1
|
Alfonso EE, Deng Z, Boaretto D, Hood BL, Vasile S, Smith LH, Chambers JW, Chapagain P, Leng F. Novel and Structurally Diversified Bacterial DNA Gyrase Inhibitors Discovered through a Fluorescence-Based High-Throughput Screening Assay. ACS Pharmacol Transl Sci 2022; 5:932-944. [PMID: 36268121 PMCID: PMC9578135 DOI: 10.1021/acsptsci.2c00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 12/25/2022]
Abstract
Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.
Collapse
Affiliation(s)
- Eddy E. Alfonso
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Zifang Deng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Daniel Boaretto
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Becky L. Hood
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Vasile
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Layton H. Smith
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Jeremy W. Chambers
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Environmental Health Sciences, Florida
International University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
2
|
Assar S, Nosratabadi R, Khorramdel Azad H, Masoumi J, Mohamadi M, Hassanshahi G. A Review of Immunomodulatory Effects of Fluoroquinolones. Immunol Invest 2020; 50:1007-1026. [PMID: 32746743 DOI: 10.1080/08820139.2020.1797778] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Past researches indicate that some types of antibiotics, apart from their antimicrobial effects, have some other important effects which indirectly are exerted by modulating and regulating the immune system's mediators. Among the compounds with antimicrobial effects, fluoroquinolones (FQs) are known as synthetic antibiotics, which exhibit the property of decomposing of DNA and prevent bacterial growth by inactivating the enzymes involved in DNA twisting, including topoisomerase II (DNA gyrase) and IV. Interestingly, immune responses are indirectly modulated by FQs through suppressing pro-inflammatory cytokines, such as interleukin 1 (IL-1), IL-6, tumor necrosis factor-alpha (TNF-α), and super-inducing IL-2, which tend to increase both the growth and activity of T and B lymphocytes. In addition, they affect the development of immune responses by influencing of expression of other cytokines and mediators. This study aims to review past research on the immunomodulatory effects of FQs on the expression of cytokines, especially IL-2 and to discuss controversial investigations.
Collapse
Affiliation(s)
- Shokrollah Assar
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Nosratabadi
- Department of Immunology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Khorramdel Azad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahshad Mohamadi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
3
|
Alagumuthu M, Muralidharan VP, Andrew M, Ahmed MH, Iyer SK, Arumugam S. Computational Approaches to Develop Isoquinoline Based Antibiotics through DNA Gyrase Inhibition Mechanisms Unveiled through Antibacterial Evaluation and Molecular Docking. Mol Inform 2018; 37:e1800048. [DOI: 10.1002/minf.201800048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Manikandan Alagumuthu
- Dept. of Biotechnology, School of Bio-Sciences and Technology; Vellore Institute of Technology; Vellore- 632014 India
| | - Vivek Panyam Muralidharan
- Dept. of Chemistry, School of Advanced Sciences; Vellore Institute of Technology; Vellore- 632014 India
| | - Monic Andrew
- Dept. of Biotechnology, School of Bio-Sciences and Technology; Vellore Institute of Technology; Vellore- 632014 India
| | - Mohammed Habeeb Ahmed
- Dept. of Biotechnology, School of Bio-Sciences and Technology; Vellore Institute of Technology; Vellore- 632014 India
| | | | - Sivakumar Arumugam
- Dept. of Biotechnology, School of Bio-Sciences and Technology; Vellore Institute of Technology; Vellore- 632014 India
| |
Collapse
|
4
|
Panter F, Krug D, Baumann S, Müller R. Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria. Chem Sci 2018; 9:4898-4908. [PMID: 29910943 PMCID: PMC5982219 DOI: 10.1039/c8sc01325j] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/01/2018] [Indexed: 01/14/2023] Open
Abstract
There is astounding discrepancy between the genome-inscribed production capacity and the set of known secondary metabolite classes from many microorganisms as detected under laboratory cultivation conditions. Genome-mining techniques are meant to fill this gap, but in order to favor discovery of structurally novel as well as bioactive compounds it is crucial to amend genomics-based strategies with selective filtering principles. In this study, we followed a self-resistance guided approach aiming at the discovery of inhibitors of topoisomerase, known as valid target in both cancer and antibiotic therapy. A common host self-defense mechanism against such inhibitors in bacteria is mediated by so-called pentapeptide repeat proteins (PRP). Genes encoding the biosynthetic machinery for production of an alleged topoisomerase inhibitor were found on the basis of their collocation adjacent to a predicted PRP in the genome of the myxobacterium Pyxidicoccus fallax An d48, but to date no matching compound has been reported from this bacterium. Activation of this peculiar polyketide synthase type-II gene cluster in the native host as well as its heterologous expression led to the structure elucidation of new natural products that were named pyxidicyclines and provided an insight into their biosynthesis. Subsequent topoisomerase inhibition assays showed strong affinity to - and inhibition of - unwinding topoisomerases such as E. coli topoisomerase IV and human topoisomerase I by pyxidicyclines as well as precise selectivity, since E. coli topoisomerase II (gyrase) was not inhibited at concentrations up to 50 μg ml-1.
Collapse
Affiliation(s)
- Fabian Panter
- Department Microbial Natural Products , Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Department of Pharmaceutical Biotechnology , Saarland University , Campus E8.1 , 66123 Saarbrücken , Germany .
| | - Daniel Krug
- Department Microbial Natural Products , Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Department of Pharmaceutical Biotechnology , Saarland University , Campus E8.1 , 66123 Saarbrücken , Germany .
| | - Sascha Baumann
- Department Microbial Natural Products , Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Department of Pharmaceutical Biotechnology , Saarland University , Campus E8.1 , 66123 Saarbrücken , Germany .
| | - Rolf Müller
- Department Microbial Natural Products , Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) , Helmholtz Centre for Infection Research (HZI) , Department of Pharmaceutical Biotechnology , Saarland University , Campus E8.1 , 66123 Saarbrücken , Germany .
- German Centre for Infection Research , partner-site Hannover/Braunschweig , Germany
| |
Collapse
|
5
|
Mitchenall LA, Hipkin RE, Piperakis MM, Burton NP, Maxwell A. A rapid high-resolution method for resolving DNA topoisomers. BMC Res Notes 2018; 11:37. [PMID: 29338757 PMCID: PMC5771066 DOI: 10.1186/s13104-018-3147-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Agarose gel electrophoresis has been the mainstay technique for the analysis of DNA samples of moderate size. In addition to separating linear DNA molecules, it can also resolve different topological forms of plasmid DNAs, an application useful for the analysis of the reactions of DNA topoisomerases. However, gel electrophoresis is an intrinsically low-throughput technique and suffers from other potential disadvantages. We describe the application of the QIAxcel Advanced System, a high-throughput capillary electrophoresis system, to separate DNA topoisomers, and compare this technique with gel electrophoresis. RESULTS We prepared a range of topoisomers of plasmids pBR322 and pUC19, and a 339 bp DNA minicircle, and compared their separation by gel electrophoresis and the QIAxcel System. We found superior resolution with the QIAxcel System, and that quantitative analysis of topoisomer distributions was straightforward. We show that the QIAxcel system has advantages in terms of speed, resolution and cost, and can be applied to DNA circles of various sizes. It can readily be adapted for use in compound screening against topoisomerase targets.
Collapse
Affiliation(s)
- Lesley A. Mitchenall
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Rachel E. Hipkin
- Qiagen Ltd., Skelton House, Lloyd St. North, Manchester, M15 6SH UK
- Present Address: Fluidigm Ltd, 12 New Fetter Lane, London, EC4A 1JP UK
| | - Michael M. Piperakis
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Present Address: University Centre, Blackburn College, University Close, Blackburn, Lancashire BB2 1LH UK
| | - Nicolas P. Burton
- Inspiralis Ltd, Innovation Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH UK
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
6
|
Lee HW, Ryu HW, Kang MG, Park D, Oh SR, Kim H. Selective inhibition of monoamine oxidase A by purpurin, an anthraquinone. Bioorg Med Chem Lett 2017; 27:1136-1140. [PMID: 28188065 DOI: 10.1016/j.bmcl.2017.01.085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/17/2017] [Accepted: 01/27/2017] [Indexed: 12/30/2022]
Abstract
Monoamine oxidase (MAO) catalyzes the oxidation of monoamines that act as neurotransmitters. During a target-based screening of natural products using two isoforms of recombinant human MAO-A and MAO-B, purpurin (an anthraquinone derivative) was found to potently and selectively inhibit MAO-A, with an IC50 value of 2.50μM, and not to inhibit MAO-B. Alizarin (also an anthraquinone) inhibited MAO-A less potently with an IC50 value of 30.1μM. Furthermore, purpurin was a reversible and competitive inhibitor of MAO-A with a Ki value of 0.422μM. A comparison of their chemical structures suggested the 4-hydroxy group of purpurin might play an important role in its inhibition of MAO-A. Molecular docking simulation showed that the binding affinity of purpurin for MAO-A (-40.0kcal/mol) was higher than its affinity for MAO-B (-33.9kcal/mol), and that Ile 207 and Gly 443 of MAO-A were key residues for hydrogen bonding with purpurin. The findings of this study suggest purpurin is a potent, selective, reversible inhibitor of MAO-A, and that it be considered a new potential lead compound for development of novel reversible inhibitors of MAO-A (RIMAs).
Collapse
Affiliation(s)
- Hyun Woo Lee
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongju, Chungbuk 28116, Republic of Korea
| | - Myung-Gyun Kang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongju, Chungbuk 28116, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
7
|
Molecular docking, discovery, synthesis, and pharmacological properties of new 6-substituted-2-(3-phenoxyphenyl)-4-phenyl quinoline derivatives; an approach to developing potent DNA gyrase inhibitors/antibacterial agents. Bioorg Med Chem 2017; 25:1448-1455. [DOI: 10.1016/j.bmc.2017.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
|
8
|
Abstract
DNA metabolism embodies a number of biochemical pathways, which include targets of clinically used antibiotics as well as those that are only being explored as potential targets for inhibitory compounds. We give an overview of representative cell-based and enzymatic assays suitable for high-throughput-driven search for novel DNA metabolism inhibitors of established and novel DNA metabolism targets in bacteria. The protocol for a colorimetric coupled primase-inorganic pyrophosphatase assay developed by our group is described in detail.
Collapse
|
9
|
Zhou W, Wang Y, Xie J, Geraghty RJ. A fluorescence-based high-throughput assay to identify inhibitors of tyrosylprotein sulfotransferase activity. Biochem Biophys Res Commun 2017; 482:1207-1212. [DOI: 10.1016/j.bbrc.2016.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
|
10
|
Targeting bacterial topoisomerase I to meet the challenge of finding new antibiotics. Future Med Chem 2016; 7:459-71. [PMID: 25875873 DOI: 10.4155/fmc.14.157] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resistance of bacterial pathogens to current antibiotics has grown to be an urgent crisis. Approaches to overcome this challenge include identification of novel targets for discovery of new antibiotics. Bacterial topoisomerase I is present in all bacterial pathogens as a potential target for bactericidal topoisomerase poison inhibitors. Recent efforts have identified inhibitors of bacterial topoisomerase I with antibacterial activity. Additional research on the mode of action and binding site of these inhibitors would provide further validation of the target and establish that bacterial topoisomerase I is druggable. Bacterial topoisomerase I is a potentially high value target for discovery of new antibiotics. Demonstration of topoisomerase I as the cellular target of an antibacterial compound would provide proof-of-concept validation.
Collapse
|
11
|
Evison BJ, Sleebs BE, Watson KG, Phillips DR, Cutts SM. Mitoxantrone, More than Just Another Topoisomerase II Poison. Med Res Rev 2015; 36:248-99. [PMID: 26286294 DOI: 10.1002/med.21364] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023]
Abstract
Mitoxantrone is a synthetic anthracenedione originally developed to improve the therapeutic profile of the anthracyclines and is commonly applied in the treatment of breast and prostate cancers, lymphomas, and leukemias. A comprehensive overview of the drug's molecular, biochemical, and cellular pharmacology is presented here, beginning with the cardiotoxic nature of its predecessor doxorubicin and how these properties shaped the pharmacology of mitoxantrone itself. Although mitoxantrone is firmly established as a DNA topoisomerase II poison within mammalian cells, it is now clear that the drug interacts with a much broader range of biological macromolecules both covalently and noncovalently. Here, we consider each of these interactions in the context of their wider biological relevance to cancer therapy and highlight how they may be exploited to further enhance the therapeutic value of mitoxantrone. In doing so, it is now clear that mitoxantrone is more than just another topoisomerase II poison.
Collapse
Affiliation(s)
- Benny J Evison
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Keith G Watson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Don R Phillips
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Suzanne M Cutts
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| |
Collapse
|
12
|
Ekins S, Lage de Siqueira-Neto J, McCall LI, Sarker M, Yadav M, Ponder EL, Kallel EA, Kellar D, Chen S, Arkin M, Bunin BA, McKerrow JH, Talcott C. Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery. PLoS Negl Trop Dis 2015; 9:e0003878. [PMID: 26114876 PMCID: PMC4482694 DOI: 10.1371/journal.pntd.0003878] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/05/2015] [Indexed: 12/21/2022] Open
Abstract
Background Chagas disease is a neglected tropical disease (NTD) caused by the eukaryotic parasite Trypanosoma cruzi. The current clinical and preclinical pipeline for T. cruzi is extremely sparse and lacks drug target diversity. Methodology/Principal Findings In the present study we developed a computational approach that utilized data from several public whole-cell, phenotypic high throughput screens that have been completed for T. cruzi by the Broad Institute, including a single screen of over 300,000 molecules in the search for chemical probes as part of the NIH Molecular Libraries program. We have also compiled and curated relevant biological and chemical compound screening data including (i) compounds and biological activity data from the literature, (ii) high throughput screening datasets, and (iii) predicted metabolites of T. cruzi metabolic pathways. This information was used to help us identify compounds and their potential targets. We have constructed a Pathway Genome Data Base for T. cruzi. In addition, we have developed Bayesian machine learning models that were used to virtually screen libraries of compounds. Ninety-seven compounds were selected for in vitro testing, and 11 of these were found to have EC50 < 10μM. We progressed five compounds to an in vivo mouse efficacy model of Chagas disease and validated that the machine learning model could identify in vitro active compounds not in the training set, as well as known positive controls. The antimalarial pyronaridine possessed 85.2% efficacy in the acute Chagas mouse model. We have also proposed potential targets (for future verification) for this compound based on structural similarity to known compounds with targets in T. cruzi. Conclusions/ Significance We have demonstrated how combining chemoinformatics and bioinformatics for T. cruzi drug discovery can bring interesting in vivo active molecules to light that may have been overlooked. The approach we have taken is broadly applicable to other NTDs. Chagas disease is a neglected tropical disease (NTD) caused by the eukaryotic parasite Trypanosoma cruzi. The disease is endemic to Latin America but is increasingly found in North America and Europe, primarily through immigration, and the spread of this disease is bringing new attention to the need for novel, safe, and effective therapeutics to treat T. cruzi infection. We have used data from a phenotypic screen to build Bayesian models to predict anti-parasitic activity against T. cruzi in vitro. These models were used to score various small libraries of molecules. We selected less than 100 compounds for testing and found in vitro actives, some of which were tested in an in vivo efficacy model. We identified the antimalarial pyronaridine as having in vivo efficacy and provides us with a new starting point for further investigation and optimization.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, Burlingame, California, United States of America
- Collaborations in Chemistry, Fuquay-Varina, North Carolina, United States of America
- * E-mail:
| | - Jair Lage de Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, California, United States of America
| | - Laura-Isobel McCall
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, California, United States of America
| | - Malabika Sarker
- SRI International, Menlo Park, California, United States of America
| | - Maneesh Yadav
- SRI International, Menlo Park, California, United States of America
| | - Elizabeth L. Ponder
- Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford, California, United States of America
| | - E. Adam Kallel
- Collaborative Drug Discovery, Burlingame, California, United States of America
| | - Danielle Kellar
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Steven Chen
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Michelle Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Barry A. Bunin
- Collaborative Drug Discovery, Burlingame, California, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, California, United States of America
| | - Carolyn Talcott
- SRI International, Menlo Park, California, United States of America
| |
Collapse
|
13
|
Gajadeera C, Willby MJ, Green KD, Shaul P, Fridman M, Garneau-Tsodikova S, Posey JE, Tsodikov OV. Antimycobacterial activity of DNA intercalator inhibitors of Mycobacterium tuberculosis primase DnaG. J Antibiot (Tokyo) 2014; 68:153-7. [PMID: 25248725 DOI: 10.1038/ja.2014.131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/29/2014] [Accepted: 08/13/2014] [Indexed: 11/09/2022]
Abstract
Owing to the rise in drug resistance in tuberculosis combined with the global spread of its causative pathogen, Mycobacterium tuberculosis (Mtb), innovative anti mycobacterial agents are urgently needed. Recently, we developed a novel primase-pyrophosphatase assay and used it to discover inhibitors of an essential Mtb enzyme, primase DnaG (Mtb DnaG), a promising and unexplored potential target for novel antituberculosis chemotherapeutics. Doxorubicin, an anthracycline antibiotic used as an anticancer drug, was found to be a potent inhibitor of Mtb DnaG. In this study, we investigated both inhibition of Mtb DnaG and the inhibitory activity against in vitro growth of Mtb and M. smegmatis (Msm) by other anthracyclines, daunorubicin and idarubicin, as well as by less cytotoxic DNA intercalators: aloe-emodin, rhein and a mitoxantrone derivative. Generally, low-μM inhibition of Mtb DnaG by the anthracyclines was correlated with their low-μM minimum inhibitory concentrations. Aloe-emodin displayed threefold weaker potency than doxorubicin against Mtb DnaG and similar inhibition of Msm (but not Mtb) in the mid-μM range, whereas rhein (a close analog of aloe-emodin) and a di-glucosylated mitoxantrone derivative did not show significant inhibition of Mtb DnaG or antimycobacterial activity. Taken together, these observations strongly suggest that several clinically used anthracyclines and aloe-emodin target mycobacterial primase, setting the stage for a more extensive exploration of this enzyme as an antibacterial target.
Collapse
Affiliation(s)
- Chathurada Gajadeera
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Melisa J Willby
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Keith D Green
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Pazit Shaul
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Micha Fridman
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | | | - James E Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
14
|
Thomson NH, Santos S, Mitchenall LA, Stuchinskaya T, Taylor JA, Maxwell A. DNA G-segment bending is not the sole determinant of topology simplification by type II DNA topoisomerases. Sci Rep 2014; 4:6158. [PMID: 25142513 PMCID: PMC4139952 DOI: 10.1038/srep06158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/04/2014] [Indexed: 11/28/2022] Open
Abstract
DNA topoisomerases control the topology of DNA. Type II topoisomerases exhibit topology simplification, whereby products of their reactions are simplified beyond that expected based on thermodynamic equilibrium. The molecular basis for this process is unknown, although DNA bending has been implicated. To investigate the role of bending in topology simplification, the DNA bend angles of four enzymes of different types (IIA and IIB) were measured using atomic force microscopy (AFM). The enzymes tested were Escherichia coli topo IV and yeast topo II (type IIA enzymes that exhibit topology simplification), and Methanosarcina mazei topo VI and Sulfolobus shibatae topo VI (type IIB enzymes, which do not). Bend angles were measured using the manual tangent method from topographical AFM images taken with a novel amplitude-modulated imaging mode: small amplitude small set-point (SASS), which optimises resolution for a given AFM tip size and minimises tip convolution with the sample. This gave improved accuracy and reliability and revealed that all 4 topoisomerases bend DNA by a similar amount: ~120° between the DNA entering and exiting the enzyme complex. These data indicate that DNA bending alone is insufficient to explain topology simplification and that the ‘exit gate' may be an important determinant of this process.
Collapse
Affiliation(s)
- Neil H Thomson
- Department of Oral Biology, School of Dentistry and Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sergio Santos
- 1] Department of Oral Biology, School of Dentistry and Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom [2]
| | - Lesley A Mitchenall
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Tanya Stuchinskaya
- 1] Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom [2]
| | - James A Taylor
- 1] Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom [2]
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
15
|
Lin YS, Huang WC, Chen MS, Hsieh TS. Toward discovering new anti-cancer agents targeting topoisomerase IIα: a facile screening strategy adaptable to high throughput platform. PLoS One 2014; 9:e97008. [PMID: 24809695 PMCID: PMC4014593 DOI: 10.1371/journal.pone.0097008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 04/14/2014] [Indexed: 01/18/2023] Open
Abstract
Topoisomerases are a family of vital enzymes capable of resolving topological problems in DNA during various genetic processes. Topoisomerase poisons, blocking reunion of cleaved DNA strands and stabilizing enzyme-mediated DNA cleavage complex, are clinically important antineoplastic and anti-microbial agents. However, the rapid rise of drug resistance that impedes the therapeutic efficacy of these life-saving drugs makes the discovering of new lead compounds ever more urgent. We report here a facile high throughput screening system for agents targeting human topoisomerase IIα (Top2α). The assay is based on the measurement of fluorescence anisotropy of a 29 bp fluorophore-labeled oligonucleotide duplex. Since drug-stabilized Top2α-bound DNA has a higher anisotropy compared with free DNA, this assay can work if one can use a dissociating agent to specifically disrupt the enzyme/DNA binary complexes but not the drug-stabilized ternary complexes. Here we demonstrate that NaClO4, a chaotropic agent, serves a critical role in our screening method to differentiate the drug-stabilized enzyme/DNA complexes from those that are not. With this strategy we screened a chemical library of 100,000 compounds and obtained 54 positive hits. We characterized three of them on this list and demonstrated their effects on the Top2α–mediated reactions. Our results suggest that this new screening strategy can be useful in discovering additional candidates of anti-cancer agents.
Collapse
Affiliation(s)
- Yu-Shih Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Chen Huang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Mei-Shya Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tao-shih Hsieh
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
16
|
Mayer C, Janin YL. Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem Rev 2013; 114:2313-42. [PMID: 24313284 DOI: 10.1021/cr4003984] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudine Mayer
- Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
17
|
Sun J, Lv PC, Yin Y, Yuan RJ, Ma J, Zhu HL. Synthesis, structure and antibacterial activity of potent DNA gyrase inhibitors: N'-benzoyl-3-(4-bromophenyl)-1H-pyrazole-5-carbohydrazide derivatives. PLoS One 2013; 8:e69751. [PMID: 23922790 PMCID: PMC3726784 DOI: 10.1371/journal.pone.0069751] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/12/2013] [Indexed: 12/31/2022] Open
Abstract
A total of 19 novel (3a-3s) N'-benzoyl-3-(4-bromophenyl)-1H-pyrazole-5-carbohydrazide analogs were designed, synthesized, and evaluated for biological activities as potential DNA gyrase inhibitors. The results showed that compound 3k can strongly inhibit Staphylococcus aureus DNA gyrase and Bacillus subtilis DNA gyrase (with IC50 of 0.15 µg/mL and 0.25 µg/mL, respectively). Structure-activity relationships were also discussed base on the biological and docking simulation results.
Collapse
Affiliation(s)
- Juan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Peng-Cheng Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yong Yin
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Rong-Ju Yuan
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Jian Ma
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
- School of Life Sciences, Shandong University of Technology, Zibo, China
| |
Collapse
|