1
|
Tatara Y, Kasai S, Kokubu D, Tsujita T, Mimura J, Itoh K. Emerging Role of GCN1 in Disease and Homeostasis. Int J Mol Sci 2024; 25:2998. [PMID: 38474243 PMCID: PMC10931611 DOI: 10.3390/ijms25052998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
GCN1 is recognized as a factor that is essential for the activation of GCN2, which is a sensor of amino acid starvation. This function is evolutionarily conserved from yeast to higher eukaryotes. However, recent studies have revealed non-canonical functions of GCN1 that are independent of GCN2, such as its participation in cell proliferation, apoptosis, and the immune response, beyond the borders of species. Although it is known that GCN1 and GCN2 interact with ribosomes to accomplish amino acid starvation sensing, recent studies have reported that GCN1 binds to disomes (i.e., ribosomes that collide each other), thereby regulating both the co-translational quality control and stress response. We propose that GCN1 regulates ribosome-mediated signaling by dynamically changing its partners among RWD domain-possessing proteins via unknown mechanisms. We recently demonstrated that GCN1 is essential for cell proliferation and whole-body energy regulation in mice. However, the manner in which ribosome-initiated signaling via GCN1 is related to various physiological functions warrants clarification. GCN1-mediated mechanisms and its interaction with other quality control and stress response signals should be important for proteostasis during aging and neurodegenerative diseases, and may be targeted for drug development.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Shuya Kasai
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Daichi Kokubu
- Diet and Well-Being Research Institute, KAGOME, Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Tochigi, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga City 840-8502, Saga, Japan;
| | - Junsei Mimura
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Ken Itoh
- Department of Stress Response Science, Biomedical Research Center, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
- Department of Vegetable Life Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| |
Collapse
|
2
|
Fuertes M, Elguero B, Gonilski-Pacin D, Herbstein F, Rosmino J, Ciancio del Giudice N, Fiz M, Falcucci L, Arzt E. Impact of RSUME Actions on Biomolecular Modifications in Physio-Pathological Processes. Front Endocrinol (Lausanne) 2022; 13:864780. [PMID: 35528020 PMCID: PMC9068994 DOI: 10.3389/fendo.2022.864780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 12/03/2022] Open
Abstract
The small RWD domain-containing protein called RSUME or RWDD3 was cloned from pituitary tumor cells with increasing tumorigenic and angiogenic proficiency. RSUME expression is induced under hypoxia or heat shock and is upregulated, at several pathophysiological stages, in tissues like pituitary, kidney, heart, pancreas, or adrenal gland. To date, several factors with essential roles in endocrine-related cancer appear to be modulated by RWDD3. RSUME regulates, through its post-translational (PTM) modification, pituitary tumor transforming gene (PTTG) protein stability in pituitary tumors. Interestingly, in these tumors, another PTM, the regulation of EGFR levels by USP8, plays a pathogenic role. Furthermore, RSUME suppresses ubiquitin conjugation to hypoxia-inducible factor (HIF) by blocking VHL E3-ubiquitin ligase activity, contributing to the development of von Hippel-Lindau disease. RSUME enhances protein SUMOylation of specific targets involved in inflammation such as IkB and the glucocorticoid receptor. For many of its actions, RSUME associates with regulatory proteins of ubiquitin and SUMO cascades, such as the E2-SUMO conjugase Ubc9 or the E3 ubiquitin ligase VHL. New evidence about RSUME involvement in inflammatory and hypoxic conditions, such as cardiac tissue response to ischemia and neuropathic pain, and its role in several developmental processes, is discussed as well. Given the modulation of PTMs by RSUME in neuroendocrine tumors, we focus on its interactors and its mode of action. Insights into functional implications and molecular mechanisms of RSUME action on biomolecular modifications of key factors of pituitary adenomas and renal cell carcinoma provide renewed information about new targets to treat these pathologies.
Collapse
Affiliation(s)
- Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - David Gonilski-Pacin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Josefina Rosmino
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Nicolas Ciancio del Giudice
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Manuel Fiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lara Falcucci
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Martinefski MR, Elguero B, Knott ME, Gonilski D, Tedesco L, Gurevich Messina JM, Pollak C, Arzt E, Monge ME. Mass Spectrometry-Based Metabolic Fingerprinting Contributes to Unveil the Role of RSUME in Renal Cell Carcinoma Cell Metabolism. J Proteome Res 2020; 20:786-803. [PMID: 33124415 DOI: 10.1021/acs.jproteome.0c00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease with 50-80% patients exhibiting mutations in the von Hippel-Lindau (VHL) gene. RSUME (RWD domain (termed after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases)-containing protein small ubiquitin-related modifier (SUMO) enhancer) acts as a negative regulator of VHL function in normoxia. A discovery-based metabolomics approach was developed by means of ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (MS) for fingerprinting the endometabolome of a human ccRCC cell line 786-O and three other transformed cell systems (n = 102) with different expressions of RSUME and VHL. Cross-validated orthogonal projection to latent structures discriminant analysis models were built on positive, negative, and a combination of positive- and negative-ion mode MS data sets. Discriminant feature panels selected by an iterative multivariate classification allowed differentiating cells with different expressions of RSUME and VHL. Fifteen identified discriminant metabolites with level 1, including glutathione, butyrylcarnitine, and acetylcarnitine, contributed to understand the role of RSUME in ccRCC. Altered pathways associated with the RSUME expression were validated by biological and bioinformatics analyses. Combined results showed that in the absence of VHL, RSUME is involved in the downregulation of the antioxidant defense system, whereas in the presence of VHL, it acts in rerouting energy-related pathways, negatively modulating the lipid utilization, and positively modulating the fatty acid synthesis, which may promote deposition in droplets.
Collapse
Affiliation(s)
- Manuela R Martinefski
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Ciudad de Buenos Aires, Argentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - María Elena Knott
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - David Gonilski
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Lucas Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Juan M Gurevich Messina
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Cora Pollak
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET), Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad de Buenos Aires, Argentina
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina
| |
Collapse
|
4
|
Fuertes M, Sapochnik M, Tedesco L, Senin S, Attorresi A, Ajler P, Carrizo G, Cervio A, Sevlever G, Bonfiglio JJ, Stalla GK, Arzt E. Protein stabilization by RSUME accounts for PTTG pituitary tumor abundance and oncogenicity. Endocr Relat Cancer 2018; 25:665-676. [PMID: 29622689 DOI: 10.1530/erc-18-0028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 11/08/2022]
Abstract
Increased levels of the proto-oncogene pituitary tumor-transforming gene 1 (PTTG) have been repeatedly reported in several human solid tumors, especially in endocrine-related tumors such as pituitary adenomas. Securin PTTG has a critical role in pituitary tumorigenesis. However, the cause of upregulation has not been found yet, despite analyses made at the gene, promoter and mRNA level that show that no mutations, epigenetic modifications or other mechanisms that deregulate its expression may explain its overexpression and action as an oncogene. We describe that high PTTG protein levels are induced by the RWD-containing sumoylation enhancer (RWDD3 or RSUME), a protein originally identified in the same pituitary tumor cell line in which PTTG was also cloned. We demonstrate that PTTG and RSUME have a positive expression correlation in human pituitary adenomas. RSUME increases PTTG protein in pituitary tumor cell lines, prolongs the half-life of PTTG protein and regulates the PTTG induction by estradiol. As a consequence, RSUME enhances PTTG transcription factor and securin activities. PTTG hyperactivity on the cell cycle resulted in recurrent and unequal divisions without cytokinesis, and the consequential appearance of aneuploidies and multinucleated cells in the tumor. RSUME knockdown diminishes securin PTTG and reduces its tumorigenic potential in a xenograft mouse model. Taken together, our findings show that PTTG high protein steady state levels account for PTTG tumor abundance and demonstrate a critical role of RSUME in this process in pituitary tumor cells.
Collapse
Affiliation(s)
- M Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - M Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - L Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - S Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - A Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - P Ajler
- Servicio de NeurocirugíaHospital Italiano, Buenos Aires, Argentina
| | - G Carrizo
- Servicio de NeurocirugíaHospital Italiano, Buenos Aires, Argentina
| | - A Cervio
- Departamento de NeurocirugíaFundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - G Sevlever
- Departamento de NeurocirugíaFundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - J J Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - G K Stalla
- Department of Clinical ResearchMax Planck Institute of Psychiatry, Munich, Germany
| | - E Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y CelularFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Chen X, Kuang W, Huang H, Li B, Zhu Y, Zhou B, Yan L. Knockdown of RWD domain containing 3 inhibits the malignant phenotypes of glioblastoma cells via inhibition of phosphoinositide 3-kinase/protein kinase B signaling. Exp Ther Med 2018; 16:384-393. [PMID: 29977365 DOI: 10.3892/etm.2018.6135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor. RWD domain containing 3 (RWDD3) has been previously reported to serve a promoting role in pituitary tumors. However, the exact role of RWDD3 in glioblastoma remains unclear. Therefore, the present study aimed to investigate the expression levels of RWDD3 in human glioblastoma tissues and cell lines, as well as to examine the regulatory mechanism of RWDD3 underlying glioblastoma growth and metastasis. The results revealed that RWDD3 was significantly upregulated in glioblastoma tissues compared with normal brain tissues, while high expression of RWDD3 was associated with a shorter survival time of glioblastoma patients. The expression levels of RWDD3 were also higher in the glioblastoma cell lines compared with the normal human astrocyte cell line. Subsequent to knockdown of RWDD3, the proliferation of glioblastoma U87 and U251 cells was significantly decreased, possibly due to the cell cycle arrest at G1 phase, as well as the increased cell apoptosis. Furthermore, downregulation of RWDD3 also suppressed U87 and U251 cell invasion by inhibiting the expression levels of matrix metalloproteinase 2 (MMP2) and MMP9. Molecular mechanism investigation demonstrated that knockdown of RWDD3 significantly downregulated the activity of the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. Activation of PI3K/AKT signaling prevented the suppressive effects of RWDD3 downregulation on glioblastoma cell proliferation and migration, concurrent with increased protein levels of MMP2 and MMP9. In conclusion, the current study demonstrated for the first time that inhibition of RWDD3 expression inhibited glioblastoma progression, at least partly, via suppressing the PI3K/AKT signaling activity, and thus RWDD3 may be a novel potential therapeutic target for glioblastoma.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Weiping Kuang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Hongxing Huang
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Bo Li
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Yong Zhu
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Bin Zhou
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Lin Yan
- Department of Neurosurgery, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
6
|
Wu Y, Tedesco L, Lucia K, Schlitter AM, Garcia JM, Esposito I, Auernhammer CJ, Theodoropoulou M, Arzt E, Renner U, Stalla GK. RSUME is implicated in tumorigenesis and metastasis of pancreatic neuroendocrine tumors. Oncotarget 2018; 7:57878-57893. [PMID: 27506944 PMCID: PMC5295397 DOI: 10.18632/oncotarget.11081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/17/2016] [Indexed: 12/12/2022] Open
Abstract
The factors triggering pancreatic neuroendocrine tumor (PanNET) progression are largely unknown. Here we investigated the role and mechanisms of the sumoylation enhancing protein RSUME in PanNET tumorigenesis. Immunohistochemical studies showed that RSUME is strongly expressed in normal human pancreas, in particular in β-cells. RSUME expression is reduced in insulinomas and is nearly absent in other types of PanNETs suggesting a role in PanNET tumorigenesis. In human pancreatic neuroendocrine BON1 cells, RSUME stimulates hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A), which are key components of tumor neovascularisation. In contrast, RSUME suppresses nuclear factor-κB (NF-κB) and its target interleukin-8 (IL-8). Correspondingly, PanNET cells with RSUME knockdown showed decreased HIF-1α activity and increased NF-κB and IL-8 production leading to a moderate reduction of VEGF-A release as reduced HIF-1α/VEGF-A production is partly compensated by NF-κB/IL-8-induced VEGF-A. Notably, RSUME stabilizes the tumor suppressor PTEN, which is frequently lost in PanNETs and whose absence is associated with metastasis formation. In vivo orthotopic transplantation of PanNET cells with or without RSUME expression into nude mice showed that PanNETs without RSUME have reduced PTEN expression, grow faster and form multiple liver metastases. In sum, RSUME differentially regulates key components of PanNET formation suggesting that the observed loss of RSUME in advanced PanNETs is critically involved in PanNET tumorigenesis, particularly in metastasis formation.
Collapse
Affiliation(s)
- Yonghe Wu
- Department of Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany.,Current address: German Cancer Research Center, Heidelberg, Germany
| | - Lucas Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Kristin Lucia
- Department of Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna M Schlitter
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Jose Monteserin Garcia
- Department of Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Technical University of Munich, Munich, Germany.,Current address: Institute of Pathology, University of Düsseldorf, Düsseldorf, Germany
| | - Christoph J Auernhammer
- Department of Internal Medicine II, University-Hospital Campus Grosshadern, Interdisciplinary Center of Neuroendocrine Tumours of the GastroEnteroPancreatic System (GEPNET-KUM), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Marily Theodoropoulou
- Department of Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ulrich Renner
- Department of Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Günter K Stalla
- Department of Clinical Neuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
7
|
Antico Arciuch VG, Tedesco L, Fuertes M, Arzt E. Role of RSUME in inflammation and cancer. FEBS Lett 2015; 589:3330-5. [PMID: 26297826 DOI: 10.1016/j.febslet.2015.07.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 01/06/2023]
Abstract
RSUME (for RWD-domain-containing sumoylation enhancer), RWDD3 gene, was identified from a pituitary tumor cell with increased tumorigenic and angiogenic potential, and has higher expression in cerebellum, pituitary, heart, kidney, liver, pancreas, adrenal gland and prostate. RSUME is induced by cellular stress like hypoxia and heat shock, and is increased in pituitary tumors, in gliomas and in VHL tumors. Seven splicing forms have been described. Two of them correspond to non-coding RNAs and the other five possess an RWD domain in the N-terminus and differ in their C-terminal end. RSUME enhances SUMO conjugation by interacting with the SUMO conjugase Ubc9, increases Ubc9 thioester formation and therefore favors sumoylation of specific targets. RSUME increases IκB levels and stabilizes HIF-1α during hypoxia, leading to inhibition of NF-κB and increased HIF-1 transcriptional activity. RSUME inhibits pVHL function, thus suppressing HIF-1 and 2α ubiquitination and degradation. Disruption of the RWD domain structure of RSUME indicated that this domain is critical for RSUME action. The findings point to an important role of RSUME in the regulation and stability of specific targets, which are key regulatory mediators in cancer and inflammation.
Collapse
Affiliation(s)
- Valeria G Antico Arciuch
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lucas Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Affiliation(s)
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, C1425FQD, Argentina, and Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
9
|
Alontaga AY, Ambaye ND, Li YJ, Vega R, Chen CH, Bzymek KP, Williams JC, Hu W, Chen Y. RWD Domain as an E2 (Ubc9)-Interaction Module. J Biol Chem 2015; 290:16550-9. [PMID: 25918163 DOI: 10.1074/jbc.m115.644047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
An RWD domain is a well conserved domain found through bioinformatic analysis of the human proteome sequence; however, its function has been unknown. Ubiquitin-like modifications require the catalysis of three enzymes generally known as E1, E2, and E3. We solved the crystal structure of the E2 for the small ubiquitin-like modifiers (SUMO) in complex with an RWD domain and confirmed the structure using solution NMR analysis. The binding surface of RWD on Ubc9 is located near the N terminus of Ubc9 that is known to be involved in noncovalent binding of the proteins in the conjugation machinery, including a domain of E1, SUMO, and an E3 ligase. NMR data indicate that the RWD domain does not bind to SUMO and E1. The interaction between RWD and Ubc9 has a Kd of 32 ± 4 μM. Consistent with the structure and binding affinity and in contrast to a previous report, the RWD domain and RWDD3 have minimal effects on global SUMOylation. The structural and biochemical information presented here forms the basis for further investigation of the functions of RWD-containing proteins.
Collapse
Affiliation(s)
| | | | - Yi-Jia Li
- From the Department of Molecular Medicine and
| | - Ramir Vega
- From the Department of Molecular Medicine and
| | | | | | | | - Weidong Hu
- the NMR Core Facility, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Yuan Chen
- From the Department of Molecular Medicine and
| |
Collapse
|
10
|
Liu YS, Huang ZW, Qin AQ, Huang Y, Giordano F, Lu QH, Jiang WD. The expression of epidermal growth factor-like domain 7 regulated by oxygen tension via hypoxia inducible factor (HIF)-1α activity. Postgrad Med 2014; 127:144-9. [PMID: 25539718 DOI: 10.1080/00325481.2015.996503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Hypoxia inducible factor-1α (HIF-1α) regulates many genes involved in angiogenesis during embryonic development. Epidermal growth factor-like domain 7 (Egfl7) is a specific marker for human arterial endothelial cells that are in an activated state of proliferation, migration, and remodeling. This study evaluates the intricate relationship between HIF-1α and Egfl7 under both hyperoxia and hypoxia states. METHODS The neonatal mice were exposed to either hyperoxia or hypoxia in order to detect the pulmonary and cardiac Egfl7 messenger RNA (mRNA) or protein expression regulated by oxygen tension in vivo by reverse transcriptase polymerase chain reaction or immunohistochemistry staining. Egfl7 expression in HIF-1α null pulmonary endothelial cells in hypoxia conditions and effects of overexpression or knockdown of HIF-1α on Egfl7 expression in human umbilical vein endothelial cells would be clarified in vitro by reverse transcriptase polymerase chain reaction and Western blot, respectively. RESULTS Hyperoxia exposure significantly reduced Egfl7 expression in neonatal mice lungs by 36% compared with age-matched normoxia control mice (P < 0.05, n = 6). The pulmonary Egfl7 transcription levels were increased by 1.7- and 1.9-fold in 24 hours and by day 8 in hypoxia groups compared with the normoxia control values (P < 0.05, n = 6). The cardiac Egfl7 mRNA expression was significantly increased by 4.5-fold in the day 8 group compared with the normoxia control values (P < 0.05, n = 6). The expression of Egfl7 decreased significantly in the HIF-1α(-/-) endothelial cells (ECs), which was only 26% of wild-type HIF-1α(+/+) ECs (P < 0.05, n = 3). Hypoxia caused a mild but significant increase of Egfl7 expression in HIF-1α(+/+) ECs (P < 0.05). In vitro, overexpression of HIF-1α enhanced Egfl7 expression, whereas knockdown of HIF-1α reduced Egfl7 expression. CONCLUSIONS Overexpression of HIF-1α enhanced Egfl7 expression, whereas knockdown of HIF-1α reduced Egfl7 expression. Egfl7 could be a HIF-1α responsive gene regulated by oxygen tension.
Collapse
Affiliation(s)
- Yu-Sheng Liu
- Department of Cardiology, Second Hospital of Shandong University , Jinan, Shandong , China
| | | | | | | | | | | | | |
Collapse
|
11
|
Gerez J, Tedesco L, Bonfiglio JJ, Fuertes M, Barontini M, Silberstein S, Wu Y, Renner U, Páez-Pereda M, Holsboer F, Stalla GK, Arzt E. RSUME inhibits VHL and regulates its tumor suppressor function. Oncogene 2014; 34:4855-66. [PMID: 25500545 DOI: 10.1038/onc.2014.407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 12/12/2022]
Abstract
Somatic mutations or loss of von Hippel-Lindau (pVHL) happen in the majority of VHL disease tumors, which present a constitutively active Hypoxia Inducible Factor (HIF), essential for tumor growth. Recently described mechanisms for pVHL modulation shed light on the open question of the HIF/pVHL pathway regulation. The aim of the present study was to determine the molecular mechanism by which RSUME stabilizes HIFs, by studying RSUME effect on pVHL function and to determine the role of RSUME on pVHL-related tumor progression. We determined that RSUME sumoylates and physically interacts with pVHL and negatively regulates the assembly of the complex between pVHL, Elongins and Cullins (ECV), inhibiting HIF-1 and 2α ubiquitination and degradation. We found that RSUME is expressed in human VHL tumors (renal clear-cell carcinoma (RCC), pheochromocytoma and hemangioblastoma) and by overexpressing or silencing RSUME in a pVHL-HIF-oxygen-dependent degradation stability reporter assay, we determined that RSUME is necessary for the loss of function of type 2 pVHL mutants. The functional RSUME/pVHL interaction in VHL-related tumor progression was further confirmed using a xenograft assay in nude mice. RCC clones, in which RSUME was knocked down and express either pVHL wt or type 2 mutation, have an impaired tumor growth, as well as HIF-2α, vascular endothelial growth factor A and tumor vascularization diminution. This work shows a novel mechanism for VHL tumor progression and presents a new mechanism and factor for targeting tumor-related pathologies with pVHL/HIF altered function.
Collapse
Affiliation(s)
- J Gerez
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - L Tedesco
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - J J Bonfiglio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M Barontini
- Center for Endocrinological Investigations (CEDIE), Hospital de Niños R. Gutiérrez, Buenos Aires, Argentina
| | - S Silberstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Y Wu
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - U Renner
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Páez-Pereda
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - F Holsboer
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - G K Stalla
- Department of Clinical Research, Max Planck Institute of Psychiatry, Munich, Germany
| | - E Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina.,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|