1
|
Hassan EA, Elsaid AM, Abou-Elzahab MM, El-Refaey AM, Elmougy R, Youssef MM. The Potential Impact of MYH9 (rs3752462) and ELMO1 (rs741301) Genetic Variants on the Risk of Nephrotic Syndrome Incidence. Biochem Genet 2024; 62:1304-1324. [PMID: 37594641 DOI: 10.1007/s10528-023-10481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
The kidney lost a lot of protein in the urine when you have nephrotic syndrome (NS). Clinical manifestations mostly common in NS include massive proteinuria, hypoalbuminemia, hyperlipidemia, and edema. Idiopathic nephrotic syndrome is currently classified into steroid-dependent (SDNS) and steroid-resistant (SRNS) based on the initial response to corticosteroid therapy at presentation. Several reports examined the association of the MYH9 gene (rs3752462, C > T) variant and ELMO1 gene (rs741301 G > A) variant as risk factors for Nephrotic Syndrome. This study aimed to determine the potential effect of the MYH9 gene (rs3752462, C > T) and ELMO1 gene (rs741301) variant on the risk of (NS) among Egyptian Children. This study included two hundred participants involving 100 nephrotic syndrome (NS) cases and 100 healthy controls free from nephrotic syndrome (NS). The MYH9 gene (rs3752462, C > T) variant and ELMO1 gene (rs G > A741301) variant were analyzed by ARMS-PCR technique. Nephrotic syndrome cases include 74% SRNS and 26% SDNS. Higher frequencies of the heterozygous carrier (CT) and homozygous variant (TT) genotypes of the MYH9 (rs3752462, C > T) variant were observed in NS patients compared to the controls with p-value < 0.001. The frequencies of the MYH9 (rs3752462, C > T variant indicated a statistically significant elevated risk of NS under various genetic models, including allelic model (OR 2.85, p < 0.001), dominant (OR 3.97, p < 0.001) models, and the recessive model OR 5.94, p < 0.001). Higher frequencies of the heterozygous carrier (GA) and homozygous variant (AA) genotypes of ELMO1gene (rs G > A741301) variant were observed in NS patients compared to the controls with p-value < 0.001. The frequencies of the ELMO1 (rs G > A741301) variant indicated a statistically significant elevated risk of NS under various genetic models, including allelic model (OR 2.15, p < 0.001), dominant models (OR 2.8, p < 0.001), and the recessive model (OR 4.17, p = 0.001). Both MYH9 and ELMO1 gene variants are significantly different in NS in comparison with the control group (p < 0.001). The MYH9 gene (rs3752462, C > T) and ELMO1gene (rs G > A741301) variants were considered independent risk factors for NS among Egyptian Children.
Collapse
Affiliation(s)
- Eglal A Hassan
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Afaf M Elsaid
- Genetic Unit, Children Hospital, Mansoura University, Mansoura, Egypt
| | - M M Abou-Elzahab
- Organic Chemistry Division, Chemistry Department, Faculty Of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed M El-Refaey
- Department of Pediatrics, Mansoura University Childrens Hospital, Mansoura University, Mansoura, Egypt
| | - Rehab Elmougy
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Magdy M Youssef
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Deltas C, Papagregoriou G, Louka SF, Malatras A, Flinter F, Gale DP, Gear S, Gross O, Hoefele J, Lennon R, Miner JH, Renieri A, Savige J, Turner AN. Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice. Genes (Basel) 2023; 14:1686. [PMID: 37761826 PMCID: PMC10530214 DOI: 10.3390/genes14091686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Familial hematuria is a clinical sign of a genetically heterogeneous group of conditions, accompanied by broad inter- and intrafamilial variable expressivity. The most frequent condition is caused by pathogenic (or likely pathogenic) variants in the collagen-IV genes, COL4A3/A4/A5. Pathogenic variants in COL4A5 are responsible for the severe X-linked glomerulopathy, Alport syndrome (AS), while homozygous or compound heterozygous variants in the COL4A3 or the COL4A4 gene cause autosomal recessive AS. AS usually leads to progressive kidney failure before the age of 40-years when left untreated. People who inherit heterozygous COL4A3/A4 variants are at-risk of a slowly progressive form of the disease, starting with microscopic hematuria in early childhood, developing Alport spectrum nephropathy. Sometimes, they are diagnosed with benign familial hematuria, and sometimes with autosomal dominant AS. At diagnosis, they often show thin basement membrane nephropathy, reflecting the uniform thin glomerular basement membrane lesion, inherited as an autosomal dominant condition. On a long follow-up, most patients will retain normal or mildly affected kidney function, while a substantial proportion will develop chronic kidney disease (CKD), even kidney failure at an average age of 55-years. A question that remains unanswered is how to distinguish those patients with AS or with heterozygous COL4A3/A4 variants who will manifest a more aggressive kidney function decline, requiring prompt medical intervention. The hypothesis that a subgroup of patients coinherit additional genetic modifiers that exacerbate their clinical course has been investigated by several researchers. Here, we review all publications that describe the potential role of candidate genetic modifiers in patients and include a summary of studies in AS mouse models.
Collapse
Affiliation(s)
- Constantinos Deltas
- School of Medicine, University of Cyprus, Nicosia 2109, Cyprus
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Gregory Papagregoriou
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Stavroula F. Louka
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Apostolos Malatras
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Frances Flinter
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | | | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine & Health, Technical University Munich, 81675 Munich, Germany
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9WU, UK
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC 3052, Australia
| | - A. Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
3
|
Poppelaars F, Eskandari SK, Damman J, Seelen MA, Faria B, Gaya da Costa M. A non-muscle myosin heavy chain 9 genetic variant is associated with graft failure following kidney transplantation. Kidney Res Clin Pract 2023; 42:389-402. [PMID: 37313613 PMCID: PMC10265209 DOI: 10.23876/j.krcp.22.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Despite current matching efforts to identify optimal donor-recipient pairs for kidney transplantation, alloimmunity remains a major source of late transplant failure. Additional genetic parameters in donor-recipient matching could help improve longterm outcomes. Here, we studied the impact of a non-muscle myosin heavy chain 9 gene (MYH9) polymorphism on allograft failure. METHODS We conducted an observational cohort study, analyzing the DNA of 1,271 kidney donor-recipient transplant pairs from a single academic hospital for the MYH9 rs11089788 C>A polymorphism. The associations of the MYH9 genotype with risk of graft failure, biopsy-proven acute rejection (BPAR), and delayed graft function (DGF) were estimated. RESULTS A trend was seen in the association between the MYH9 polymorphism in the recipient and graft failure (recessive model, p = 0.056), but not for the MYH9 polymorphism in the donor. The AA-genotype MYH9 polymorphism in recipients was associated with higher risk of DGF (p = 0.03) and BPAR (p = 0.021), although significance was lost after adjusting for covariates (p = 0.15 and p = 0.10, respectively). The combined presence of the MYH9 polymorphism in donor-recipient pairs was associated with poor long-term kidney allograft survival (p = 0.04), in which recipients with an AA genotype receiving a graft with an AA genotype had the worst outcomes. After adjustment, this combined genotype remained significantly associated with 15-year death-censored kidney graft survival (hazard ratio, 1.68; 95% confidence interval, 1.05-2.70; p = 0.03). CONCLUSION Our results reveal that recipients with an AA-genotype MYH9 polymorphism receiving a donor kidney with an AA genotype have significantly elevated risk of graft failure after kidney transplantation.
Collapse
Affiliation(s)
- Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Siawosh K. Eskandari
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeffrey Damman
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marc A. Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bernardo Faria
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Mariana Gaya da Costa
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Matthaiou A, Poulli T, Deltas C. Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: a systematic review. Clin Kidney J 2020; 13:1025-1036. [PMID: 33391746 PMCID: PMC7769542 DOI: 10.1093/ckj/sfz176] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients heterozygous for COL4A3 or COL4A4 mutations show a wide spectrum of disease, extending from familial isolated microscopic haematuria, as a result of thin basement membranes (TBMs), to autosomal dominant Alport syndrome (ADAS) and end-stage renal disease (ESRD). Many patients are mentioned in the literature under the descriptive diagnosis of TBM nephropathy (TBMN), in which case it actually describes a histological finding that represents the carriers of autosomal recessive Alport syndrome (ARAS), a severe glomerulopathy, as most patients reach ESRD at a mean age of 25 years. METHODS We performed a systematic literature review for patients with heterozygous COL4A3/A4 mutations with the aim of recording the spectrum and frequency of pathological features. We searched three databases (PubMed, Embase and Scopus) using the keywords 'Autosomal Dominant Alport Syndrome' OR 'Thin Basement Membrane Disease' OR 'Thin Basement Membrane Nephropathy'. We identified 48 publications reporting on 777 patients from 258 families. RESULTS In total, 29% of the patients developed chronic kidney disease (CKD) and 15.1% reached ESRD at a mean age of 52.8 years. Extrarenal features and typical Alport syndrome (AS) findings had a low prevalence in patients as follows: hearing loss, 16%; ocular lesions, 3%; basement membrane thickening, 18.4%; and podocyte foot process effacement, 6.9%. Data for 76 patients from 54 families emphasize extensive inter- and intrafamilial heterogeneity, with age at onset of ESRD ranging between 21 and 84 years (mean 52.8). CONCLUSIONS The analysis enabled a comparison of the clinical course of patients with typical ARAS or X-linked AS with those with heterozygous COL4A mutations diagnosed with TBMN or ADAS. Despite the consequence of a potential ascertainment bias, an important outcome is that TBM poses a global high risk of developing severe CKD, over a long follow-up, with a variable spectrum of other findings. The results are useful to practicing nephrologists for better evaluation of patients.
Collapse
Affiliation(s)
| | | | - Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
5
|
Pazik J, Oldak M, Oziębło D, Materkowska DD, Sadowska A, Malejczyk J, Durlik M. Effect of donor non-muscle myosin heavy chain (MYH9) gene polymorphisms on clinically relevant kidney allograft dysfunction. BMC Nephrol 2020; 21:380. [PMID: 32873246 PMCID: PMC7465840 DOI: 10.1186/s12882-020-02039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite its established association with chronic kidney disease (CKD) the role of myosin-9 (MYH9) gene variation on transplanted kidney function remains unknown. This study aimed at evaluating the effect of donor MYH9 nephrogenic variants on renal allograft function within the first post transplantation year. METHODS In the longitudinal kidney transplant study 207 deceased donors were genotyped for previously known risk MYH9 single nucleotide polymorphisms (SNPs). The predictor was MYH9 high-risk variants status. The primary outcome was mean eGFR found in low vs. high risk MYH9 genotypes between third and twelfth post-transplant month, the secondary outcome was the risk of proteinuria. RESULTS Distribution of genotypes remained in Hardy-Weinberg equilibrium. The T allele of rs3752462 (dominant model, TT or TC vs. CC) was associated with higher filtration rate (P = 0.05) in a multivariate analysis after adjusting for delayed graft function and donor sex. Two G alleles of rs136211 (recessive model, GG vs. GA or AA) resulted in doubling the risk of proteinuria (OR = 2.22; 95% CI = 1.18-4.37, P = 0.017) after adjusting for donor and recipient sex. CONCLUSION Deceased donor kidneys of European descent harboring MYH9 SNPs rs3752462 T allele show significantly superior estimated filtration rate while those of rs136211 GG genotype excessive risk of proteinuria. These findings, if replicated, may further inform and improve individualization of allocation and treatment policies.
Collapse
Affiliation(s)
- Joanna Pazik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, 59 Nowogrodzka Street, 02-006 Warsaw, Poland
| | - Monika Oldak
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Oziębło
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Dęborska Materkowska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, 59 Nowogrodzka Street, 02-006 Warsaw, Poland
| | - Anna Sadowska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, 59 Nowogrodzka Street, 02-006 Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, 59 Nowogrodzka Street, 02-006 Warsaw, Poland
| |
Collapse
|
6
|
Voskarides K, Papagregoriou G, Hadjipanagi D, Petrou I, Savva I, Elia A, Athanasiou Y, Pastelli A, Kkolou M, Hadjigavriel M, Stavrou C, Pierides A, Deltas C. COL4A5 and LAMA5 variants co-inherited in familial hematuria: digenic inheritance or genetic modifier effect? BMC Nephrol 2018; 19:114. [PMID: 29764427 PMCID: PMC5954460 DOI: 10.1186/s12882-018-0906-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/25/2017] [Accepted: 01/21/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND About 40-50% of patients with familial microscopic hematuria (FMH) caused by thin basement membrane nephropathy (TBMN) inherit heterozygous mutations in collagen IV genes (COL4A3, COL4A4). On long follow-up, the full phenotypic spectrum of these patients varies a lot, ranging from isolated MH or MH plus low-grade proteinuria to chronic renal failure of variable degree, including end-stage renal disease (ESRD). METHODS Here, we performed Whole Exome Sequencing (WES) in patients of six families, presenting with autosomal dominant FMH, with or without progression to proteinuria and loss of renal function, all previously found negative for severe collagen IV mutations. Hierarchical filtering of the WES data was performed, followed by mutation prediction analysis, Sanger sequencing and genetic segregation analysis. RESULTS In one family with four patients, we found evidence for the contribution of two co-inherited variants in two crucial genes expressed in the glomerular basement membrane (GBM); LAMA5-p.Pro1243Leu and COL4A5-p.Asp654Tyr. Mutations in COL4A5 cause classical X-linked Alport Syndrome, while rare mutations in the LAMA5 have been reported in patients with focal segmental glomerulosclerosis. The phenotypic spectrum of the patients includes hematuria, proteinuria, focal segmental glomerulosclerosis, loss of kidney function and renal cortical cysts. CONCLUSIONS A modifier role of LAMA5 on the background of a hypomorphic Alport syndrome causing mutation is a possible explanation of our findings. Digenic inheritance is another scenario, following the concept that mutations at both loci more accurately explain the spectrum of symptoms, but further investigation is needed under this concept. This is the third report linking a LAMA5 variant with human renal disease and expanding the spectrum of genes involved in glomerular pathologies accompanied by familial hematurias. The cystic phenotype overlaps with that of a mouse model, which carried a Lama5 hypomorphic mutation that caused severely reduced Lama5 protein levels and produced kidney cysts.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus. .,Medical School, University of Cyprus, Nicosia, Cyprus.
| | - Gregory Papagregoriou
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Despina Hadjipanagi
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Ioanelli Petrou
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Isavella Savva
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus
| | - Avraam Elia
- Department of Pediatric Nephrology, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | | | | | - Maria Kkolou
- Department of Nephrology, Larnaca General Hospital, Larnaca, Cyprus
| | | | | | - Alkis Pierides
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus.,Hippocrateon Hospital, Nicosia, Cyprus
| | - Constantinos Deltas
- Molecular Medicine Research Center, Department of Biological Sciences, University of Cyprus, 1, University Avenue, 2109, Nicosia, Cyprus. .,College of Medicine, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Deltas C. Digenic inheritance and genetic modifiers. Clin Genet 2018; 93:429-438. [PMID: 28977688 DOI: 10.1111/cge.13150] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/28/2022]
Abstract
Digenic inheritance (DI) concerns pathologies with the simplest form of multigenic etiology, implicating more than 1 gene (and perhaps the environment). True DI is when biallelic or even triallelic mutations in 2 distinct genes, in cis or in trans, are necessary and sufficient to cause pathology with a defined diagnosis. In true DI, a heterozygous mutation in each of 2 genes alone is not associated with a recognizable phenotype. Well-documented diseases with true DI are so far rare and follow non-Mendelian inheritance. DI is also encountered when by serendipity, pathogenic mutations responsible for 2 distinct disease entities are co-inherited, leading to a mixed phenotype. Also, we can consider many true monogenic Mendelian conditions, which show impressively broad spectrum of phenotypes due to pseudo-DI, as a result of co-inheriting genetic modifiers (GMs). I am herewith reviewing examples of GM and embark on presenting some recent notable examples of true DI, with wider discussion of the literature. Undeniably, the advent of high throughput sequencing is bound to unravel more patients suffering with true DI conditions and elucidate many important GM, thus impacting precision medicine.
Collapse
Affiliation(s)
- C Deltas
- College of Medicine, Qatar University, Doha, Qatar.,Department of Biological Sciences, Molecular Medicine Research Center, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
Pazik J, Lewandowski Z, Oldak M, Oziębło D, Perkowska Ptasinska A, Sadowska A, Nowacka-Cieciura E, Nowaczyk M, Malejczyk J, Kwiatkowski A, Durlik M. Association of MYH9 rs3752462 and rs5756168 Polymorphisms With Transplanted Kidney Artery Stenosis. Transplant Proc 2017; 48:1561-5. [PMID: 27496447 DOI: 10.1016/j.transproceed.2016.01.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 12/01/2022]
Abstract
Allelic variants of the MYH9 gene, encoding myosin nonmuscle heavy chain type IIA, have been shown to correlate with diminished glomerular filtration rates and end-stage kidney disease in individuals of Caucasian ancestry. Myosin nonmuscle heavy chain type IIA is expressed during development as well as in injured vessels and kidney structures. We hypothesized that MYH9 risk variants may correlate with kidney artery injury and dysfunctional healing, such as transplant renal artery stenosis (TRAS). Our study aimed at evaluating the association of MYH9 risk allelic variants (rs4821480, rs4821481, rs3752462, rs11089788, rs136211, rs5756168, rs2032487, and rs2239784) with TRAS, defined as >50% renal artery lumen reduction. Genotyping was performed with the use of custom Taqman genotyping assays on DNA samples (n = 295) from white deceased-donor kidney transplant recipients and genomic DNA from the corresponding donors. Statistical analysis was performed with the use of Kaplan-Meier estimates, log-rank tests, and proportional hazard Cox models. Recipients carrying TT in rs5756168 experienced diminished risk of TRAS (hazard ratio [HR], 0.31; P < .009), whereas organs carrying CC in rs3752462 were exposed to excessive TRAS risk (HR, 2.54; P < .047). In multivariate stepwise analysis TRAS was 10.9-fold increased in kidneys originating from rs3752462 CC, whereas the risk was decreased 3.45-fold (adjusted HR, 0.29) in recipients carrying rs5756168 TT (P < .007 and P < .033, respectively). Intracranial bleeding or trauma compared with other mechanisms of donor death diminished TRAS risk by 87% and 91%, respectively (P < .030 and P < .017). Our study is the first to identify genetic predisposition to transplant renal artery stenosis.
Collapse
Affiliation(s)
- J Pazik
- Department of Transplantation Medicine, Nephrology, and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Z Lewandowski
- Department of Epidemiology, Medical University of Warsaw, Warsaw, Poland
| | - M Oldak
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - D Oziębło
- Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - A Perkowska Ptasinska
- Department of Transplantation Medicine, Nephrology, and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - A Sadowska
- Department of Transplantation Medicine, Nephrology, and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - E Nowacka-Cieciura
- Department of Transplantation Medicine, Nephrology, and Internal Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - M Nowaczyk
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | - J Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - A Kwiatkowski
- Department of General and Transplantation Surgery, Medical University of Warsaw, Warsaw, Poland
| | - M Durlik
- Department of Transplantation Medicine, Nephrology, and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Wang JJ, Mao JH. The etiology of congenital nephrotic syndrome: current status and challenges. World J Pediatr 2016; 12:149-58. [PMID: 26961288 DOI: 10.1007/s12519-016-0009-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/11/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Congenital nephrotic syndrome (CNS), defined as heavy proteinuria, hypoalbuminemia, hyperlipidemia and edema presenting in the first 0-3 months of life, may be caused by congenital syphilis, toxoplasmosis, or congenital viral infections (such as cytomegalovirus). However, the majority of CNS cases are caused by monogenic defects of structural proteins that form the glomerular filtration barrier in the kidneys. Since 1998, an increasing number of genetic defects have been identified for their involvements in the pathogenesis of CNS, including NPHS1, NPHS2, WT1, PLCE1, and LAMB2. DATA SOURCES We searched databases such as PubMed, Elsevier and Wanfang with the following key words: congenital nephrotic syndrome, proteinuria, infants, neonate, congenital infection, mechanism and treatment; and we selected those publications written in English that we judged to be relevant to the topic of this review. RESULTS Based on the data present in the literature, we reviewed the following topics: 1) Infection associated CNS including congenital syphilis, congenital toxoplasmosis, and congenital cytomegalovirus infection; 2) genetic CNS including mutation of NPHS1 (Nephrin), NPHS2 (Podocin), WT1, LAMB2 (Laminin-β2), PLCE1 (NPHS3); 3) Other forms of CNS including maternal systemic lupus erythematosus, mercury poisoning, renal vein thrombosis, neonatal alloimmunization against neutral endopeptidase. CONCLUSION At present, the main challenge in CNS is to identify the cause of disease for individual patients. To make a definitive diagnosis, with the exclusion of infection-related CNS and maternal-associated disorders, pathology, family history, inheritance mode, and other accompanying congenital malformations are sometimes, but not always, useful indicators for diagnosing genetic CNS. Next-generation sequencing would be a more effective method for diagnosing genetic CNS in some patients, however, there are still some challenges with next-generation sequencing that need to be resolved in the future.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Hua Mao
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China. .,Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|