omega motif. This motif forms a stack of three nonconsecutive aromatic amino acids that correlates with the B-C loop orientation, and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress on these omega rhodopsins, and speculated on their evolutionary origin of functional diversity..
Collapse
Affiliation(s)
- Soon-Kyeong Kwon
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sung-Hoon Jun
- Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 8119, Republic of Korea
| | - Jihyun F. Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul 0722, Republic of Korea
| |
Collapse
|
4
|
Gómez-Consarnau L, Needham DM, Weber PK, Fuhrman JA, Mayali X. Influence of Light on Particulate Organic Matter Utilization by Attached and Free-Living Marine Bacteria. Front Microbiol 2019; 10:1204. [PMID: 31214143 PMCID: PMC6558058 DOI: 10.3389/fmicb.2019.01204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/13/2019] [Indexed: 11/13/2022] Open
Abstract
Light plays a central role on primary productivity of aquatic systems. Yet, its potential impact on the degradation of photosynthetically produced biomass is not well understood. We investigated the patterns of light-induced particle breakdown and bacterial assimilation of detrital C and N using 13C and 15N labeled freeze-thawed diatom cells incubated in laboratory microcosms with a marine microbial community freshly collected from the Pacific Ocean. Particles incubated in the dark resulted in increased bacterial counts and dissolved organic carbon concentrations compared to those incubated in the light. Light also influenced the attached and free-living microbial community structure as detected by 16S rRNA gene amplicon sequencing. For example, Sphingobacteriia were enriched on dark-incubated particles and taxa from the family Flavobacteriaceae and the genus Pseudoalteromonas were numerically enriched on particles in the light. Isotope incorporation analysis by phylogenetic microarray and NanoSIMS (a method called Chip-SIP) identified free-living and attached microbial taxa able to incorporate N and C from the particles. Some taxa, including members of the Flavobacteriaceae and Cryomorphaceae, exhibited increased isotope incorporation in the light, suggesting the use of photoheterotrophic metabolisms. In contrast, some members of Oceanospirillales and Rhodospirillales showed decreased isotope incorporation in the light, suggesting that their heterotrophic metabolism, particularly when occurring on particles, might increase at night or may be inhibited by sunlight. These results show that light influences particle degradation and C and N incorporation by attached bacteria, suggesting that the transfer between particulate and free-living phases are likely affected by external factors that change with the light regime, such as time of day, water column depth and season.
Collapse
Affiliation(s)
- Laura Gómez-Consarnau
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xavier Mayali
- Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
5
|
Srinivasan K, Buys EM. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 2019; 59:3211-3226. [PMID: 30638045 DOI: 10.1080/10408398.2018.1546670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant efforts have been made to address the hidden hunger challenges due to iron, zinc, iodine, and vitamin A since the beginning of the 21st century. Prioritizing the vitamin A deficiency (VAD) disorders, many countries are looking for viable alternative strategies such as biofortification. One of the leading causes of VAD is the poor bioconversion of β-carotene into retinoids. This review is focused on the opportunities of bacterial biosynthesis of retinoids, in particular, through the gut microbiota. The proposed hypothesis starts with the premise that an animal can able to store and timely convert carotenoids into retinoids in the liver and intestinal tissues. This theory is experimental with many scientific insights. The syntrophic metabolism, potential crosstalk of bile acids, lipocalins and lipopolysaccharides of gut microbiota are reported to contribute significantly to the retinoid biosynthesis. The gut bacteria respond to these kinds of factors by genetic restructuring driven mainly by events like horizontal gene transfer. A phylogenetic analysis of β-carotene 15, 15'-mono (di) oxygenase enzymes among a selected group of prokaryotes and eukaryotes was carried out to validate the hypotheses. Shedding light on the probiotic strategies through non-genetically modified organism such as gut bacteria capable of synthesizing vitamin A would address the VAD disorders.
Collapse
Affiliation(s)
- K Srinivasan
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
6
|
Freese HM, Sikorski J, Bunk B, Scheuner C, Meier-Kolthoff JP, Spröer C, Gram L, Overmann J. Trajectories and Drivers of Genome Evolution in Surface-Associated Marine Phaeobacter. Genome Biol Evol 2018; 9:3297-3311. [PMID: 29194520 PMCID: PMC5730936 DOI: 10.1093/gbe/evx249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2017] [Indexed: 12/19/2022] Open
Abstract
The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists.
Collapse
Affiliation(s)
- Heike M Freese
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Carmen Scheuner
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jan P Meier-Kolthoff
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Lone Gram
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,Institute of Microbiology, University Braunschweig, Germany
| |
Collapse
|
7
|
Kirchhoff C, Ebert M, Jahn D, Cypionka H. Chemiosmotic Energy Conservation in Dinoroseobacter shibae: Proton Translocation Driven by Aerobic Respiration, Denitrification, and Photosynthetic Light Reaction. Front Microbiol 2018; 9:903. [PMID: 29867814 PMCID: PMC5954134 DOI: 10.3389/fmicb.2018.00903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/18/2018] [Indexed: 11/13/2022] Open
Abstract
Dinoroseobacter shibae is an aerobic anoxygenic phototroph and able to utilize light energy to support its aerobic energy metabolism. Since the cells can also grow anaerobically with nitrate and nitrite as terminal electron acceptor, we were interested in how the cells profit from photosynthesis during denitrification and what the steps of chemiosmotic energy conservation are. Therefore, we conducted proton translocation experiments and compared O2-, NO3-, and NO2- respiration during different light regimes and in the dark. We used wild type cells and transposon mutants with knocked-out nitrate- and nitrite- reductase genes (napA and nirS), as well as a mutant (ppsR) impaired in bacteriochlorophyll a synthesis. Light had a positive impact on proton translocation, independent of the type of terminal electron acceptor present. In the absence of an electron acceptor, however, light did not stimulate proton translocation. The light-driven add-on to proton translocation was about 1.4 H+/e- for O2 respiration and about 1.1 H+/e- for NO3- and NO2-. We could see that the chemiosmotic energy conservation during aerobic respiration involved proton translocation, mediated by the NADH dehydrogenase, the cytochrome bc1 complex, and the cytochrome c oxidase. During denitrification the last proton translocation step of the electron transport was missing, resulting in a lower H+/e- ratio during anoxia. Furthermore, we studied the type of light-harvesting and found that the cells were able to channel light from the green–blue spectrum most efficiently, while red light has only minor impact. This fits well with the depth profiles for D. shibae abundance in the ocean and the penetration depth of light with different wavelengths into the water column.
Collapse
Affiliation(s)
- Christian Kirchhoff
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Matthias Ebert
- Institute of Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Dieter Jahn
- Institute of Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Genome Sequence of the Proteorhodopsin-Containing Bacterium Flavobacterium sp. Strain TH167, Isolated from Cyanobacterial Aggregates in a Eutrophic Lake. GENOME ANNOUNCEMENTS 2018; 6:6/14/e00217-18. [PMID: 29622615 PMCID: PMC5887021 DOI: 10.1128/genomea.00217-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Flavobacterium is the most abundant group of bacteria within the cyanobacterial aggregates in Lake Taihu, China. Here, we present the genome sequence and annotation of Flavobacterium sp. strain TH167. Genome analysis revealed the presence of a proteorhodopsin-encoding sequence, together with its retinal-producing pathway, indicating a putative photoheterotrophic lifestyle that generates energy from light.
Collapse
|
9
|
Kirchhoff C, Cypionka H. Boosted Membrane Potential as Bioenergetic Response to Anoxia in Dinoroseobacter shibae. Front Microbiol 2017; 8:695. [PMID: 28473821 PMCID: PMC5397407 DOI: 10.3389/fmicb.2017.00695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/04/2017] [Indexed: 11/29/2022] Open
Abstract
Dinoroseobacter shibae DFL 12T is a metabolically versatile member of the world-wide abundant Roseobacter clade. As an epibiont of dinoflagellates D. shibae is subjected to rigorous changes in oxygen availability. It has been shown that it loses up to 90% of its intracellular ATP when exposed to anoxic conditions. Yet, D. shibae regenerates its ATP level quickly when oxygen becomes available again. In the present study we focused on the bioenergetic aspects of the quick recovery and hypothesized that the proton-motive force decreases during anoxia and gets restored upon re-aeration. Therefore, we analyzed ΔpH and the membrane potential (ΔΨ) during the oxic-anoxic transitions. To visualize changes of ΔΨ we used fluorescence microscopy and the carbocyanine dyes DiOC2 (3; 3,3′-Diethyloxacarbocyanine Iodide) and JC-10. In control experiments the ΔΨ-decreasing effects of the chemiosmotic inhibitors CCCP (carbonyl cyanide m-chlorophenyl hydrazone), TCS (3,3′,4′,5-tetrachlorosalicylanilide) and gramicidin were tested on D. shibae and Gram-negative and -positive control bacteria (Escherichia coli and Micrococcus luteus). We found that ΔpH is not affected by short-term anoxia and does not contribute to the quick ATP regeneration in D. shibae. By contrast, ΔΨ was increased during anoxia, which was astonishing since none of the control organisms behaved that way. Our study shows physiological and bioenergetical aspects comparing to previous studies on transcriptomic responses to the transition from aerobic to nitrate respiration in D. shibae. For the lifestyle as an epibiont of a dinoflagellate, the ability to stand phases of temporary oxygen depletion is beneficial. With a boosted ΔΨ, the cells are able to give their ATP regeneration a flying start, once oxygen is available again.
Collapse
Affiliation(s)
- Christian Kirchhoff
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University of OldenburgOldenburg, Germany
| | - Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University of OldenburgOldenburg, Germany
| |
Collapse
|
10
|
Abstract
We present the first 3.315-Mbp assembled draft genome sequence of Flavobacterium succinicans strain DD5b. This bacterium is a phosphite-assimilating representative of the genus Flavobacterium isolated from guts of the zooplankton Daphnia magna.
Collapse
|
11
|
Geographic Impact on Genomic Divergence as Revealed by Comparison of Nine Citromicrobial Genomes. Appl Environ Microbiol 2016; 82:7205-7216. [PMID: 27736788 DOI: 10.1128/aem.02495-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/03/2016] [Indexed: 11/20/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAPB) are thought to be important players in oceanic carbon and energy cycling in the euphotic zone of the ocean. The genus Citromicrobium, widely found in oligotrophic oceans, is a member of marine alphaproteobacterial AAPB. Nine Citromicrobium strains isolated from the South China Sea, the Mediterranean Sea, or the tropical South Atlantic Ocean were found to harbor identical 16S rRNA sequences. The sequencing of their genomes revealed high synteny in major regions. Nine genetic islands (GIs) involved mainly in type IV secretion systems, flagellar biosynthesis, prophage, and integrative conjugative elements, were identified by a fine-scale comparative genomics analysis. These GIs played significant roles in genomic evolution and divergence. Interestingly, the coexistence of two different photosynthetic gene clusters (PGCs) was not only found in the analyzed genomes but also confirmed, for the first time, to our knowledge, in environmental samples. The prevalence of the coexistence of two different PGCs may suggest an adaptation mechanism for Citromicrobium members to survive in the oceans. Comparison of genomic characteristics (e.g., GIs, average nucleotide identity [ANI], single-nucleotide polymorphisms [SNPs], and phylogeny) revealed that strains within a marine region shared a similar evolutionary history that was distinct from that of strains isolated from other regions (South China Sea versus Mediterranean Sea). Geographic differences are partly responsible for driving the observed genomic divergences and allow microbes to evolve through local adaptation. Three Citromicrobium strains isolated from the Mediterranean Sea diverged millions of years ago from other strains and evolved into a novel group. IMPORTANCE Aerobic anoxygenic phototrophic bacteria are a widespread functional group in the upper ocean, and their abundance could be up to 15% of the total heterotrophic bacteria. To date, a great number of studies display AAPB biogeographic distribution patterns in the ocean; however, little is understood about the geographic isolation impact on the genome divergence of marine AAPB. In this study, we compare nine Citromicrobium genomes of strains that have identical 16S rRNA sequences but different ocean origins. Our results reveal that strains isolated from the same marine region share a similar evolutionary history that is distinct from that of strains isolated from other regions. These Citromicrobium strains diverged millions of years ago. In addition, the coexistence of two different PGCs is prevalent in the analyzed genomes and in environmental samples.
Collapse
|
12
|
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol Mol Biol Rev 2016; 80:929-54. [PMID: 27630250 DOI: 10.1128/mmbr.00003-16] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.
Collapse
|
13
|
Brindefalk B, Ekman M, Ininbergs K, Dupont CL, Yooseph S, Pinhassi J, Bergman B. Distribution and expression of microbial rhodopsins in the Baltic Sea and adjacent waters. Environ Microbiol 2016; 18:4442-4455. [DOI: 10.1111/1462-2920.13407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/06/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Björn Brindefalk
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| | - Martin Ekman
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| | - Karolina Ininbergs
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| | - Christopher L. Dupont
- Microbial and Environmental Genomics; J. Craig Venter Institute; San Diego CA 92037 USA
| | - Shibu Yooseph
- Informatics Group, J. Craig Venter Institute; San Diego CA 92037 USA
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems; Linnaeus University; Kalmar SE-391 82 Sweden
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences; Stockholm University, Science for Life Laboratory; Solna SE-17121 Sweden
| |
Collapse
|
14
|
Bertsova YV, Arutyunyan AM, Bogachev AV. Na+-translocating rhodopsin from Dokdonia sp. PRO95 does not contain carotenoid antenna. BIOCHEMISTRY (MOSCOW) 2016; 81:414-9. [DOI: 10.1134/s000629791604012x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Complete Genome Sequence of the Proteorhodopsin-Containing Marine Bacterium Sediminicola sp. YIK13. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01635-15. [PMID: 26823585 PMCID: PMC4732338 DOI: 10.1128/genomea.01635-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sediminicola sp. YIK13 is a marine flavobacterium, isolated from tidal flat sediment. Here, we present the first complete genome sequence of this genus, which consists of 3,569,807 bp with 39.4% GC content. This strain contains proteorhodopsin, as well as retinal biosynthesis genes, allowing it to utilize sunlight as an energy source.
Collapse
|
16
|
Kwon YM, Kim S, Jung K, Kim S. Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria. Microbiologyopen 2015; 5:212-23. [PMID: 26663527 PMCID: PMC4831467 DOI: 10.1002/mbo3.321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022] Open
Abstract
The aims of this study are the description of diversity for proteorhodopsin (PR)-containing flavobacteria in marine environments, the finding of novel photoreceptive membrane proteins, and the elucidation of the effect of light on the growth of three rhodopsin genes containing flavobacterium. We investigated novel sodium ion rhodopsin (NaR) and halorhodopsin (HR) genes from PR-containing flavobacteria that were previously isolated from diverse aquatic sites, mainly from tidal flat sediment (62.5%). In 16 PR-containing isolates, three new types of genes were found. Among these three isolates, one (Nonlabens sp. YIK11 isolated from sediment) contained both the NaR and chloride ion rhodopsin (ClR) - HR type of gene. The sequences showed that the DTE (proton pump), NDQ (sodium ion pump) and NTQ (chloride ion pump) motifs corresponding to the D85, T89, and D96 positions in bacteriorhodopsin (BR) were well conserved. Phylogenetic analysis indicated that three NaR and one ClR grouped within the same clade, as previously reported. Illumination of cell suspensions showed the change in proton pump activity, supporting that one or more rhodopsins are functional. The qRT-PCR study revealed that three rhodopsin genes, especially NaR, are highly induced when they are incubated in the presence of light or in the absence of sufficient nutrients. The expression levels of the DTE, NDQ, and NTQ motif-containing rhodopsin genes in YIK11 correlate positively with illumination, but negatively with nutrient levels. Based on those results, we concluded that light has a positive impact on the relative expression levels of the three rhodopsin genes in the flavobacterium, Nonlabens sp. YIK11, but with no apparent positive impact on growth. Consequently, light did not stimulate the growth of YIK11 as determined by cell numbers in a nutrient-limited or -enriched medium, although it contains and induces three rhodopsins.
Collapse
Affiliation(s)
- Yong Min Kwon
- Marine Biotechnology Research CenterKorea Institute of Ocean Science & Technology787 HaeanroAnsan426‐744Korea
| | - So‐Young Kim
- Department of Life Science and Institute of Biological ScienceSogang University35 Baekbeom‐RoMapo‐GuSeoul121‐742Korea
| | - Kwang‐Hwan Jung
- Department of Life Science and Institute of Biological ScienceSogang University35 Baekbeom‐RoMapo‐GuSeoul121‐742Korea
| | - Sang‐Jin Kim
- Marine Biotechnology Research CenterKorea Institute of Ocean Science & Technology787 HaeanroAnsan426‐744Korea
- Marine Biodiversity Institute of KoreaSeocheon325‐902Korea
| |
Collapse
|
17
|
Proteorhodopsin light-enhanced growth linked to vitamin-B1 acquisition in marine Flavobacteria. ISME JOURNAL 2015; 10:1102-12. [PMID: 26574687 DOI: 10.1038/ismej.2015.196] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Proteorhodopsins (PR) are light-driven proton pumps widely distributed in bacterioplankton. Although they have been thoroughly studied for more than a decade, it is still unclear how the proton motive force (pmf) generated by PR is used in most organisms. Notably, very few PR-containing bacteria show growth enhancement in the light. It has been suggested that the presence of specific functions within a genome may define the different PR-driven light responses. Thus, comparing closely related organisms that respond differently to light is an ideal setup to identify the mechanisms involved in PR light-enhanced growth. Here, we analyzed the transcriptomes of three PR-harboring Flavobacteria strains of the genus Dokdonia: Dokdonia donghaensis DSW-1(T), Dokdonia MED134 and Dokdonia PRO95, grown in identical seawater medium in light and darkness. Although only DSW-1(T) and MED134 showed light-enhanced growth, all strains expressed their PR genes at least 10 times more in the light compared with dark. According to their genomes, DSW-1(T) and MED134 are vitamin-B1 auxotrophs, and their vitamin-B1 TonB-dependent transporters (TBDT), accounted for 10-18% of all pmf-dependent transcripts. In contrast, the expression of vitamin-B1 TBDT was 10 times lower in the prototroph PRO95, whereas its vitamin-B1 synthesis genes were among the highest expressed. Our data suggest that light-enhanced growth in DSW-1(T) and MED134 derives from the use of PR-generated pmf to power the uptake of vitamin-B1, essential for central carbon metabolism, including the TCA cycle. Other pmf-generating mechanisms available in darkness are probably insufficient to power transport of enough vitamin-B1 to support maximum growth of these organisms.
Collapse
|
18
|
Hovde BT, Deodato CR, Hunsperger HM, Ryken SA, Yost W, Jha RK, Patterson J, Monnat RJ, Barlow SB, Starkenburg SR, Cattolico RA. Genome Sequence and Transcriptome Analyses of Chrysochromulina tobin: Metabolic Tools for Enhanced Algal Fitness in the Prominent Order Prymnesiales (Haptophyceae). PLoS Genet 2015; 11:e1005469. [PMID: 26397803 PMCID: PMC4580454 DOI: 10.1371/journal.pgen.1005469] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two “red” RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes. Microalgae are important contributors to global ecological balance, and process nearly half of the world’s carbon each year. Additionally, these organisms are deeply rooted in the earths’ evolutionary history. To better understand why algae are such strong survivors in aquatic environments and to better understand their contribution to global ecology, we sequenced the genome of a microalga that is abundant in both fresh and salt water environments, but poorly represented by current genomic information. We identify protein-coding genes responsible for the synthesis of potential toxins as well as those that produce antibiotics, and describe gene products that enhanced the ability of the alga to use light energy. We observed that a day-night cycle, similar to that found in natural environments, significantly impacts the expression of algal genes whose products are responsible for synthesizing fats—a rich source of nutrition for many other organisms.
Collapse
Affiliation(s)
- Blake T. Hovde
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail: (BTH); (RAC)
| | - Chloe R. Deodato
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Heather M. Hunsperger
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Scott A. Ryken
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Will Yost
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Ramesh K. Jha
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Johnathan Patterson
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Raymond J. Monnat
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- University of Washington, Department of Pathology, Seattle, Washington, United States of America
| | - Steven B. Barlow
- Electron Microscope Facility, San Diego State University, San Diego, California, United States of America
| | - Shawn R. Starkenburg
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Rose Ann Cattolico
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (BTH); (RAC)
| |
Collapse
|
19
|
Courties A, Riedel T, Rapaport A, Lebaron P, Suzuki MT. Light-driven increase in carbon yield is linked to maintenance in the proteorhodopsin-containing Photobacterium angustum S14. Front Microbiol 2015. [PMID: 26217320 PMCID: PMC4498439 DOI: 10.3389/fmicb.2015.00688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A type of photoheterotrophic bacteria contain a transmembrane light-driven proton pump called proteorhodopsins (PRs). Due to the prevalence of these organisms in the upper water column of the World's Ocean, and their potential for light-driven ATP generation, they have been suggested to significantly influence energy and matter flows in the biosphere. To date, evidence for the significance of the light-driven metabolism of PR-containing prokaryotes has been obtained by comparing growth in batch culture, under light versus dark conditions, and it appears that responses to light are linked to unfavorable conditions, which so far have not been well parameterized. We studied light responses to carbon yields of the PR-containing Photobacterium angustum S14 using continuous culture conditions and light-dark cycles. We observed significant effects of light-dark cycles compared to dark controls, as well as significant differences between samples after 12 h illumination versus 12 h darkness. However, these effects were only observed under higher cell counts and lower pH associated with higher substrate concentrations. Under these substrate levels Pirt's maintenance coefficient was higher when compared to lower substrate dark controls, and decreased under light-dark cycles. It appears that light responses by P. angustum S14 are induced by the energetic status of the cells rather than by low substrate concentrations.
Collapse
Affiliation(s)
- Alicia Courties
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique , Banyuls-sur-Mer, France
| | - Thomas Riedel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique , Banyuls-sur-Mer, France
| | - Alain Rapaport
- INRA-Supagro, UMR MISTEA , Montpellier, France ; INRA-INRIA, MODEMIC Team , Sophia Antipolis, France
| | - Philippe Lebaron
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique , Banyuls-sur-Mer, France
| | - Marcelino T Suzuki
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique , Banyuls-sur-Mer, France
| |
Collapse
|
20
|
da Silva GFZ, Goblirsch BR, Tsai AL, Spudich JL. Cation-Specific Conformations in a Dual-Function Ion-Pumping Microbial Rhodopsin. Biochemistry 2015; 54:3950-9. [PMID: 26037033 DOI: 10.1021/bi501386d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A recently discovered rhodopsin ion pump (DeNaR, also known as KR2) in the marine bacterium Dokdonia eikasta uses light to pump protons or sodium ions from the cell depending on the ionic composition of the medium. In cells suspended in a KCl solution, DeNaR functions as a light-driven proton pump, whereas in a NaCl solution, DeNaR conducts light-driven sodium ion pumping, a novel activity within the rhodopsin family. These two distinct functions raise the questions of whether the conformations of the protein differ in the presence of K(+) or Na(+) and whether the helical movements that result in the canonical E → C conformational change in other microbial rhodopsins are conserved in DeNaR. Visible absorption maxima of DeNaR in its unphotolyzed (dark) state show an 8 nm difference between Na(+) and K(+) in decyl maltopyranoside micelles, indicating an influence of the cations on the retinylidene photoactive site. In addition, electronic paramagnetic resonance (EPR) spectra of the dark states reveal repositioning of helices F and G when K(+) is replaced with Na(+). Furthermore, the conformational changes assessed by EPR spin-spin dipolar coupling show that the light-induced transmembrane helix movements are very similar to those found in bacteriorhodopsin but are altered by the presence of Na(+), resulting in a new feature, the clockwise rotation of helix F. The results establish the first observation of a cation switch controlling the conformations of a microbial rhodopsin and indicate specific interactions of Na(+) with the half-channels of DeNaR to open an appropriate path for ion translocation.
Collapse
Affiliation(s)
- Giordano F Z da Silva
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| | - Brandon R Goblirsch
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| | - Ah-Lim Tsai
- ‡Department of Internal Medicine, Division of Hematology, University of Texas Medical School, Houston, Texas 77030, United States
| | - John L Spudich
- †Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, United States
| |
Collapse
|
21
|
Characterization of an Unconventional Rhodopsin from the Freshwater Actinobacterium Rhodoluna lacicola. J Bacteriol 2015; 197:2704-12. [PMID: 26055118 DOI: 10.1128/jb.00386-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rhodopsin-encoding microorganisms are common in many environments. However, knowing that rhodopsin genes are present provides little insight into how the host cells utilize light. The genome of the freshwater actinobacterium Rhodoluna lacicola encodes a rhodopsin of the uncharacterized actinorhodopsin family. We hypothesized that actinorhodopsin was a light-activated proton pump and confirmed this by heterologously expressing R. lacicola actinorhodopsin in retinal-producing Escherichia coli. However, cultures of R. lacicola did not pump protons, even though actinorhodopsin mRNA and protein were both detected. Proton pumping in R. lacicola was induced by providing exogenous retinal, suggesting that the cells lacked the retinal cofactor. We used high-performance liquid chromatography (HPLC) and oxidation of accessory pigments to confirm that R. lacicola does not synthesize retinal. These results suggest that in some organisms, the actinorhodopsin gene is constitutively expressed, but rhodopsin-based light capture may require cofactors obtained from the environment. IMPORTANCE Up to 70% of microbial genomes in some environments are predicted to encode rhodopsins. Because most microbial rhodopsins are light-activated proton pumps, the prevalence of this gene suggests that in some environments, most microorganisms respond to or utilize light energy. Actinorhodopsins were discovered in an analysis of freshwater metagenomic data and subsequently identified in freshwater actinobacterial cultures. We hypothesized that actinorhodopsin from the freshwater actinobacterium Rhodoluna lacicola was a light-activated proton pump and confirmed this by expressing actinorhodopsin in retinal-producing Escherichia coli. Proton pumping in R. lacicola was induced only after both light and retinal were provided, suggesting that the cells lacked the retinal cofactor. These results indicate that photoheterotrophy in this organism and others may require cofactors obtained from the environment.
Collapse
|
22
|
Tang K, Lin D, Liu K, Jiao N. Draft genome sequence of Parvularcula oceani JLT2013(T), a rhodopsin-containing bacterium isolated from deep-sea water of the Southeastern Pacific. Mar Genomics 2015; 24 Pt 3:211-3. [PMID: 26031488 DOI: 10.1016/j.margen.2015.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 11/16/2022]
Abstract
Parvularcula oceani JLT2013(T) is a novel member of the genus Parvularcula within the order 'Parvularculales'. Here, we present the draft genome sequence of a deep-sea bacterium P. oceani JLT2013(T). The genome comprises 3,354,504bp with a G+C content of 67.44% and includes 3141 protein-coding genes and 42 tRNA genes. The genome contains three genes encoding rhodopsin protein.
Collapse
Affiliation(s)
- Kai Tang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China.
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | - Keshao Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
23
|
Bertsova YV, Bogachev AV, Skulachev VP. Proteorhodopsin from Dokdonia sp. PRO95 is a light-driven Na+-pump. BIOCHEMISTRY (MOSCOW) 2015; 80:449-54. [DOI: 10.1134/s0006297915040082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Soora M, Tomasch J, Wang H, Michael V, Petersen J, Engelen B, Wagner-Döbler I, Cypionka H. Oxidative stress and starvation in Dinoroseobacter shibae: the role of extrachromosomal elements. Front Microbiol 2015; 6:233. [PMID: 25859246 PMCID: PMC4373377 DOI: 10.3389/fmicb.2015.00233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria (AAP) are abundant in the photic zone of the marine environment. Dinoroseobacter shibae, a representative of the Roseobacter group, converts light into additional energy that enhances its survival especially under starvation. However, light exposure results in the production of cytotoxic reactive oxygen species in AAPs. Here we investigated the response of D. shibae to starvation and oxidative stress, focusing on the role of extrachromosomal elements (ECRs). D. shibae possessing five ECRs (three plasmids and two chromids) was starved for 4 weeks either in the dark or under light/dark cycles and the survival was monitored. Transcriptomics showed that on the chromosome genes with a role in oxidative stress response and photosynthesis were differentially expressed during the light period. Most extrachromosomal genes in contrast showed a general loss of transcriptional activity, especially in dark-starved cells. The observed decrease of gene expression was not due to plasmid loss, as all five ECRs were maintained in the cells. Interestingly, the genes on the 72-kb chromid were the least downregulated, and one region with genes of the oxygen stress response and a light-dependent protochlorophyllide reductase of cyanobacterial origin was strongly activated under the light/dark cycle. A Δ72-kb curing mutant lost the ability to survive under starvation in a light/dark cycle demonstrating the essential role of this chromid for adaptation to starvation and oxidative stress. Our data moreover suggest that the other four ECRs of D. shibae have no vital function under the investigated conditions and therefore were transcriptionally silenced.
Collapse
Affiliation(s)
- Maya Soora
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg Oldenburg, Germany
| | - Jürgen Tomasch
- Group Microbial Communication, Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Hui Wang
- Group Microbial Communication, Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Victoria Michael
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Jörn Petersen
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Bert Engelen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg Oldenburg, Germany
| | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz-Centre for Infection Research Braunschweig, Germany
| | - Heribert Cypionka
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg Oldenburg, Germany
| |
Collapse
|
25
|
Nguyen D, Maranger R, Balagué V, Coll-Lladó M, Lovejoy C, Pedrós-Alió C. Winter diversity and expression of proteorhodopsin genes in a polar ocean. ISME JOURNAL 2015; 9:1835-45. [PMID: 25700336 DOI: 10.1038/ismej.2015.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 12/09/2014] [Accepted: 12/12/2014] [Indexed: 12/25/2022]
Abstract
Mixotrophy is a valuable functional trait used by microbes when environmental conditions vary broadly or resources are limited. In the sunlit waters of the ocean, photoheterotrophy, a form of mixotrophy, is often mediated by proteorhodopsin (PR), a seven helices transmembrane protein binding the retinal chromophore. Altogether, they allow bacteria to capture photic energy for sensory and proton gradient formation cell functions. The seasonal occurrence and diversity of the gene coding for PR in cold oligotrophic polar oceans is not known and PR expression has not yet been reported. Here we show that PR is widely distributed among bacterial taxa, and that PR expression decreased markedly during the winter months in the Arctic Ocean. Gammaproteobacteria-like PR sequences were always dominant. However, within the second most common affiliation, there was a transition from Flavobacteria-like PR in early winter to Alphaproteobacteria-like PR in late winter. The phylogenetic shifts followed carbon dynamics, where patterns in expression were consistent with community succession, as identified by DNA community fingerprinting. Although genes for PR were always present, the trend in decreasing transcripts from January to February suggested reduced functional utility of PR during winter. Under winter darkness, sustained expression suggests that PR may continue to be useful for non-ATP forming functions, such as environmental sensing or small solute transport. The persistence of PR expression in winter among some bacterial groups may offer a competitive advantage, where its multifunctionality enhances microbial survival under harsh polar conditions.
Collapse
Affiliation(s)
- Dan Nguyen
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Roxane Maranger
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Vanessa Balagué
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Montserrat Coll-Lladó
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain
| | - Connie Lovejoy
- Département de biologie, Québec-Océan, Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Pavillon Charles-Eugène-Marchand, Québec, Québec, Canada
| | - Carlos Pedrós-Alió
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain
| |
Collapse
|
26
|
Gomariz M, Martínez-García M, Santos F, Constantino M, Meseguer I, Antón J. Retinal-binding proteins mirror prokaryotic dynamics in multipond solar salterns. Environ Microbiol 2015; 17:514-26. [DOI: 10.1111/1462-2920.12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/30/2014] [Accepted: 11/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- María Gomariz
- Department of Materials, Optics and Electronics; University Miguel Hernández of Elche; Alicante 03202 Spain
- Department of Physiology, Genetics, and Microbiology; University of Alicante; Alicante 03080 Spain
| | - Manuel Martínez-García
- Department of Physiology, Genetics, and Microbiology; University of Alicante; Alicante 03080 Spain
| | - Fernando Santos
- Department of Physiology, Genetics, and Microbiology; University of Alicante; Alicante 03080 Spain
| | - Marco Constantino
- Department of Physiology, Genetics, and Microbiology; University of Alicante; Alicante 03080 Spain
| | - Inmaculada Meseguer
- Department of Materials, Optics and Electronics; University Miguel Hernández of Elche; Alicante 03202 Spain
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology; University of Alicante; Alicante 03080 Spain
| |
Collapse
|
27
|
Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME JOURNAL 2014; 8:2503-16. [PMID: 25093637 DOI: 10.1038/ismej.2014.135] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/13/2014] [Accepted: 06/22/2014] [Indexed: 01/06/2023]
Abstract
Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.
Collapse
|
28
|
Complete Genome Sequence of Winogradskyella sp. Strain PG-2, a Proteorhodopsin-Containing Marine Flavobacterium. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00490-14. [PMID: 24874677 PMCID: PMC4038882 DOI: 10.1128/genomea.00490-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Winogradskyella sp. strain PG-2 is a marine flavobacterium isolated from surface seawater. This organism contains proteorhodopsin, which can convert light energy into available forms of biochemical energy. Here, we present its complete genome sequence and annotation, which provide further insights into the life strategy of proteorhodopsin-mediated phototrophy in the ocean.
Collapse
|
29
|
|
30
|
Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc Natl Acad Sci U S A 2014; 111:6732-7. [PMID: 24706784 DOI: 10.1073/pnas.1403051111] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light-activated, ion-pumping rhodopsins are broadly distributed among many different bacteria and archaea inhabiting the photic zone of aquatic environments. Bacterial proton- or sodium-translocating rhodopsins can convert light energy into a chemiosmotic force that can be converted into cellular biochemical energy, and thus represent a widespread alternative form of photoheterotrophy. Here we report that the genome of the marine flavobacterium Nonlabens marinus S1-08(T) encodes three different types of rhodopsins: Nonlabens marinus rhodopsin 1 (NM-R1), Nonlabens marinus rhodopsin 2 (NM-R2), and Nonlabens marinus rhodopsin 3 (NM-R3). Our functional analysis demonstrated that NM-R1 and NM-R2 are light-driven outward-translocating H(+) and Na(+) pumps, respectively. Functional analyses further revealed that the light-activated NM-R3 rhodopsin pumps Cl(-) ions into the cell, representing the first chloride-pumping rhodopsin uncovered in a marine bacterium. Phylogenetic analysis revealed that NM-R3 belongs to a distinct phylogenetic lineage quite distant from archaeal inward Cl(-)-pumping rhodopsins like halorhodopsin, suggesting that different types of chloride-pumping rhodopsins have evolved independently within marine bacterial lineages. Taken together, our data suggest that similar to haloarchaea, a considerable variety of rhodopsin types with different ion specificities have evolved in marine bacteria, with individual marine strains containing as many as three functionally different rhodopsins.
Collapse
|
31
|
Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria. Sci Rep 2014; 3:2471. [PMID: 23959135 PMCID: PMC3747508 DOI: 10.1038/srep02471] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/02/2013] [Indexed: 11/25/2022] Open
Abstract
We describe a deep-branching lineage of marine Actinobacteria with very low GC content (33%) and the smallest free living cells described yet (cell volume ca. 0.013 μm3), even smaller than the cosmopolitan marine photoheterotroph, ‘Candidatus Pelagibacter ubique'. These microbes are highly related to 16S rRNA sequences retrieved by PCR from the Pacific and Atlantic oceans 20 years ago. Metagenomic fosmids allowed a virtual genome reconstruction that also indicated very small genomes below 1 Mb. A new kind of rhodopsin was detected indicating a photoheterotrophic lifestyle. They are estimated to be ~4% of the total numbers of cells found at the site studied (the Mediterranean deep chlorophyll maximum) and similar numbers were estimated in all tropical and temperate photic zone metagenomes available. Their geographic distribution mirrors that of picocyanobacteria and there appears to be an association between these microbial groups. A new sub-class, ‘Candidatus Actinomarinidae' is proposed to designate these microbes.
Collapse
|
32
|
Draft Genome Sequence of the Gammaproteobacterial Strain MOLA455, a Representative of a Ubiquitous Proteorhodopsin-Producing Group in the Ocean. GENOME ANNOUNCEMENTS 2014; 2:2/1/e01203-13. [PMID: 24482511 PMCID: PMC3907726 DOI: 10.1128/genomea.01203-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Strain MOLA455 is a marine gammaproteobacterium isolated from the bay of Banyuls-sur-Mer, France. Here, we present its genome sequence and annotation. Genome analysis revealed the presence of genes associated with a possibly photoheterotrophic lifestyle that uses a proteorhodopsin protein.
Collapse
|
33
|
Mann AJ, Hahnke RL, Huang S, Werner J, Xing P, Barbeyron T, Huettel B, Stüber K, Reinhardt R, Harder J, Glöckner FO, Amann RI, Teeling H. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol 2013; 79:6813-22. [PMID: 23995932 PMCID: PMC3811500 DOI: 10.1128/aem.01937-13] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/26/2013] [Indexed: 11/20/2022] Open
Abstract
In recent years, representatives of the Bacteroidetes have been increasingly recognized as specialists for the degradation of macromolecules. Formosa constitutes a Bacteroidetes genus within the class Flavobacteria, and the members of this genus have been found in marine habitats with high levels of organic matter, such as in association with algae, invertebrates, and fecal pellets. Here we report on the generation and analysis of the genome of the type strain of Formosa agariphila (KMM 3901(T)), an isolate from the green alga Acrosiphonia sonderi. F. agariphila is a facultative anaerobe with the capacity for mixed acid fermentation and denitrification. Its genome harbors 129 proteases and 88 glycoside hydrolases, indicating a pronounced specialization for the degradation of proteins, polysaccharides, and glycoproteins. Sixty-five of the glycoside hydrolases are organized in at least 13 distinct polysaccharide utilization loci, where they are clustered with TonB-dependent receptors, SusD-like proteins, sensors/transcription factors, transporters, and often sulfatases. These loci play a pivotal role in bacteroidetal polysaccharide biodegradation and in the case of F. agariphila revealed the capacity to degrade a wide range of algal polysaccharides from green, red, and brown algae and thus a strong specialization of toward an alga-associated lifestyle. This was corroborated by growth experiments, which confirmed usage particularly of those monosaccharides that constitute the building blocks of abundant algal polysaccharides, as well as distinct algal polysaccharides, such as laminarins, xylans, and κ-carrageenans.
Collapse
Affiliation(s)
- Alexander J. Mann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Jacobs University Bremen gGmbH, Bremen, Germany
| | | | - Sixing Huang
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Johannes Werner
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Jacobs University Bremen gGmbH, Bremen, Germany
| | - Peng Xing
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Tristan Barbeyron
- National Center of Scientific Research/Pierre and Marie Curie University Paris 6, UMR 7139 Marine Plants and Biomolecules, Roscoff, Bretagne, France
| | | | - Kurt Stüber
- Max Planck Genome Centre Cologne, Cologne, Germany
| | | | - Jens Harder
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Frank Oliver Glöckner
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Jacobs University Bremen gGmbH, Bremen, Germany
| | - Rudolf I. Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Hanno Teeling
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
34
|
Kolton M, Sela N, Elad Y, Cytryn E. Comparative genomic analysis indicates that niche adaptation of terrestrial Flavobacteria is strongly linked to plant glycan metabolism. PLoS One 2013; 8:e76704. [PMID: 24086761 PMCID: PMC3784431 DOI: 10.1371/journal.pone.0076704] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022] Open
Abstract
Flavobacteria are important members of aquatic and terrestrial bacterial communities, displaying extreme variations in lifestyle, geographical distribution and genome size. They are ubiquitous in soil, but are often strongly enriched in the rhizosphere and phyllosphere of plants. In this study, we compared the genome of a root-associated Flavobacterium that we recently isolated, physiologically characterized and sequenced, to 14 additional Flavobacterium genomes, in order to pinpoint characteristics associated with its high abundance in the rhizosphere. Interestingly, flavobacterial genomes vary in size by approximately two-fold, with terrestrial isolates having predominantly larger genomes than those from aquatic environments. Comparative functional gene analysis revealed that terrestrial and aquatic Flavobacteria generally segregated into two distinct clades. Members of the aquatic clade had a higher ratio of peptide and protein utilization genes, whereas members of the terrestrial clade were characterized by a significantly higher abundance and diversity of genes involved in metabolism of carbohydrates such as xylose, arabinose and pectin. Interestingly, genes encoding glycoside hydrolase (GH) families GH78 and GH106, responsible for rhamnogalacturonan utilization (exclusively associated with terrestrial plant hemicelluloses), were only present in terrestrial clade genomes, suggesting adaptation of the terrestrial strains to plant-related carbohydrate metabolism. The Peptidase/GH ratio of aquatic clade Flavobacteria was significantly higher than that of terrestrial strains (1.7±0.7 and 9.7±4.7, respectively), supporting the concept that this relation can be used to infer Flavobacterium lifestyles. Collectively, our research suggests that terrestrial Flavobacteria are highly adapted to plant carbohydrate metabolism, which appears to be a key to their profusion in plant environments.
Collapse
Affiliation(s)
- Max Kolton
- Institute of Soil, Water and Environmental Sciences, the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
35
|
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:614-25. [PMID: 24060527 DOI: 10.1016/j.bbabio.2013.09.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Johann Wolfgang Goethe University, Institute for Physical and Theoretical Chemistry, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Johann Wolfgang Goethe University, Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Brown LS. Eubacterial rhodopsins - unique photosensors and diverse ion pumps. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:553-61. [PMID: 23748216 DOI: 10.1016/j.bbabio.2013.05.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
Since the discovery of proteorhodopsins, the ubiquitous marine light-driven proton pumps of eubacteria, a large number of other eubacterial rhodopsins with diverse structures and functions have been characterized. Here, we review the body of knowledge accumulated on the four major groups of eubacterial rhodopsins, with the focus on their biophysical characterization. We discuss advances and controversies on the unique eubacterial sensory rhodopsins (as represented by Anabaena sensory rhodopsin), proton-pumping proteorhodopsins and xanthorhodopsins, as well as novel non-proton ion pumps. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|