1
|
Hu Y, Han Z, Shen W, Jia Y, He L, Si Z, Wang Q, Fang L, Du X, Zhang T. Identification of candidate genes in cotton associated with specific seed traits and their initial functional characterization in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:800-811. [PMID: 36121755 DOI: 10.1111/tpj.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Oilseed crops are used to produce vegetable oil to satisfy the requirements of humans and livestock. Cotton (Gossypium spp.) is of great economic value because it is used as both an important textile commodity and a nutrient-rich resource. Cottonseed oil is rich in polyunsaturated fatty acids and does not contain trans fatty acids; hence, it is considered a healthy vegetable oil. However, research on the genetic basis for cottonseed protein content, oil production, and fatty acid composition is lacking. Here, we investigated the protein content, oil content, and fatty acid composition in terms of oleic acid (C18:1) and linoleic acid (C18:2) in mature cottonseeds from 318 Gossypium hirsutum accessions. Moreover, we examined the dynamic change of protein content and lipid composition including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3) in developing seeds from 258 accessions at 10 and 20 days post-anthesis. Then, we conducted a genome-wide association study and identified 152 trait-associated loci and 64 candidate genes responsible for protein and oil-related contents in mature cottonseeds and ovules. Finally, six candidate genes were experimentally validated to be involved in the regulation of fatty acid biosynthesis through heterologous expression in Arabidopsis. These results comprise a solid foundation for expanding our understanding of lipid biosynthesis in cotton, which will help breeders manipulate protein and oil contents to make it a fully developed 'fiber, food, and oil crop'.
Collapse
Affiliation(s)
- Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Weijuan Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yinhua Jia
- Institute of cotton Research, Chinese Academy of Agricultural Sciences (CAAS), State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Lu He
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qiong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiongming Du
- Institute of cotton Research, Chinese Academy of Agricultural Sciences (CAAS), State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Wu M, Pei W, Wedegaertner T, Zhang J, Yu J. Genetics, Breeding and Genetic Engineering to Improve Cottonseed Oil and Protein: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:864850. [PMID: 35360295 PMCID: PMC8961181 DOI: 10.3389/fpls.2022.864850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 05/17/2023]
Abstract
Upland cotton (Gossypium hirsutum) is the world's leading fiber crop and one of the most important oilseed crops. Genetic improvement of cotton has primarily focused on fiber yield and quality. However, there is an increased interest and demand for enhanced cottonseed traits, including protein, oil, fatty acids, and amino acids for broad food, feed and biofuel applications. As a byproduct of cotton production, cottonseed is an important source of edible oil in many countries and could also be a vital source of protein for human consumption. The focus of cotton breeding on high yield and better fiber quality has substantially reduced the natural genetic variation available for effective cottonseed quality improvement within Upland cotton. However, genetic variation in cottonseed oil and protein content exists within the genus of Gossypium and cultivated cotton. A plethora of genes and quantitative trait loci (QTLs) (associated with cottonseed oil, fatty acids, protein and amino acids) have been identified, providing important information for genetic improvement of cottonseed quality. Genetic engineering in cotton through RNA interference and insertions of additional genes of other genetic sources, in addition to the more recent development of genome editing technology has achieved considerable progress in altering the relative levels of protein, oil, fatty acid profile, and amino acids composition in cottonseed for enhanced nutritional value and expanded industrial applications. The objective of this review is to summarize and discuss the cottonseed oil biosynthetic pathway and major genes involved, genetic basis of cottonseed oil and protein content, genetic engineering, genome editing through CRISPR/Cas9, and QTLs associated with quantity and quality enhancement of cottonseed oil and protein.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | | | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Institute, Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Protein profiling of water and alkali soluble cottonseed protein isolates. Sci Rep 2018; 8:9306. [PMID: 29915326 PMCID: PMC6006339 DOI: 10.1038/s41598-018-27671-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/01/2018] [Indexed: 01/17/2023] Open
Abstract
Currently, there is only limited knowledge on the protein types and structures of the cottonseed proteins. In this work, water-soluble cottonseed proteins (CSPw) and alkali-soluble cottonseed proteins (CSPa) were sequentially extracted from defatted cottonseed meal. Proteins of the two fractions were separated by 4–20% gradient polyacrylamide gel electrophoresis (SDS-PAGE); There were 7 and 12 polypeptide bands on SDS-PAGE of CSPa and CSPw, respectively. These individual bands were then excised from the gel and subjected to mass spectrometric analysis. There were total 70 polypeptides identified from the proteins of the two cottonseed preparations, with molecular weights ranging from 10 to 381 kDa. While many proteins or their fragments were found in multiple bands, 18 proteins appeared only in one SDS-PAGE band (6 in CSPa, 12 in CSPw). Putative functions of these proteins include storage, transcription/translation, synthesis, energy metabolism, antimicrobial activity, and embryogenesis. Among the most abundant are legumin A (58 kDa), legumin B (59 kDa), vicilin C72 (70 kDa), vicilin GC72-A (71 kDa), and vicilin-like antimicrobial peptides (62 kDa). This work enriched the fundamental knowledge on cottonseed protein composition, and would help in better understanding of the functional and physicochemical properties of cottonseed protein and for enhancing its biotechnological utilization.
Collapse
|
4
|
Abdullaev AA, Salakhutdinov IB, Egamberdiev SS, Khurshut EE, Rizaeva SM, Ulloa M, Abdurakhmonov IY. Genetic diversity, linkage disequilibrium, and association mapping analyses of Gossypium barbadense L. germplasm. PLoS One 2017; 12:e0188125. [PMID: 29136656 PMCID: PMC5685624 DOI: 10.1371/journal.pone.0188125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023] Open
Abstract
Limited polymorphism and narrow genetic base, due to genetic bottleneck through historic domestication, highlight a need for comprehensive characterization and utilization of existing genetic diversity in cotton germplasm collections. In this study, 288 worldwide Gossypium barbadense L. cotton germplasm accessions were evaluated in two diverse environments (Uzbekistan and USA). These accessions were assessed for genetic diversity, population structure, linkage disequilibrium (LD), and LD-based association mapping (AM) of fiber quality traits using 108 genome-wide simple sequence repeat (SSR) markers. Analyses revealed structured population characteristics and a high level of intra-variability (67.2%) and moderate interpopulation differentiation (32.8%). Eight percent and 4.3% of markers revealed LD in the genome of the G. barbadense at critical values of r2 ≥ 0.1 and r2 ≥ 0.2, respectively. The LD decay was on average 24.8 cM at the threshold of r2 ≥ 0.05. LD retained on average distance of 3.36 cM at the threshold of r2 ≥ 0.1. Based on the phenotypic evaluations in the two diverse environments, 100 marker loci revealed a strong association with major fiber quality traits using mixed linear model (MLM) based association mapping approach. Fourteen marker loci were found to be consistent with previously identified quantitative trait loci (QTLs), and 86 were found to be new unreported marker loci. Our results provide insights into the breeding history and genetic relationship of G. barbadense germplasm and should be helpful for the improvement of cotton cultivars using molecular breeding and omics-based technologies.
Collapse
Affiliation(s)
- Alisher A. Abdullaev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Ilkhom B. Salakhutdinov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Sharof S. Egamberdiev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Ernest E. Khurshut
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Sofiya M. Rizaeva
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Mauricio Ulloa
- Cropping Systems Research Laboratory, United States Department of Agriculture - Agricultural Research Services, Lubbock, Texas, United States of America
| | | |
Collapse
|
5
|
Liu H, Quampah A, Chen J, Li J, Huang Z, He Q, Shi C, Zhu S. QTL mapping with different genetic systems for nine non-essential amino acids of cottonseeds. Mol Genet Genomics 2017; 292:671-684. [PMID: 28315961 PMCID: PMC5429363 DOI: 10.1007/s00438-017-1303-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 02/15/2017] [Indexed: 11/29/2022]
Abstract
Amino acid is an important nutrient resource for both human and animals. Using a set of 188 RILs population derived from an elite hybrid cross of upland cotton cultivars ‘HS46’ × ‘MARCABUCAG8US-1-88’ and their immortal F2 (IF2) with reciprocal backcrosses BC1F1 and BC2F1 (BC) populations in two environments, the QTLs located on the embryo genome and maternal plant genome for nine amino acids of cottonseed were studied across environments. The QTL Network-CL-2.0-seed software was used to analyze the QTLs and their genetic effects for nine amino acids. A total of 56 QTLs for nine amino acids were detected in both populations, with many having over 5% of phenotypic variation. Ten of the total QTLs could be simultaneously found in the IF2 and BC populations. For most QTLs, the genetic effects from embryo genome were more important than those from maternal plant genome for the performance of nine amino acids. Significant embryo additive main effects and maternal additive main effect with their environment interaction effects from many QTLs were also found in present experiment. Some QTLs with larger phenotypic variation were important for improving the amino-acid contents in cottonseeds.
Collapse
Affiliation(s)
- Haiying Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China.,School of Agriculture, Yunnan University, Kunming, 650000, People's Republic of China
| | - Alfred Quampah
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jinhong Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jinrong Li
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhuangrong Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiuling He
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Chunhai Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Shuijin Zhu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
6
|
Jia B, Sun M, Sun X, Li R, Wang Z, Wu J, Wei Z, DuanMu H, Xiao J, Zhu Y. Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content. PHYSIOLOGIA PLANTARUM 2016; 156:176-189. [PMID: 26010993 DOI: 10.1111/ppl.12350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/30/2015] [Indexed: 05/03/2023]
Abstract
Tau-class glutathione S-transferases (GSTUs) are ubiquitous proteins encoded by a large gene family in plants, which play important roles in combating different environmental stresses. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three GSTUs (GsGSTU13, GsGSTU14 and GsGSTU19) as potential salt-alkaline stress-responsive genes. Two of them, GsGSTU14 and GsGSTU19, have been shown to positively regulate plant salt-alkaline tolerance. In this study, we further demonstrated the positive function of GsGSTU13 in plant salt-alkaline stress responses by overexpressing it in Medicago sativa. Stress tolerance tests suggested that GsGSTU13 transgenic lines showed better growth and physiological indicators than wild alfalfa (cv. Zhaodong) under alkaline stress. Considering the shortage of methionine in alfalfa, we then co-transformed GsGSTU13 into two main alfalfa cultivars in Heilongjiang Province (cv. Zhaodong and cv. Nongjing No. 1) together with SCMRP, a synthesized gene that could improve the methionine content. We found that GsGSTU13/SCMRP transgenic alfalfa displayed not only higher methionine content but also higher tolerance to alkaline and salt stresses, respectively. Taken together, our results demonstrate that GsGSTU13 acts as a positive regulator in plant responses to salt and alkaline stresses, and can be used as a good candidate for generation of salt-alkaline tolerant crops.
Collapse
Affiliation(s)
- Bowei Jia
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Mingzhe Sun
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiaoli Sun
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163319, P.R. China
| | - Rongtian Li
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, P.R. China
| | - Zhenyu Wang
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jing Wu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zhengwei Wei
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
7
|
Wen J, Xu JF, Long Y, Wu JG, Xu HM, Meng JL, Shi CH. QTL mapping based on the embryo and maternal genetic systems for non-essential amino acids in rapeseed (Brassica napus L.) meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:465-473. [PMID: 25645377 DOI: 10.1002/jsfa.7112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/25/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Non-essential amino acids are a good source of nitrogen and also very important contributors to the metabolic process. Analysis of quantitative trait locus (QTL) simultaneously located on the amphidiploid embryo and maternal plant nuclear genomes for non-essential amino acid contents in rapeseed meal across different environments was conducive to further clarify the genetic mechanism of seed quality traits. RESULTS Twenty-eight QTLs associated with arginine (five QTLs), histidine (four QTLs), glutamic acid (three QTLs), glycine (three QTLs), proline (three QTLs), alanine (four QTLs) and aspartic acid (six QTLs) contents were identified in present study. All of these QTLs had significant additive main effects from embryo and maternal plant nuclear genomes with eight of them showing significant embryo dominance main effects and 12 showing notable QTL × environment interaction effects. Among them, 12 QTLs were major QTLs which could explain 13.27-35.71% of the phenotypic variation. Specially, five QTL clusters associated with several QTLs related to multiple traits were distributed on chromosomes A1, A4, A5, A7 and C2. CONCLUSION Non-essential amino acids in rapeseed meal could be simultaneously controlled by the genetic effects from the QTLs which were located on the chromosomes both in the embryo and maternal plant genetic systems.
Collapse
Affiliation(s)
- Juan Wen
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jian-Feng Xu
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yan Long
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jian-Guo Wu
- College of Agriculture and Food Science, Zhejiang A & F University, Linan, Zhejiang, 311300, China
| | - Hai-Ming Xu
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin-Ling Meng
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chun-Hai Shi
- Department of Agronomy, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
8
|
Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genomics 2015. [PMID: 25758743 DOI: 10.1007/s00438‐015‐1021‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
KEY MESSAGE A specialized database currently containing more than 2200 QTL is established, which allows graphic presentation, visualization and submission of QTL. In cotton quantitative trait loci (QTL), studies are focused on intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. These two populations are commercially important for the textile industry and are evaluated for fiber quality, yield, seed quality, resistance, physiological, and morphological trait QTL. With meta-analysis data based on the vast amount of QTL studies in cotton it will be beneficial to organize the data into a functional database for the cotton community. Here we provide a tool for cotton researchers to visualize previously identified QTL and submit their own QTL to the Cotton QTLdb database. The database provides the user with the option of selecting various QTL trait types from either the G. hirsutum or G. hirsutum × G. barbadense populations. Based on the user's QTL trait selection, graphical representations of chromosomes of the population selected are displayed in publication ready images. The database also provides users with trait information on QTL, LOD scores, and explained phenotypic variances for all QTL selected. The CottonQTLdb database provides cotton geneticist and breeders with statistical data on cotton QTL previously identified and provides a visualization tool to view QTL positions on chromosomes. Currently the database (Release 1) contains 2274 QTLs, and succeeding QTL studies will be updated regularly by the curators and members of the cotton community that contribute their data to keep the database current. The database is accessible from http://www.cottonqtldb.org.
Collapse
|
9
|
Said JI, Knapka JA, Song M, Zhang J. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Genet Genomics 2015; 290:1615-25. [PMID: 25758743 DOI: 10.1007/s00438-015-1021-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 11/29/2022]
Abstract
KEY MESSAGE A specialized database currently containing more than 2200 QTL is established, which allows graphic presentation, visualization and submission of QTL. In cotton quantitative trait loci (QTL), studies are focused on intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. These two populations are commercially important for the textile industry and are evaluated for fiber quality, yield, seed quality, resistance, physiological, and morphological trait QTL. With meta-analysis data based on the vast amount of QTL studies in cotton it will be beneficial to organize the data into a functional database for the cotton community. Here we provide a tool for cotton researchers to visualize previously identified QTL and submit their own QTL to the Cotton QTLdb database. The database provides the user with the option of selecting various QTL trait types from either the G. hirsutum or G. hirsutum × G. barbadense populations. Based on the user's QTL trait selection, graphical representations of chromosomes of the population selected are displayed in publication ready images. The database also provides users with trait information on QTL, LOD scores, and explained phenotypic variances for all QTL selected. The CottonQTLdb database provides cotton geneticist and breeders with statistical data on cotton QTL previously identified and provides a visualization tool to view QTL positions on chromosomes. Currently the database (Release 1) contains 2274 QTLs, and succeeding QTL studies will be updated regularly by the curators and members of the cotton community that contribute their data to keep the database current. The database is accessible from http://www.cottonqtldb.org.
Collapse
Affiliation(s)
- Joseph I Said
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA,
| | | | | | | |
Collapse
|
10
|
Xu J, Long Y, Wu J, Xu H, Wen J, Meng J, Shi C. QTL mapping and analysis of the embryo and maternal plant for three limiting amino acids in rapeseed meal. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-014-2316-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Said JI, Song M, Wang H, Lin Z, Zhang X, Fang DD, Zhang J. A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics 2014; 290:1003-25. [PMID: 25501533 DOI: 10.1007/s00438-014-0963-9] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/18/2014] [Indexed: 12/16/2022]
Abstract
KEY MESSAGE Based on 1075 and 1059 QTL from intraspecific Upland and interspecific Upland × Pima populations, respectively, the identification of QTL clusters and hotspots provides a useful resource for cotton breeding. Mapping of quantitative trait loci (QTL) is a pre-requisite of marker-assisted selection for crop yield and quality. Recent meta-analysis of QTL in tetraploid cotton (Gossypium spp.) has identified regions of the genome with high concentrations of QTL for various traits called clusters and specific trait QTL called hotspots or meta-QTL (mQTL). However, the meta-analysis included all population types of Gossypium mixing both intraspecific G. hirsutum and interspecific G. hirsutum × G. barbadense populations. This study used 1,075 QTL from 58 publications on intraspecific G. hirsutum and 1,059 QTL from 30 publications on G. hirsutum × G. barbadense populations to perform a comprehensive comparative analysis of QTL clusters and hotspots between the two populations for yield, fiber and seed quality, and biotic and abiotic stress tolerance. QTL hotspots were further analyzed for mQTL within the hotspots using Biomercator V3 software. The ratio of QTL between the two population types was proportional yet differences in hotspot type and placement were observed between the two population types. However, on some chromosomes QTL clusters and hotspots were similar between the two populations. This shows that there are some universal QTL regions in the cultivated tetraploid cotton which remain consistent and some regions which differ between population types. This study for the first time elucidates the similarities and differences in QTL clusters and hotspots between intraspecific and interspecific populations, providing an important resource to cotton breeding programs in marker-assisted selection .
Collapse
Affiliation(s)
- Joseph I Said
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, USA,
| | | | | | | | | | | | | |
Collapse
|
12
|
Sun M, Sun X, Zhao Y, Zhao C, DuanMu H, Yu Y, Ji W, Zhu Y. Ectopic expression of GsPPCK3 and SCMRP in Medicago sativa enhances plant alkaline stress tolerance and methionine content. PLoS One 2014; 9:e89578. [PMID: 24586886 PMCID: PMC3934933 DOI: 10.1371/journal.pone.0089578] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/21/2014] [Indexed: 11/25/2022] Open
Abstract
So far, it has been suggested that phosphoenolpyruvate carboxylases (PEPCs) and PEPC kinases (PPCKs) fulfill several important non-photosynthetic functions. However, the biological functions of soybean PPCKs, especially in alkali stress response, are not yet well known. In previous studies, we constructed a Glycine soja transcriptional profile, and identified three PPCK genes (GsPPCK1, GsPPCK2 and GsPPCK3) as potential alkali stress responsive genes. In this study, we confirmed the induced expression of GsPPCK3 under alkali stress and investigated its tissue expression specificity by using quantitative real-time PCR analysis. Then we ectopically expressed GsPPCK3 in Medicago sativa and found that GsPPCK3 overexpression improved plant alkali tolerance, as evidenced by lower levels of relative ion leakage and MDA content and higher levels of chlorophyll content and root activity. In this respect, we further co-transformed the GsPPCK3 and SCMRP genes into alfalfa, and demonstrated the increased alkali tolerance of GsPPCK3-SCMRP transgenic lines. Further investigation revealed that GsPPCK3-SCMRP co-overexpression promoted the PEPC activity, net photosynthetic rate and citric acid content of transgenic alfalfa under alkali stress. Moreover, we also observed the up-regulated expression of PEPC, CS (citrate synthase), H+-ATPase and NADP-ME genes in GsPPCK3-SCMRP transgenic alfalfa under alkali stress. As expected, we demonstrated that GsPPCK3-SCMRP transgenic lines displayed higher methionine content than wild type alfalfa. Taken together, results presented in this study supported the positive role of GsPPCK3 in plant response to alkali stress, and provided an effective way to simultaneously improve plant alkaline tolerance and methionine content, at least in legume crops.
Collapse
Affiliation(s)
- Mingzhe Sun
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Xiaoli Sun
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Yang Zhao
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Chaoyue Zhao
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Yang Yu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Wei Ji
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, P.R. China
- * E-mail:
| |
Collapse
|