1
|
Zhu Y, Wang R, Fan Z, Luo D, Cai G, Li X, Han J, Zhuo L, Zhang L, Zhang H, Li Y, Wu S. Taurine Alleviates Chronic Social Defeat Stress-Induced Depression by Protecting Cortical Neurons from Dendritic Spine Loss. Cell Mol Neurobiol 2023; 43:827-840. [PMID: 35435537 PMCID: PMC9958166 DOI: 10.1007/s10571-022-01218-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Abnormal amino acid metabolism in neural cells is involved in the occurrence and development of major depressive disorder. Taurine is an important amino acid required for brain development. Here, microdialysis combined with metabonomic analysis revealed that the level of taurine in the extracellular fluid of the cerebral medial prefrontal cortex (mPFC) was significantly reduced in mice with chronic social defeat stress (CSDS)-induced depression. Therefore, taurine supplementation may be usable an intervention for depression. We found that taurine supplementation effectively rescued immobility time during a tail suspension assay and improved social avoidance behaviors in CSDS mice. Moreover, taurine treatment protected CSDS mice from impairments in dendritic complexity, spine density, and the proportions of different types of spines. The expression of N-methyl D-aspartate receptor subunit 2A, an important synaptic receptor, was largely restored in the mPFC of these mice after taurine supplementation. These results demonstrated that taurine exerted an antidepressive effect by protecting cortical neurons from dendritic spine loss and synaptic protein deficits.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Rui Wang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Ze Fan
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China ,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Danlei Luo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Guohong Cai
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xinyang Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Jiao Han
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lixia Zhuo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Li Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Haifeng Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Shengxi Wu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Warrington RE, Davies WIL, Hemmi JM, Hart NS, Potter IC, Collin SP, Hunt DM. Visual opsin expression and morphological characterization of retinal photoreceptors in the pouched lamprey (Geotria australis, Gray). J Comp Neurol 2020; 529:2265-2282. [PMID: 33336375 DOI: 10.1002/cne.25092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/09/2022]
Abstract
Lampreys are extant members of the agnathan (jawless) vertebrates that diverged ~500 million years ago, during a critical stage of vertebrate evolution when image-forming eyes first emerged. Among lamprey species assessed thus far, the retina of the southern hemisphere pouched lamprey, Geotria australis, is unique, in that it possesses morphologically distinct photoreceptors and expresses five visual photopigments. This study focused on determining the number of different photoreceptors present in the retina of G. australis and whether each cell type expresses a single opsin class. Five photoreceptor subtypes were identified based on ultrastructure and differential expression of one of each of the five different visual opsin classes (lws, sws1, sws2, rh1, and rh2) known to be expressed in the retina. This suggests, therefore, that the retina of G. australis possesses five spectrally and morphologically distinct photoreceptors, with the potential for complex color vision. Each photoreceptor subtype was shown to have a specific spatial distribution in the retina, which is potentially associated with changes in spectral radiance across different lines of sight. These results suggest that there have been strong selection pressures for G. australis to maintain broad spectral sensitivity for the brightly lit surface waters that this species inhabits during its marine phase. These findings provide important insights into the functional anatomy of the early vertebrate retina and the selection pressures that may have led to the evolution of complex color vision.
Collapse
Affiliation(s)
- Rachael E Warrington
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA.,School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Wayne I L Davies
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.,Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden.,Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia.,School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Nathan S Hart
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Ian C Potter
- Centre for Sustainable Aquatic Ecosystems, Murdoch University, Perth, Western Australia, Australia
| | - Shaun P Collin
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia.,School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - David M Hunt
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Horváth R, Battonyai I, Maász G, Schmidt J, Fekete ZN, Elekes K. Chemical-neuroanatomical organization of peripheral sensory-efferent systems in the pond snail (Lymnaea stagnalis). Brain Struct Funct 2020; 225:2563-2575. [PMID: 32951073 PMCID: PMC7544616 DOI: 10.1007/s00429-020-02145-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022]
Abstract
Perception and processing of chemical cues are crucial for aquatic gastropods, for proper elaboration of adaptive behavior. The pond snail, Lymnaea stagnalis, is a model species of invertebrate neurobiology, in which peripheral sensory neurons with different morphology and transmitter content have partly been described, but we have little knowledge regarding their functional morphological organization, including their possible peripheral intercellular connections and networks. Therefore the aim of our study was to characterize the sensory system of the tentacles and the lip, as primary sensory regions, and the anterior foot of Lymnaea with special attention to the transmitter content of the sensory neurons, and their relationship to extrinsic elements of the central nervous system. Numerous bipolar sensory cells were demonstrated in the epithelial layer of the peripheral organs, displaying immunoreactivity to antibodies raised against tyrosine hydroxylase, histamine, glutamate and two molluscan type oligopeptides, FMRFamide and Mytilus inhibitory peptide. A subepithelial plexus was formed by extrinsic serotonin and FMRFamide immunoreactive fibers, whereas in deeper regions axon processess of different origin with various immunoreactivities formed networks, too. HPLC-MS assay confirmed the presence of the low molecular weight signal molecules in the three examined areas. Following double-labeling immunohistochemistry, close arrangements were observed, formed by sensory neurons and extrinsic serotonergic (and FMRFamidergic) fibers at axo-dendritic, axo-somatic and axo-axonic levels. Our results suggest the involvement of a much wider repertoire of signal molecules in peripheral sensory processes of Lymnaea, which can locally be modified by central input, hence influencing directly the responses to environmental cues.
Collapse
Affiliation(s)
- Réka Horváth
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary.
| | - Izabella Battonyai
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| | - Gábor Maász
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| | - János Schmidt
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs, 7624, Pécs, Hungary
| | - Zsuzsanna N Fekete
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| | - Károly Elekes
- Department of Experimental Zoology, Centre for Ecological Research, Balaton Limnological Institute, 8237, Tihany, Hungary
| |
Collapse
|
4
|
Suzuki DG, Grillner S. The stepwise development of the lamprey visual system and its evolutionary implications. Biol Rev Camb Philos Soc 2018; 93:1461-1477. [PMID: 29488315 DOI: 10.1111/brv.12403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 01/11/2023]
Abstract
Lampreys, which represent the oldest group of living vertebrates (cyclostomes), show unique eye development. The lamprey larva has only eyespot-like immature eyes beneath a non-transparent skin, whereas after metamorphosis, the adult has well-developed image-forming camera eyes. To establish a functional visual system, well-organised visual centres as well as motor components (e.g. trunk muscles for locomotion) and interactions between them are needed. Here we review the available knowledge concerning the structure, function and development of the different parts of the lamprey visual system. The lamprey exhibits stepwise development of the visual system during its life cycle. In prolarvae and early larvae, the 'primary' retina does not have horizontal and amacrine cells, but does have photoreceptors, bipolar cells and ganglion cells. At this stage, the optic nerve projects mostly to the pretectum, where the dendrites of neurons in the nucleus of the medial longitudinal fasciculus (nMLF) appear to receive direct visual information and send motor outputs to the neck and trunk muscles. This simple neural circuit may generate negative phototaxis. Through the larval period, the lateral region of the retina grows again to form the 'secondary' retina and the topographic retinotectal projection of the optic nerve is formed, and at the same time, the extra-ocular muscles progressively develop. During metamorphosis, horizontal and amacrine cells differentiate for the first time, and the optic tectum expands and becomes laminated. The adult lamprey then has a sophisticated visual system for image-forming and visual decision-making. In the adult lamprey, the thalamic pathway (retina-thalamus-cortex/pallium) also transmits visual stimuli. Because the primary, simple light-detecting circuit in larval lamprey shares functional and developmental similarities with that of protochordates (amphioxus and tunicates), the visual development of the lamprey provides information regarding the evolutionary transition of the vertebrate visual system from the protochordate-type to the vertebrate-type.
Collapse
Affiliation(s)
- Daichi G Suzuki
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
5
|
Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia. Exp Eye Res 2018; 167:1-13. [DOI: 10.1016/j.exer.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/31/2017] [Accepted: 10/08/2017] [Indexed: 11/21/2022]
|
6
|
Opere CA, Heruye S, Njie-Mbye YF, Ohia SE, Sharif NA. Regulation of Excitatory Amino Acid Transmission in the Retina: Studies on Neuroprotection. J Ocul Pharmacol Ther 2017; 34:107-118. [PMID: 29267132 DOI: 10.1089/jop.2017.0085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Excitotoxicity occurs in neurons due to the accumulation of excitatory amino acids such as glutamate in the synaptic and extrasynaptic locations. In the retina, excessive glutamate concentrations trigger a neurotoxic cascade involving several mechanisms, including the elevation of intracellular calcium (Ca2+) and the activation of α-amino-3-hydroxy 5-methyl-4-iso-xazole-propionic acid/kainate (AMPA/KA) and N-methyl-d-aspartate (NMDA) receptors leading to retinal degeneration. Both ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs) are present in the mammalian retina. Indeed, due to the abundant expression of GluRs, the mammalian retina is highly susceptible to excitotoxic neurodegeneration. Excitotoxicity has been postulated to present a common downstream mechanism for several stimuli, including hypoglycemia, hypoxia, ischemia, and chronic neurodegenerative diseases. Experimental approaches to the study of neuroprotection in the retina have utilized insults that trigger hypoxia, hypoglycemia, or excitotoxicity. Using these experimental approaches, the neuroprotective potential of GluR agents, including the NMDA receptor modulators (MK801, ifenprodil, memantine); AMPA/KA receptor antagonist (CNQX); Group II and III mGluR agonists (LY354740, quisqualate); and Ca2+-channel blockers (diltiazem, lomerizine, verapamil, ω-conotoxin), and others (pituitary adenylate cyclase activating polypeptide, neuropeptide Y, acetylcholine receptor agonists) have been elucidated. In addition to corroborating the exocytotic role of excitatory amino acids in retinal degeneration, these studies affirm that multiple mechanism/s contribute to the prevention of damage caused by excitotoxicity in the retina. Therefore, it is feasible that several pathways are involved in protecting the retina from toxic insults in ocular neurodegenerative conditions such as glaucoma and retinal ischemia. Furthermore, these experimental models are viable tools for evaluating therapeutic candidates in ocular neuropathies.
Collapse
Affiliation(s)
- Catherine A Opere
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Segewkal Heruye
- 1 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Ya-Fatou Njie-Mbye
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Sunny E Ohia
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Najam A Sharif
- 2 Department of Environmental and Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas.,3 Santen Incorporated , Emeryville, California
| |
Collapse
|
7
|
Nivison-Smith L, Khoo P, Acosta ML, Kalloniatis M. Pre-treatment with vinpocetine protects against retinal ischemia. Exp Eye Res 2016; 154:126-138. [PMID: 27899287 DOI: 10.1016/j.exer.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 01/15/2023]
Abstract
Vinpocetine has been shown to have beneficial effects for tissues of the central nervous system subjected to ischemia and other related metabolic insults. We recently showed vinpocetine promotes glucose availability, prevents unregulated cation channel permeability and regulates glial reactivity when present during retinal ischemia. Less is known however about the ability of vinpocetine to protect against future ischemic insults. This study explores the effect of vinpocetine when used as a pre-treatment in an ex vivo model for retinal ischemia using cation channel permeability of agmatine (AGB) combined with immunohistochemistry as a measure for cell functionality. We found that vinpocetine pre-treatment reduced cation channel permeability and apoptotic marker immunoreactivity in the GCL and increased parvalbumin immunoreactivity of inner retinal neurons in the inner nuclear layer following ischemic insult. Vinpocetine pre-treatment also reduced Müller cell reactivity following ischemic insults of up to 120 min compared to untreated controls. Many of vinpocetine's effects however were transient in nature suggesting the drug can protect retinal neurons against future ischemic damage but may have limited long-term applications.
Collapse
Affiliation(s)
- Lisa Nivison-Smith
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia.
| | - Pauline Khoo
- School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia
| | - Monica L Acosta
- School of Optometry and Vision Science, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia; School of Optometry and Vision Science, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| |
Collapse
|
8
|
Sukeena JM, Galicia CA, Wilson JD, McGinn T, Boughman JW, Robison BD, Postlethwait JH, Braasch I, Stenkamp DL, Fuerst PG. Characterization and Evolution of the Spotted Gar Retina. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:403-421. [PMID: 27862951 DOI: 10.1002/jez.b.22710] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 12/17/2022]
Abstract
In this study, we characterize the retina of the spotted gar, Lepisosteus oculatus, a ray-finned fish. Gar did not undergo the whole genome duplication event that occurred at the base of the teleost fish lineage, which includes the model species zebrafish and medaka. The divergence of gars from the teleost lineage and the availability of a high-quality genome sequence make it a uniquely useful species to understand how genome duplication sculpted features of the teleost visual system, including photoreceptor diversity. We developed reagents to characterize the cellular organization of the spotted gar retina, including representative markers for all major classes of retinal neurons and Müller glia. We report that the gar has a preponderance of predicted short-wavelength shifted (SWS) opsin genes, including a duplicated set of SWS1 (ultraviolet) sensitive opsin encoding genes, a SWS2 (blue) opsin encoding gene, and two rod opsin encoding genes, all of which were expressed in retinal photoreceptors. We also report that gar SWS1 cones lack the geometric organization of photoreceptors observed in teleost fish species, consistent with the crystalline photoreceptor mosaic being a teleost innovation. Of note the spotted gar expresses both exo-rhodopsin (RH1-1) and rhodopsin (RH1-2) in rods. Exo-rhodopsin is an opsin that is not expressed in the retina of zebrafish and other teleosts, but rather is expressed in regions of the brain. This study suggests that exo-rhodopsin is an ancestral actinopterygian (ray finned fish) retinal opsin, and in teleosts its expression has possibly been subfunctionalized to the pineal gland.
Collapse
Affiliation(s)
- Joshua M Sukeena
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Carlos A Galicia
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | | | - Tim McGinn
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - Janette W Boughman
- Department of Integrative Biology and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
| | - Barrie D Robison
- Department of Biological Sciences, University of Idaho, Moscow, Idaho
| | - John H Postlethwait
- Department of Evolution, Development, and Genetics, University of Oregon, Eugene, Oregon
| | - Ingo Braasch
- Department of Integrative Biology and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
| | | | - Peter G Fuerst
- Department of Biological Sciences, University of Idaho, Moscow, Idaho.,WWAMI Medical Education Program, University of Washington School of Medicine, Moscow, Idaho
| |
Collapse
|
9
|
Cornide-Petronio ME, Anadón R, Barreiro-Iglesias A, Rodicio MC. Tryptophan hydroxylase and serotonin receptor 1A expression in the retina of the sea lamprey. Exp Eye Res 2015; 135:81-7. [DOI: 10.1016/j.exer.2015.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 04/25/2015] [Indexed: 11/16/2022]
|
10
|
Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina. Neurochem Int 2014; 66:1-14. [DOI: 10.1016/j.neuint.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/09/2013] [Accepted: 01/04/2014] [Indexed: 11/23/2022]
|
11
|
Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res 2013; 36:52-119. [DOI: 10.1016/j.preteyeres.2013.06.001] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/02/2013] [Indexed: 01/12/2023]
|