1
|
Vidal E, Sánchez-Martín MA, Eraña H, Lázaro SP, Pérez-Castro MA, Otero A, Charco JM, Marín B, López-Moreno R, Díaz-Domínguez CM, Geijo M, Ordóñez M, Cantero G, di Bari M, Lorenzo NL, Pirisinu L, d’Agostino C, Torres JM, Béringue V, Telling G, Badiola JJ, Pumarola M, Bolea R, Nonno R, Requena JR, Castilla J. Bona fide atypical scrapie faithfully reproduced for the first time in a rodent model. Acta Neuropathol Commun 2022; 10:179. [PMID: 36514160 PMCID: PMC9749341 DOI: 10.1186/s40478-022-01477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022] Open
Abstract
Atypical Scrapie, which is not linked to epidemics, is assumed to be an idiopathic spontaneous prion disease in small ruminants. Therefore, its occurrence is unlikely to be controlled through selective breeding or other strategies as it is done for classical scrapie outbreaks. Its spontaneous nature and its sporadic incidence worldwide is reminiscent of the incidence of idiopathic spontaneous prion diseases in humans, which account for more than 85% of the cases in humans. Hence, developing animal models that consistently reproduce this phenomenon of spontaneous PrP misfolding, is of importance to study the pathobiology of idiopathic spontaneous prion disorders. Transgenic mice overexpressing sheep PrPC with I112 polymorphism (TgShI112, 1-2 × PrP levels compared to sheep brain) manifest clinical signs of a spongiform encephalopathy spontaneously as early as 380 days of age. The brains of these animals show the neuropathological hallmarks of prion disease and biochemical analyses of the misfolded prion protein show a ladder-like PrPres pattern with a predominant 7-10 kDa band. Brain homogenates from spontaneously diseased transgenic mice were inoculated in several models to assess their transmissibility and characterize the prion strain generated: TgShI112 (ovine I112 ARQ PrPC), Tg338 (ovine VRQ PrPC), Tg501 (ovine ARQ PrPC), Tg340 (human M129 PrPC), Tg361 (human V129 PrPC), TgVole (bank vole I109 PrPC), bank vole (I109I PrPC), and sheep (AHQ/ARR and AHQ/AHQ churra-tensina breeds). Our analysis of the results of these bioassays concludes that the strain generated in this model is indistinguishable to that causing atypical scrapie (Nor98). Thus, we present the first faithful model for a bona fide, transmissible, ovine, atypical scrapie prion disease.
Collapse
Affiliation(s)
- Enric Vidal
- grid.424716.2Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain
| | - Manuel A. Sánchez-Martín
- grid.11762.330000 0001 2180 1817Transgenic Facility. Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Hasier Eraña
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain ,ATLAS Molecular Pharma S. L., Derio, Bizkaia Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Pérez Lázaro
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Miguel A. Pérez-Castro
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain
| | - Alicia Otero
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Jorge M. Charco
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain ,ATLAS Molecular Pharma S. L., Derio, Bizkaia Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Marín
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Rafael López-Moreno
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain
| | - Carlos M. Díaz-Domínguez
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain
| | - Mariví Geijo
- grid.509696.50000 0000 9853 6743Animal Health Department, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Montserrat Ordóñez
- grid.424716.2Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain
| | - Guillermo Cantero
- grid.424716.2Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain ,grid.424716.2IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Catalonia Spain
| | - Michele di Bari
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Nuria L. Lorenzo
- grid.11794.3a0000000109410645CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago, Spain
| | - Laura Pirisinu
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Claudia d’Agostino
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Juan María Torres
- grid.419190.40000 0001 2300 669XCentro de Investigación en Sanidad Animal (CISA), Centro Superior de Investigaciones Científicas (CSIC) Valdeolmos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28130 Madrid, Spain
| | - Vincent Béringue
- grid.417961.cMolecular Virology and Immunology, Institut National de La Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Glenn Telling
- grid.47894.360000 0004 1936 8083Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO USA
| | - Juan J. Badiola
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Martí Pumarola
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Campus de UAB, Bellaterra, 08193 Barcelona, Catalonia Spain
| | - Rosa Bolea
- grid.11205.370000 0001 2152 8769Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza–IA2, Zaragoza, Spain
| | - Romolo Nonno
- grid.416651.10000 0000 9120 6856Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore Di Sanità, 00161 Rome, Italy
| | - Jesús R. Requena
- grid.11794.3a0000000109410645CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago, Spain
| | - Joaquín Castilla
- grid.420175.50000 0004 0639 2420Centro de Investigación Cooperativa en Biociencias (CIC BioGUNE), Laboratorio de Investigación de Priones, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain ,grid.424810.b0000 0004 0467 2314IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia Spain
| |
Collapse
|
2
|
Peden AH, Suleiman S, Barria MA. Understanding Intra-Species and Inter-Species Prion Conversion and Zoonotic Potential Using Protein Misfolding Cyclic Amplification. Front Aging Neurosci 2021; 13:716452. [PMID: 34413769 PMCID: PMC8368127 DOI: 10.3389/fnagi.2021.716452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders that affect humans and animals, and can also be transmitted from animals to humans. A fundamental event in prion disease pathogenesis is the conversion of normal host prion protein (PrPC) to a disease-associated misfolded form (PrPSc). Whether or not an animal prion disease can infect humans cannot be determined a priori. There is a consensus that classical bovine spongiform encephalopathy (C-type BSE) in cattle transmits to humans, and that classical sheep scrapie is of little or no risk to human health. However, the zoonotic potential of more recently identified animal prion diseases, such as atypical scrapie, H-type and L-type BSE and chronic wasting disease (CWD) in cervids, remains an open question. Important components of the zoonotic barrier are (i) physiological differences between humans and the animal in question, (ii) amino acid sequence differences of the animal and human PrPC, and (iii) the animal prion strain, enciphered in the conformation of PrPSc. Historically, the direct inoculation of experimental animals has provided essential information on the transmissibility and compatibility of prion strains. More recently, cell-free molecular conversion assays have been used to examine the molecular compatibility on prion replication and zoonotic potential. One such assay is Protein Misfolding Cyclic Amplification (PMCA), in which a small amount of infected tissue homogenate, containing PrPSc, is added as a seed to an excess of normal tissue homogenate containing PrPC, and prion conversion is accelerated by cycles of incubation and ultrasonication. PMCA has been used to measure the molecular feasibility of prion transmission in a range of scenarios using genotypically homologous and heterologous combinations of PrPSc seed and PrPC substrate. Furthermore, this method can be used to speculate on the molecular profile of PrPSc that might arise from a zoonotic transmission. We discuss the experimental approaches that have been used to model both the intra- and inter-species molecular compatibility of prions, and the factors affecting PrPc to PrPSc conversion and zoonotic potential. We conclude that cell-free prion protein conversion assays, especially PMCA, are useful, rapid and low-cost approaches for elucidating the mechanisms of prion propagation and assessing the risk of animal prions to humans.
Collapse
Affiliation(s)
- Alexander H Peden
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Suzanne Suleiman
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Marcelo A Barria
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, Deanery of Clinical Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Babalola JA, Kim JM, Lee YJ, Park JH, Choi HS, Choi YG, Choi EK, Kim YS. Re-transmissibility of mouse-adapted ME7 scrapie strain to ovine PrP transgenic mice. J Vet Sci 2019; 20:e8. [PMID: 30944531 PMCID: PMC6441804 DOI: 10.4142/jvs.2019.20.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/23/2019] [Accepted: 02/23/2019] [Indexed: 11/20/2022] Open
Abstract
Scrapie is a mammalian transmissible spongiform encephalopathy or prion disease that predominantly affects sheep and goats. Scrapie has been shown to overcome the species barrier via experimental infection of other rodents. To confirm the re-transmissibility of the mouse-adapted ME7 scrapie strain to ovine prion protein (PrP) transgenic mice, mice of an ovinized transgenic mouse line carrying the Suffolk sheep PrP gene that contained the A136 R154 Q171/ARQ allele were intracerebrally inoculated with brain homogenates obtained from terminally ill ME7-infected C57BL/6J mice. Herein, we report that the mouse-adapted ME7 scrapie strain was successfully re-transmitted to the transgenic mice expressing ovine PrP. In addition, we observed changes in the incubation period, glycoform profile, and pattern of scrapie PrP (PrPSc) deposition in the affected brains. PrPSc deposition in the hippocampal region of the brain of 2nd-passaged ovine PrP transgenic mice was accompanied by plaque formation. These results reveal that the mouse-adapted ME7 scrapie strain has the capacity to act as a template for the conversion of ovine normal monomeric precursors into a pathogenic form in ovine PrP transgenic mice. The change in glycoform pattern and the deposition of plaques in the hippocampal region of the brain of the 2nd-passaged PrP transgenic mice are most likely cellular PrP species dependent rather than being ME7 scrapie strain encoded.
Collapse
Affiliation(s)
- Joshua Adekunle Babalola
- Ilsong Institute of Life Science, Hallym University, Chuncheon 24252, Korea.,Department of Microbiology, Hallym University College of Medicine, Chuncheon 24252, Korea
| | - Jong-Mu Kim
- Ilsong Institute of Life Science, Hallym University, Chuncheon 24252, Korea
| | - Yun-Jung Lee
- Ilsong Institute of Life Science, Hallym University, Chuncheon 24252, Korea
| | - Jeong-Ho Park
- Ilsong Institute of Life Science, Hallym University, Chuncheon 24252, Korea
| | - Hong-Seok Choi
- Ilsong Institute of Life Science, Hallym University, Chuncheon 24252, Korea
| | - Yeong-Gon Choi
- Ilsong Institute of Life Science, Hallym University, Chuncheon 24252, Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Chuncheon 24252, Korea.,Department of Medical Gerontology, Hallym University Graduate School, Chuncheon 24252, Korea
| | - Yong-Sun Kim
- Ilsong Institute of Life Science, Hallym University, Chuncheon 24252, Korea.,Department of Microbiology, Hallym University College of Medicine, Chuncheon 24252, Korea
| |
Collapse
|
4
|
In vitro Modeling of Prion Strain Tropism. Viruses 2019; 11:v11030236. [PMID: 30857283 PMCID: PMC6466166 DOI: 10.3390/v11030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022] Open
Abstract
Prions are atypical infectious agents lacking genetic material. Yet, various strains have been isolated from animals and humans using experimental models. They are distinguished by the resulting pattern of disease, including the localization of PrPsc deposits and the spongiform changes they induce in the brain of affected individuals. In this paper, we discuss the emerging use of cellular and acellular models to decipher the mechanisms involved in the strain-specific targeting of distinct brain regions. Recent studies suggest that neuronal cultures, protein misfolding cyclic amplification, and combination of both approaches may be useful to explore this under-investigated but central domain of the prion field.
Collapse
|
5
|
Igel-Egalon A, Béringue V, Rezaei H, Sibille P. Prion Strains and Transmission Barrier Phenomena. Pathogens 2018; 7:E5. [PMID: 29301257 PMCID: PMC5874731 DOI: 10.3390/pathogens7010005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/25/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Several experimental evidences show that prions are non-conventional pathogens, which physical support consists only in proteins. This finding raised questions regarding the observed prion strain-to-strain variations and the species barrier that happened to be crossed with dramatic consequences on human health and veterinary policies during the last 3 decades. This review presents a focus on a few advances in the field of prion structure and prion strains characterization: from the historical approaches that allowed the concept of prion strains to emerge, to the last results demonstrating that a prion strain may in fact be a combination of a few quasi species with subtle biophysical specificities. Then, we will focus on the current knowledge on the factors that impact species barrier strength and species barrier crossing. Finally, we present probable scenarios on how the interaction of strain properties with host characteristics may account for differential selection of new conformer variants and eventually species barrier crossing.
Collapse
Affiliation(s)
- Angélique Igel-Egalon
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Vincent Béringue
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Human Rezaei
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| | - Pierre Sibille
- Virologie et Immunologie Moléculaires, INRA, Université Paris-Saclay, UR892, 78350 Jouy-en-Josas, France.
| |
Collapse
|
6
|
Madsen-Bouterse SA, Schneider DA, Zhuang D, Dassanayake RP, Balachandran A, Mitchell GB, O'Rourke KI. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine or cervid prion protein. J Gen Virol 2016; 97:2451-2460. [PMID: 27393736 PMCID: PMC5042132 DOI: 10.1099/jgv.0.000539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Development of mice expressing either ovine (Tg338) or cervid (TgElk) prion protein (PrP) have aided in characterization of scrapie and chronic wasting disease (CWD), respectively. Experimental inoculation of sheep with CWD prions has demonstrated the potential for interspecies transmission but, infection with CWD versus classical scrapie prions may be difficult to differentiate using validated diagnostic platforms. In this study, mouse bioassay in Tg338 and TgElk was utilized to evaluate transmission of CWD versus scrapie prions from small ruminants. Mice (≥5 per homogenate) were inoculated with brain homogenates from clinically affected sheep or goats with naturally acquired classical scrapie, white-tailed deer with naturally acquired CWD (WTD-CWD) or sheep with experimentally acquired CWD derived from elk (sheep-passaged-CWD). Survival time (time to clinical disease) and attack rates (brain accumulation of protease resistant PrP, PrPres) were determined. Inoculation with classical scrapie prions resulted in clinical disease and 100 % attack rates in Tg338, but no clinical disease at endpoint (>300 days post-inoculation, p.i.) and low attack rates (6.8 %) in TgElk. Inoculation with WTD-CWD prions yielded no clinical disease or brain PrPres accumulation in Tg338 at endpoint (>500 days p.i.), but rapid onset of clinical disease (~121 days p.i.) and 100 % attack rate in TgElk. Sheep-passaged-CWD resulted in transmission to both mouse lines with 100 % attack rates at endpoint in Tg338 and an attack rate of ~73 % in TgElk with some culled due to clinical disease. These primary transmission observations demonstrate the potential of bioassay in Tg338 and TgElk to help differentiate possible infection with CWD versus classical scrapie prions in sheep and goats.
Collapse
Affiliation(s)
- Sally A. Madsen-Bouterse
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - David A. Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Dongyue Zhuang
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Rohana P. Dassanayake
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
| | - Aru Balachandran
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory–Fallowfield, Ottawa, Ontario, Canada
| | - Gordon B. Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection, Agency, Ottawa Laboratory–Fallowfield, Ottawa, Ontario, Canada
| | - Katherine I. O'Rourke
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA
- Animal Disease Research Unit, Agricultural Research Service, US Department of Agriculture, Pullman, WA 99164-6630, USA
| |
Collapse
|
7
|
Shi Q, Xiao K, Zhang BY, Zhang XM, Chen LN, Chen C, Gao C, Dong XP. Successive passaging of the scrapie strains, ME7-ha and 139A-ha, generated by the interspecies transmission of mouse-adapted strains into hamsters markedly shortens the incubation times, but maintains their molecular and pathological properties. Int J Mol Med 2015; 35:1138-46. [PMID: 25683243 DOI: 10.3892/ijmm.2015.2102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
As a type of zoonotic disease, prion diseases may be transmitted naturally and experimentally among species. In a previous study, we demonstrated that the mouse-adapted scrapie strains, ME7 (ME7-mo) and 139A (139A-mo), can overcome the species barrier and induce experimental scrapie when inoculated into Golden hamsters and generated 2 new hamster-adapted strains, ME7 (ME7-ha) and 139A (139A-ha). In the present study, in order to assess the infectivity and other molecular and neuropathological properties of the newly formed scrapie agents, ME7-ha and 139A-ha were further intracerebrally inoculated into hamsters. Compared with infection with 1st passage strains, the incubation times and clinical courses of infection with 2nd passage strains were markedly shorter, which were quite comparable with those of the mice infected with their parent mouse strains. The glycosylation patterns of brain PrP(Sc) in the animals infected with the 2nd passage of those 2 strains maintained similar features as those in the animals infected with the 1st passage of those strains, with predominantly diglycosylated PrP(Sc). Neuropathological assays revealed comparable spongiform degeneration and microglia proliferation in the brain tissues from the infected mice and hamsters, but markedly more plaque-like deposits of PrP(Sc) and more severe astrogliosis in the brains of the hamster. These data indicate that the strains, ME7-ha 1st and 139A-ha 1st generated by interspecies infection can passage in the new host hamster and stably maintain their molecular and neuropathological characteristics.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Bao-Yun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Mei Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Li-Na Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
8
|
Carlson CM, Schneider JR, Pedersen JA, Heisey DM, Johnson CJ. Experimental infection of meadow voles (Microtus pennsylvanicus) with sheep scrapie. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2015; 79:68-73. [PMID: 25673912 PMCID: PMC4283237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 03/03/2014] [Indexed: 06/04/2023]
Abstract
Meadow voles (Microtus pennsylvanicus) are permissive to chronic wasting disease (CWD) infection, but their susceptibility to other transmissible spongiform encephalopathies (TSEs) is poorly characterized. In this initial study, we intracerebrally challenged 6 meadow voles with 2 isolates of sheep scrapie. Three meadow voles acquired a TSE after the scrapie challenge and an extended incubation period. The glycoform profile of proteinase K-resistant prion protein (PrP(res)) in scrapie-sick voles remained similar to the sheep inocula, but differed from that of voles clinically affected by CWD. Vacuolization patterns and disease-associated prion protein (PrP(Sc)) deposition were generally similar in all scrapie-affected voles, except in the hippocampus, where PrP(Sc) staining varied markedly among the animals. Our results demonstrate that meadow voles can acquire a TSE after intracerebral scrapie challenge and that this species could therefore prove useful for characterizing scrapie isolates.
Collapse
Affiliation(s)
| | | | | | | | - Christopher J. Johnson
- Address all correspondence to Dr. Christopher J. Johnson; telephone: (608) 270-2442; fax: (608) 270-2415; e-mail:
| |
Collapse
|
9
|
Enhanced virulence of sheep-passaged bovine spongiform encephalopathy agent is revealed by decreased polymorphism barriers in prion protein conversion studies. J Virol 2013; 88:2903-12. [PMID: 24371051 DOI: 10.1128/jvi.02446-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bovine spongiform encephalopathy (BSE) can be efficiently transmitted to small ruminants (sheep and goats) with certain prion protein (PrP) genotypes. Polymorphisms in PrP of both the host and donor influence the transmission efficiency of transmissible spongiform encephalopathies (TSEs) in general. These polymorphisms in PrP also modulate the PrP conversion underlying TSE agent replication. Here we demonstrate that single-round protein misfolding cyclic amplification (PMCA) can be used to assess species and polymorphism barriers at the molecular level. We assessed those within and between the ovine and bovine species in vitro using a variety of natural scrapie and experimentally generated cross-species BSE agents. These BSE agents include ovBSE-ARQ isolates (BSE derived from sheep having the ARQ/ARQ PrP genotype), and two unique BSE-derived variants: BSE passaged in VRQ/VRQ sheep and a cow BSE agent isolate generated by back-transmission of ovBSE-ARQ into its original host. PMCA allowed us to quantitatively determine PrP conversion profiles that correlated with known in vivo transmissibility and susceptibility in the two ruminant species in which strain-specific molecular signatures, like its molecular weight after protease digestion, were maintained. Furthermore, both BSE agent isolates from ARQ and VRQ sheep demonstrated a surprising transmission profile in which efficient transmissions to both sheep and bovine variants was combined. Finally, all data support the notion that ARQ-derived sheep BSE points to a significant increase in virulence compared to all other tested scrapie- and BSE-derived variants reflected by the increased conversion efficiencies of previously inefficient convertible PrP variants (including the so-called "resistant" sheep ARR variant). IMPORTANCE Prion diseases such as scrapie in sheep and goats, BSE in cattle, and Creutzfeldt-Jakob disease (CJD) in humans are fatal neurodegenerative diseases caused by prions. BSE is known to be transmissible to a variety of hosts, including sheep and humans. Based on the typical BSE agent strain signatures and epidemiological data, the occurrence of a novel variant of CJD in humans was linked to BSE occurrence in the United Kingdom. Measures, including genetic selection of sheep toward less susceptible PrP genotypes, have been implemented to lower the risk of BSE transmission into sheep, since the disease could potentially spread into a natural reservoir. In this study, we demonstrated using molecular PrP conversion studies that when BSE is first transmitted through sheep, the host range is modified significantly and the PrP converting potency increased, allowing the ovine BSE to transmit more efficiently than cow BSE into supposedly less susceptible hosts.
Collapse
|
10
|
Assessing the susceptibility of transgenic mice overexpressing deer prion protein to bovine spongiform encephalopathy. J Virol 2013; 88:1830-3. [PMID: 24257620 DOI: 10.1128/jvi.02762-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Several transgenic mouse models have been developed which facilitate the transmission of chronic wasting disease (CWD) of cervids and allow prion strain discrimination. The present study was designed to assess the susceptibility of the prototypic mouse line, Tg(CerPrP)1536(+/-), to bovine spongiform encephalopathy (BSE) prions, which have the ability to overcome species barriers. Tg(CerPrP)1536(+/-) mice challenged with red deer-adapted BSE resulted in 90% to 100% attack rates, and BSE from cattle failed to transmit, indicating agent adaptation in the deer.
Collapse
|