1
|
Habowski AN, Flesher JL, Bates JM, Tsai CF, Martin K, Zhao R, Ganesan AK, Edwards RA, Shi T, Wiley HS, Shi Y, Hertel KJ, Waterman ML. Transcriptomic and proteomic signatures of stemness and differentiation in the colon crypt. Commun Biol 2020; 3:453. [PMID: 32814826 PMCID: PMC7438495 DOI: 10.1038/s42003-020-01181-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Intestinal stem cells are non-quiescent, dividing epithelial cells that rapidly differentiate into progenitor cells of the absorptive and secretory cell lineages. The kinetics of this process is rapid such that the epithelium is replaced weekly. To determine how the transcriptome and proteome keep pace with rapid differentiation, we developed a new cell sorting method to purify mouse colon epithelial cells. Here we show that alternative mRNA splicing and polyadenylation dominate changes in the transcriptome as stem cells differentiate into progenitors. In contrast, as progenitors differentiate into mature cell types, changes in mRNA levels dominate the transcriptome. RNA processing targets regulators of cell cycle, RNA, cell adhesion, SUMOylation, and Wnt and Notch signaling. Additionally, global proteome profiling detected >2,800 proteins and revealed RNA:protein patterns of abundance and correlation. Paired together, these data highlight new potentials for autocrine and feedback regulation and provide new insights into cell state transitions in the crypt.
Collapse
Affiliation(s)
- Amber N Habowski
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Jessica L Flesher
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Jennifer M Bates
- Institute for Immunology, University of California Irvine, Irvine, CA, 92697, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kendall Martin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Anand K Ganesan
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Dermatology, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol 2019; 19:594-610. [PMID: 29858605 DOI: 10.1038/s41580-018-0020-3] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - K Lenhard Rudolph
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany. .,Medical Faculty Jena, University Hospital Jena (UKJ), Jena, Germany.
| |
Collapse
|
3
|
Danopoulos S, Schlieve CR, Grikscheit TC, Al Alam D. Fibroblast Growth Factors in the Gastrointestinal Tract: Twists and Turns. Dev Dyn 2017; 246:344-352. [PMID: 28198118 DOI: 10.1002/dvdy.24491] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factors (FGFs) are a family of conserved peptides that play an important role in the development, homeostasis, and repair processes of many organ systems, including the gastrointestinal tract. All four FGF receptors and several FGF ligands are present in the intestine. They play important roles in controlling cell proliferation, differentiation, epithelial cell restitution, and stem cell maintenance. Several FGFs have also been proven to be protective against gastrointestinal diseases such as inflammatory bowel diseases or to aid in regeneration after intestinal loss associated with short bowel syndrome. Herein, we review the multifaceted actions of canonical FGFs in intestinal development, homeostasis, and repair in rodents and humans. Developmental Dynamics 246:344-352, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soula Danopoulos
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Christopher R Schlieve
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Tracy C Grikscheit
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Department of Pediatric Surgery, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
4
|
Inhibition of Fgf signaling in short bowel syndrome increases weight loss and epithelial proliferation. Surgery 2017; 161:694-703. [DOI: 10.1016/j.surg.2016.08.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/03/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022]
|
5
|
Overexpression of miR-595 and miR-1246 in the sera of patients with active forms of inflammatory bowel disease. Inflamm Bowel Dis 2015; 21:520-30. [PMID: 25628040 DOI: 10.1097/mib.0000000000000285] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are dysregulated in the inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), which arise due to dysfunctional host-microbe interactions and impairment of the barrier function of the intestine. Here, we sought to determine whether circulating miRNAs are biomarkers of active colonic CD and UC and can provide insights into disease pathogenesis. Comparison was made with serum miRNAs in patients with rheumatoid arthritis (RA). METHODS Total serum RNA from patients with colonic CD, UC, and RA, and normal healthy adults was screened for disease-associated miRNAs by microarray analysis, with subsequent validation by quantitative reverse-transcription polymerase chain reaction. MiRNA targets were identified by luciferase reporter assays. RESULTS MiR-595 and miR-1246 were significantly upregulated in the sera of active colonic CD, UC, and RA patients, compared with healthy subjects; and in active colonic CD and UC compared with inactive disease. Luciferase reporter assays indicated that miR-595 inhibits the expression of neural cell adhesion molecule-1 and fibroblast growth factor receptor 2. CONCLUSIONS Serum miR-595 and miR-1246 are biomarkers of active CD, UC, and RA. These findings gain significance from reports that miR-595 impairs epithelial tight junctions, whereas miR-1246 indirectly activates the proinflammatory nuclear factor of activated T cells. miR-595 targets the cell adhesion molecule neural cell adhesion molecule-1, and fibroblast growth factor receptor 2, which plays a key role in the differentiation, protection, and repair of colonic epithelium, and maintenance of tight junctions. miR-595 and miR-1246 warrant testing as potential targets for therapeutic intervention in the treatment of inflammatory bowel disease.
Collapse
|
6
|
Vandamme SG, Maes GE, Raeymaekers JAM, Cottenie K, Imsland AK, Hellemans B, Lacroix G, Mac Aoidh E, Martinsohn JT, Martínez P, Robbens J, Vilas R, Volckaert FAM. Regional environmental pressure influences population differentiation in turbot (Scophthalmus maximus). Mol Ecol 2014; 23:618-36. [PMID: 24354713 DOI: 10.1111/mec.12628] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 12/02/2013] [Accepted: 12/08/2013] [Indexed: 01/18/2023]
Abstract
Unravelling the factors shaping the genetic structure of mobile marine species is challenging due to the high potential for gene flow. However, genetic inference can be greatly enhanced by increasing the genomic, geographical or environmental resolution of population genetic studies. Here, we investigated the population structure of turbot (Scophthalmus maximus) by screening 17 random and gene-linked markers in 999 individuals at 290 geographical locations throughout the northeast Atlantic Ocean. A seascape genetics approach with the inclusion of high-resolution oceanographical data was used to quantify the association of genetic variation with spatial, temporal and environmental parameters. Neutral loci identified three subgroups: an Atlantic group, a Baltic Sea group and one on the Irish Shelf. The inclusion of loci putatively under selection suggested an additional break in the North Sea, subdividing southern from northern Atlantic individuals. Environmental and spatial seascape variables correlated marginally with neutral genetic variation, but explained significant proportions (respectively, 8.7% and 10.3%) of adaptive genetic variation. Environmental variables associated with outlier allele frequencies included salinity, temperature, bottom shear stress, dissolved oxygen concentration and depth of the pycnocline. Furthermore, levels of explained adaptive genetic variation differed markedly between basins (3% vs. 12% in the North and Baltic Sea, respectively). We suggest that stable environmental selection pressure contributes to relatively strong local adaptation in the Baltic Sea. Our seascape genetic approach using a large number of sampling locations and associated oceanographical data proved useful for the identification of population units as the basis of management decisions.
Collapse
Affiliation(s)
- S G Vandamme
- Institute for Agricultural and Fisheries Research (ILVO), Animal Sciences Unit - Fisheries, Ankerstraat 1, B-8400, Ostend, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|