1
|
Rai P, Fessler MB. Mechanisms and effects of activation of innate immunity by mitochondrial nucleic acids. Int Immunol 2025; 37:133-142. [PMID: 39213393 DOI: 10.1093/intimm/dxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
In recent years, a growing number of roles have been identified for mitochondria in innate immunity. One principal mechanism is that the translocation of mitochondrial nucleic acid species from the mitochondrial matrix to the cytosol and endolysosomal lumen in response to an array of microbial and non-microbial environmental stressors has been found to serve as a second messenger event in the cell signaling of the innate immune response. Thus, mitochondrial DNA and RNA have been shown to access the cytosol through several regulated mechanisms involving remodeling of the mitochondrial inner and outer membranes and to access lysosomes via vesicular transport, thereby activating cytosolic [e.g. cyclic GMP-AMP synthase (cGAS), retinoic acid-inducible gene I (RIG-I)-like receptors], and endolysosomal (Toll-like receptor 7, 9) nucleic acid receptors that induce type I interferons and pro-inflammatory cytokines. In this mini-review, we discuss these molecular mechanisms of mitochondrial nucleic acid mislocalization and their roles in host defense, autoimmunity, and auto-inflammatory disorders. The emergent paradigm is one in which host-derived DNA interestingly serves as a signal amplifier in the innate immune response and also as an alarm signal for disturbances in organellar homeostasis. The apparent vast excess of mitochondria and mitochondrial DNA nucleoids per cell may thus serve to sensitize the cell response to stressors while ensuring an underlying reserve of intact mitochondria to sustain cellular metabolism. An improved understanding of these molecular mechanisms will hopefully afford future opportunities for therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Prashant Rai
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
2
|
Zeng D, Basilio AV, Pichay LA, Ateshian GA, Hansen OS, Romanov A, Morrison B. Experimental Measurement and Mathematical Quantification of Fixed-Charged Density in Rat and Pig Brain Tissue. Ann Biomed Eng 2024:10.1007/s10439-024-03666-y. [PMID: 39702733 DOI: 10.1007/s10439-024-03666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Cerebral edema is associated with poor prognosis because brain swelling within the rigid skull raises intracranial pressure, exacerbating secondary injuries following traumatic brain injury. Brain swelling can be characterized by triphasic biomechanics, which models brain tissue as a mixture of a deformable porous solid matrix with a negative fixed-charged density (FCD), water, and monovalent counterions. When brain cells die, the intracellular FCD is exposed, attracting cations into the cells. The increase in intracellular solute concentration generates osmotic pressure via the Gibbs-Donnan effect, driving water into cells and causing swelling. This study quantifies the FCD of rat and pig brain tissue by measuring the pressure generated by tissue within a confined volume as cells died. Rat brain tissue generated an averaged swelling pressure of 52.92 ± 20.40 mmHg (mean ± one standard deviation). Variations were observed between pig cortical white matter (7.14 ± 4.79 mmHg) and cortical gray matter (33.86 ± 11.89 mmHg). The corresponding FCD values were 42.54 ± 8.14 mEq/L for rat brain tissue, and 15.18 ± 5.38 mEq/L and 34.22 ± 6.31 mEq/L for pig cortical white and gray matter, respectively. Treating the rat brain tissue with DNAse, heparinase I, heparinase III, and chondroitinase ABC to degrade FCD significantly reduced swelling pressure. Good agreement between the experimental and numerically simulated responses supported the role of the FCD in cerebral edema formation. The reported FCD values can improve the biofidelity of computational models to predict post-traumatic cerebral edema, aiding the improvement of safety systems.
Collapse
Affiliation(s)
- Delin Zeng
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Andrew V Basilio
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Leanne A Pichay
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
- Department of Mechanical Engineering, Columbia University, 220 S. W. Mudd Building, 500 West 120th Street, New York, NY, 10027, USA
| | - Olivia S Hansen
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA
| | - Alexander Romanov
- Institute of Comparative Medicine, Columbia University, 650 West 168th Street, BB 1912B, New York, NY, 10032, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace MC 8904, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| |
Collapse
|
3
|
Zhang H, Ishii K, Shibata T, Ishii S, Hirao M, Lu Z, Takamura R, Kitano S, Miyachi H, Kageyama R, Itakura E, Kobayashi T. Fluctuation of lysosomal protein degradation in neural stem cells of the postnatal mouse brain. Development 2024; 151:dev202231. [PMID: 38265146 PMCID: PMC10911176 DOI: 10.1242/dev.202231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Lysosomes are intracellular organelles responsible for degrading diverse macromolecules delivered from several pathways, including the endo-lysosomal and autophagic pathways. Recent reports have suggested that lysosomes are essential for regulating neural stem cells in developing, adult and aged brains. However, the activity of these lysosomes has yet to be monitored in these brain tissues. Here, we report the development of a new probe to measure lysosomal protein degradation in brain tissue by immunostaining. Our results indicate that lysosomal protein degradation fluctuates in neural stem cells of the hippocampal dentate gyrus, depending on age and brain disorders. Neural stem cells increase their lysosomal activity during hippocampal development in the dentate gyrus, but aging and aging-related disease reduce lysosomal activity. In addition, physical exercise increases lysosomal activity in neural stem cells and astrocytes in the dentate gyrus. We therefore propose that three different stages of lysosomal activity exist: the state of increase during development, the stable state during adulthood and the state of reduction due to damage caused by either age or disease.
Collapse
Affiliation(s)
- He Zhang
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Karan Ishii
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Tatsuya Shibata
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Shunsuke Ishii
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Marika Hirao
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Zhou Lu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Risa Takamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
| | - Satsuki Kitano
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | - Eisuke Itakura
- Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Taeko Kobayashi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8315, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
4
|
Cui JZ, Chew ZH, Lim LHK. New insights into nucleic acid sensor AIM2: The potential benefit in targeted therapy for cancer. Pharmacol Res 2024; 200:107079. [PMID: 38272334 DOI: 10.1016/j.phrs.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The AIM2 inflammasome represents a multifaceted oligomeric protein complex within the innate immune system, with the capacity to perceive double-stranded DNA (dsDNA) and engage in diverse physiological reactions and disease contexts, including cancer. While originally conceived as a discerning DNA sensor, AIM2 has demonstrated its capability to discern various nucleic acid variations, encompassing RNA and DNA-RNA hybrids. Through its interaction with nucleic acids, AIM2 orchestrates the assembly of a complex involving multiple proteins, aptly named the AIM2 inflammasome, which facilitates the enzymatic cleavage of proinflammatory cytokines, namely pro-IL-1β and pro-IL-18. This process, in turn, underpins its pivotal biological role. In this review, we provide a systematic summary and discussion of the latest advancements in AIM2 sensing various types of nucleic acids. Additionally, we discuss the modulation of AIM2 activation, which can cause cell death, including pyroptosis, apoptosis, and autophagic cell death. Finally, we fully illustrate the evidence for the dual role of AIM2 in different cancer types, including both anti-tumorigenic and pro-tumorigenic functions. Considering the above information, we uncover the therapeutic promise of modulating the AIM2 inflammasome in cancer treatment.
Collapse
Affiliation(s)
- Jian-Zhou Cui
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS-Cambridge Immunophenotyping Centre, Life Science Institute, National University of Singapore, Singapore.
| | - Zhi Huan Chew
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lina H K Lim
- Translational Immunology Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Immunology Program, Life Sciences Institute, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Li SA, Meng XY, Zhang YJ, Chen CL, Jiao YX, Zhu YQ, Liu PP, Sun W. Progress in pH-Sensitive sensors: essential tools for organelle pH detection, spotlighting mitochondrion and diverse applications. Front Pharmacol 2024; 14:1339518. [PMID: 38269286 PMCID: PMC10806205 DOI: 10.3389/fphar.2023.1339518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
pH-sensitive fluorescent proteins have revolutionized the field of cellular imaging and physiology, offering insight into the dynamic pH changes that underlie fundamental cellular processes. This comprehensive review explores the diverse applications and recent advances in the use of pH-sensitive fluorescent proteins. These remarkable tools enable researchers to visualize and monitor pH variations within subcellular compartments, especially mitochondria, shedding light on organelle-specific pH regulation. They play pivotal roles in visualizing exocytosis and endocytosis events in synaptic transmission, monitoring cell death and apoptosis, and understanding drug effects and disease progression. Recent advancements have led to improved photostability, pH specificity, and subcellular targeting, enhancing their utility. Techniques for multiplexed imaging, three-dimensional visualization, and super-resolution microscopy are expanding the horizon of pH-sensitive protein applications. The future holds promise for their integration into optogenetics and drug discovery. With their ever-evolving capabilities, pH-sensitive fluorescent proteins remain indispensable tools for unravelling cellular dynamics and driving breakthroughs in biological research. This review serves as a comprehensive resource for researchers seeking to harness the potential of pH-sensitive fluorescent proteins.
Collapse
Affiliation(s)
- Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Jie Zhang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Li Chen
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Xue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Qing Zhu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Sun
- Department of Burn and Repair Reconstruction, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Contu VR, Sakai R, Fujiwara Y, Kabuta C, Wada K, Kabuta T. Nucleic acid uptake occurs independent of lysosomal acidification but dependent on ATP consumption during RNautophagy/DNautophagy. Biochem Biophys Res Commun 2023; 644:105-111. [PMID: 36640664 DOI: 10.1016/j.bbrc.2022.12.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
RNautophagy/DNautophagy (RDA) is an autophagic process that refers to the direct uptake of nucleic acids by lysosomes for degradation. Autophagy relies on lysosomes and lysosomal acidification is crucial for the degradation of intracellular components. However, whether lysosomal acidification interferes with nucleic acid uptake during RDA is unclear. In this study, we focused on vacuolar H+-ATPase (V-ATPase), the major proton pump responsible for maintaining an acidic pH in lysosomes. Our results show that lysosomes take up nucleic acids independently of the intralysosomal acidic pH during RDA. Isolated lysosomes treated with bafilomycin A1, a potent V-ATPase inhibitor, did not degrade, but took up RNA at similar levels as the control lysosomes. Similarly, the knockdown of Atp6v1a, the gene that encodes V-ATPase catalytic subunit A, did not affect the RNA uptake ability of isolated lysosomes. In addition, we demonstrated that nucleic acid uptake by isolated lysosomes necessitates ATP consumption, although V-ATPase is not required for the uptake process. These results broaden our understanding of the mechanisms underlying nucleic acid degradation via autophagy.
Collapse
Affiliation(s)
- Viorica Raluca Contu
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan; Department of Neurology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Ryohei Sakai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Yuuki Fujiwara
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan; Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Chihana Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan
| | - Tomohiro Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
7
|
Aslan E, Arslanyolu M. Discovery of deoxyribonuclease II-like proteins in bacteria. Mol Phylogenet Evol 2022; 174:107554. [PMID: 35714926 DOI: 10.1016/j.ympev.2022.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Deoxyribonuclease II (DNase II) is one of the earliest enzymes discovered in the history of biochemistry. Its role in apoptosis and development has been documented with great detail in eukaryotes. Prior in silico analyses showed its complete absence in bacterial genomes, with the exception of single bacterial genus: Burkholderia. It is therefore considered to be a eukaryotic enzyme. Here we show that the presence of DNase II is not limited to Burkholderia, as we find over one hundred DNase II-like sequences spanning 90 bacteria species belonging to 54 different genera and seven phyla. The majority of the significant hits (85%) come from Bacteroidetes and Proteobacteria phyla. Sequence analyses reveal that bacterial DNase II-like proteins possess a signature catalytic motif of eukaryotic DNase II. In phylogenetic analyses, we find that bacterial DNase II-like proteins are divided into two distinct clades. Our structural analyses reveal high levels of similarity between experimentally determined crystal structures of recombinant Burkholderia thailandensis DNase II and candidate bacterial DNase II-like proteins. We also biochemically show that Chromobacterium violaceum cell lysate possesses acidic DNase II-like activities. Collectively, our results indicate that DNase II has deeper evolutionary roots than previously thought. We argue that either some prokaryotic lineages have undergone losses of DNase II genes, resulting in rare conservation, or some lineages have acquired DNase II genes from eukaryotes through lateral gene transfer. We also discuss the possible involvement of DNase II as a part of an anti-phage defense system in bacteria.
Collapse
Affiliation(s)
- Erhan Aslan
- Department of Biology, Institute of Graduate Programs, Eskisehir Technical University, Iki Eylul Campus, 26555 Eskisehir, Turkey.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunus Emre Campus, 26470 Eskisehir, Turkey
| |
Collapse
|
8
|
Kyriazi ME, El-Sagheer AH, Medintz IL, Brown T, Kanaras AG. An Investigation into the Resistance of Spherical Nucleic Acids against DNA Enzymatic Degradation. Bioconjug Chem 2022; 33:219-225. [PMID: 35001632 DOI: 10.1021/acs.bioconjchem.1c00540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanoparticles coated with oligonucleotides, also termed spherical nucleic acids (SNAs), are at the forefront of scientific research and have been applied in vitro and in vivo for sensing, gene regulation, and drug delivery. They demonstrate unique properties stemming from the three-dimensional shell of oligonucleotides and present high cellular uptake. However, their resistance to enzymatic degradation is highly dependent on their physicochemical characteristics. In particular, the oligonucleotide loading of SNAs has been determined to be a critical parameter in SNA design. In order to ensure the successful function of SNAs, the degree of oligonucleotide loading has to be quantitatively determined to confirm that a dense oligonucleotide shell has been achieved. However, this can be time-consuming and may lead to multiple syntheses being required to achieve the necessary degree of surface functionalization. In this work we show how this limitation can be overcome by introducing an oligonucleotide modification. By replacing the phosphodiester bond on the oligonucleotide backbone with a phosphorothioate bond, SNAs even with a low DNA loading showed remarkable stability in the presence of nucleases. Furthermore, these chemically modified SNAs exhibited high selectivity and specificity toward the detection of mRNA in cellulo.
Collapse
Affiliation(s)
- Maria-Eleni Kyriazi
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO171BJ, United Kingdom
- College of Engineering and Technology, American University of the Middle East, Kuwait City, 15453, Kuwait
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Antonios G Kanaras
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO171BJ, United Kingdom
- Institute for Life Science, University of Southampton, Southampton, SO171BJ, United Kingdom
| |
Collapse
|
9
|
Deoxyribonucleases and Their Applications in Biomedicine. Biomolecules 2020; 10:biom10071036. [PMID: 32664541 PMCID: PMC7407206 DOI: 10.3390/biom10071036] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular DNA, also called cell-free DNA, released from dying cells or activated immune cells can be recognized by the immune system as a danger signal causing or enhancing inflammation. The cleavage of extracellular DNA is crucial for limiting the inflammatory response and maintaining homeostasis. Deoxyribonucleases (DNases) as enzymes that degrade DNA are hypothesized to play a key role in this process as a determinant of the variable concentration of extracellular DNA. DNases are divided into two families-DNase I and DNase II, according to their biochemical and biological properties as well as the tissue-specific production. Studies have shown that low DNase activity is both, a biomarker and a pathogenic factor in systemic lupus erythematosus. Interventional experiments proved that administration of exogenous DNase has beneficial effects in inflammatory diseases. Recombinant human DNase reduces mucus viscosity in lungs and is used for the treatment of patients with cystic fibrosis. This review summarizes the currently available published data about DNases, their activity as a potential biomarker and methods used for their assessment. An overview of the experiments with systemic administration of DNase is also included. Whether low-plasma DNase activity is involved in the etiopathogenesis of diseases remains unknown and needs to be elucidated.
Collapse
|
10
|
Liu Y, Wang J, Chen D, Kam WR, Sullivan DA. The Role of Hypoxia-Inducible Factor 1α in the Regulation of Human Meibomian Gland Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:1. [PMID: 32150252 PMCID: PMC7401459 DOI: 10.1167/iovs.61.3.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose We recently discovered that a hypoxic environment is beneficial for meibomian gland (MG) function. The mechanisms underlying this effect are unknown, but we hypothesize that it is due to an increase in the levels of hypoxia-inducible factor 1α (HIF1α). In other tissues, HIF1α is the primary regulator of cellular responses to hypoxia, and HIF1α expression can be induced by multiple stimuli, including hypoxia and hypoxia-mimetic agents. The objective of this study was to test our hypothesis. Methods Human eyelid tissues were stained for HIF1α. Immortalized human MG epithelial cells (IHMGECs) were cultured for varying time periods under normoxic (21% O2) or hypoxic (1% O2) conditions, in the presence or absence of the hypoxia-mimetic agent roxadustat (Roxa). IHMGECs were then processed for the analysis of cell number, HIF1α expression, lipid-containing vesicles, neutral and polar lipid content, DNase II activity, and intracellular pH. Results Our results show that HIF1α protein is present in human MG acinar epithelial cells in vivo. Our findings also demonstrate that exposure to 1% O2 or to Roxa increases the expression of HIF1α, the number of lipid-containing vesicles, the content of neutral lipids, and the activity of DNase II and decreases the pH in IHMGECs in vitro. Conclusions Our data support our hypothesis that the beneficial effect of hypoxia on the MG is mediated through an increased expression of HIF1α.
Collapse
|
11
|
Han X, Chen H, Gong H, Tang X, Huang N, Xu W, Tai H, Zhang G, Zhao T, Gong C, Wang S, Yang Y, Xiao H. Autolysosomal degradation of cytosolic chromatin fragments antagonizes oxidative stress-induced senescence. J Biol Chem 2020; 295:4451-4463. [PMID: 32047109 DOI: 10.1074/jbc.ra119.010734] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/05/2020] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress-induced DNA damage, the senescence-associated secretory phenotype (SASP), and impaired autophagy all are general features of senescent cells. However, the cross-talk among these events and processes is not fully understood. Here, using NIH3T3 cells exposed to hydrogen peroxide stress, we show that stress-induced DNA damage provokes the SASP largely via cytosolic chromatin fragment (CCF) formation, which activates a cascade comprising cGMP-AMP synthase (cGAS), stimulator of interferon genes protein (STING), NF-κB, and SASP, and that autolysosomal function inhibits this cascade. We found that CCFs accumulate in senescent cells with activated cGAS-STING-NF-κB signaling, promoting SASP and cellular senescence. We also present evidence that the persistent accumulation of CCFs in prematurely senescent cells is partially associated with a defect in DNA-degrading activity in autolysosomes and reduced abundance of activated DNase 2α. Intriguingly, we found that metformin- or rapamycin-induced activation of autophagy significantly lessened the size and levels of CCFs and repressed the activation of the cGAS-STING-NF-κB-SASP cascade and cellular senescence. These effects of autophagy activators indicated that autolysosomal function contributes to CCF clearance and SASP suppression, further supported by the fact that the lysosome inhibitor bafilomycin A1 blocked the role of autophagy-mediated CCF clearance and senescence repression.
Collapse
Affiliation(s)
- Xiaojuan Han
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China.,Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710049, China
| | - Honghan Chen
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Hui Gong
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ning Huang
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Weitong Xu
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Haoran Tai
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China.,Development and Regeneration Key Laboratory of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu 610031, China
| | - Gongchang Zhang
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Tingting Zhao
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Chuhui Gong
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Shuang Wang
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Yu Yang
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| | - Hengyi Xiao
- Laboratory for Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4 Road, Gaopeng Avenue, Chengdu 610041, China
| |
Collapse
|
12
|
Dana D, Pathak SK. A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L. Molecules 2020; 25:E698. [PMID: 32041276 PMCID: PMC7038230 DOI: 10.3390/molecules25030698] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
13
|
Nucleic acid carrier composed of a branched fatty acid lysine conjugate—Interaction studies with blood components. Colloids Surf B Biointerfaces 2019; 184:110547. [DOI: 10.1016/j.colsurfb.2019.110547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
|
14
|
Liu Y, Chen D, Chen X, Kam WR, Hatton MP, Sullivan DA. Hypoxia: A breath of fresh air for the meibomian gland. Ocul Surf 2018; 17:310-317. [PMID: 30528291 DOI: 10.1016/j.jtos.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Optimal meibomian gland (MG) function is critically important for the health and wellbeing of the ocular surface. We hypothesize that low oxygen (O2) conditions promote the function of human MG epithelial cells (HMGECs) and that human MGs exist in a relatively hypoxic environment. The purpose of this study was to test our hypotheses. METHODS We used human and mouse eyelid segments, and immortalized human MG epithelial cells (IHMGECs) in our studies. To evaluate oxygen (O2) levels in the mouse MG and vicinity, we injected pimonidazole (pimo), a hypoxia marker, before sacrifice. Human eyelid samples were stained with the hypoxia marker glucose transporter 1 (Glut-1). To determine the effect of low O2 levels on IHMGECs, we cultured cells under proliferating and differentiating conditions in both normoxic (21% O2) and hypoxic (3% O2) conditions for 5-15 days. IHMGECs were evaluated for cell number, neutral lipid content, lysosome accumulation, expression of biomarker proteins and DNase II activity. RESULTS Our results demonstrate that human and mouse MGs, but not the surrounding connective tissue, exist in a relatively hypoxic environment in vivo. In addition, our findings show that hypoxia does not influence IHMGEC numbers in basal or proliferating culture conditions, but does stimulate the expression of SREBP-1 in differentiating IHMGECs. Hypoxia also significantly increased DNase II activity, and apparently IHMGEC terminal differentiation. CONCLUSIONS Our Results support our hypotheses, and indicate that relative hypoxia promotes MG function.
Collapse
Affiliation(s)
- Yang Liu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, and Department of Ophthalmology, Harvard Medical School, Boston, 02114, USA.
| | - Di Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, and Department of Ophthalmology, Harvard Medical School, Boston, 02114, USA; Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiaomin Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, and Department of Ophthalmology, Harvard Medical School, Boston, 02114, USA; Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wendy R Kam
- Schepens Eye Research Institute, Massachusetts Eye and Ear, and Department of Ophthalmology, Harvard Medical School, Boston, 02114, USA
| | - Mark P Hatton
- Schepens Eye Research Institute, Massachusetts Eye and Ear, and Department of Ophthalmology, Harvard Medical School, Boston, 02114, USA; Ophthalmic Consultants of Boston, Boston, 02114, USA
| | - David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, and Department of Ophthalmology, Harvard Medical School, Boston, 02114, USA
| |
Collapse
|
15
|
Varela-Ramirez A, Abendroth J, Mejia AA, Phan IQ, Lorimer DD, Edwards TE, Aguilera RJ. Structure of acid deoxyribonuclease. Nucleic Acids Res 2017; 45:6217-6227. [PMID: 28369538 PMCID: PMC5449587 DOI: 10.1093/nar/gkx222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023] Open
Abstract
Deoxyribonuclease II (DNase II) is also known as acid deoxyribonuclease because it has optimal activity at the low pH environment of lysosomes where it is typically found in higher eukaryotes. Interestingly, DNase II has also been identified in a few genera of bacteria and is believed to have arisen via horizontal transfer. Here, we demonstrate that recombinant Burkholderia thailandensis DNase II is highly active at low pH in the absence of divalent metal ions, similar to eukaryotic DNase II. The crystal structure of B. thailandensis DNase II shows a dimeric quaternary structure which appears capable of binding double-stranded DNA. Each monomer of B. thailandensis DNase II exhibits a similar overall fold as phospholipase D (PLD), phosphatidylserine synthase (PSS) and tyrosyl-DNA phosphodiesterase (TDP), and conserved catalytic residues imply a similar mechanism. The structural and biochemical data presented here provide insights into the atomic structure and catalytic mechanism of DNase II.
Collapse
Affiliation(s)
- Armando Varela-Ramirez
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Adrian A Mejia
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave N, Seattle, WA 98109, USA
| | - Donald D Lorimer
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98110, USA.,Beryllium Discovery Corp., 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Renato J Aguilera
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
16
|
Fischer H, Buchberger M, Napirei M, Tschachler E, Eckhart L. Inactivation of DNase1L2 and DNase2 in keratinocytes suppresses DNA degradation during epidermal cornification and results in constitutive parakeratosis. Sci Rep 2017; 7:6433. [PMID: 28743926 PMCID: PMC5527052 DOI: 10.1038/s41598-017-06652-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
The stratum corneum of the epidermis constitutes the mammalian skin barrier to the environment. It is formed by cornification of keratinocytes, a process which involves the removal of nuclear DNA. Here, we investigated the mechanism of cornification-associated DNA degradation by generating mouse models deficient of candidate DNA-degrading enzymes and characterizing their epidermal phenotypes. In contrast to Dnase1l2−/− mice and keratinocyte-specific DNase2 knockout mice (Dnase2Δep), Dnase1l2−/−Dnase2Δep mice aberrantly retained nuclear DNA in the stratum corneum, a phenomenon commonly referred to as parakeratosis. The DNA within DNase1L2/DNase2-deficient corneocytes was partially degraded in a DNase1-independent manner. Isolation of corneocytes, i.e. the cornified cell components of the stratum corneum, and labelling of DNA demonstrated that corneocytes of Dnase1l2−/−Dnase2Δep mice contained DNA in a nucleus-shaped compartment that also contained nucleosomal histones but lacked the nuclear intermediate filament protein lamin A/C. Parakeratosis was not associated with altered corneocyte resistance to mechanical stress, changes in transepidermal water loss, or inflammatory infiltrates in Dnase1l2−/−Dnase2Δep mice. The results of this study suggest that cornification of epidermal keratinocytes depends on the cooperation of DNase1L2 and DNase2 and indicate that parakeratosis per se does not suffice to cause skin pathologies.
Collapse
Affiliation(s)
- Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.,Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Maria Buchberger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
17
|
Fischer H, Fumicz J, Rossiter H, Napirei M, Buchberger M, Tschachler E, Eckhart L. Holocrine Secretion of Sebum Is a Unique DNase2-Dependent Mode of Programmed Cell Death. J Invest Dermatol 2017; 137:587-594. [PMID: 27771328 DOI: 10.1016/j.jid.2016.10.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
Sebaceous glands produce sebum via holocrine secretion, a largely uncharacterized mode of programmed cell death that contributes to the homeostasis and barrier function of the skin. To determine the mechanism of DNA degradation during sebocyte cell death, we have inactivated candidate DNA-degrading enzymes by targeted gene deletions in mice. DNase1 and DNase1-like 2 were dispensable for nuclear DNA degradation in sebocytes. By contrast, epithelial cell-specific deletion of lysosomal DNase2 blocked DNA degradation in these cells. DNA breakdown during sebocyte differentiation coincided with the loss of LAMP1 and was accelerated by the abrogation of autophagy, the central cellular program of lysosome-dependent catabolism. Suppression of DNA degradation by the deletion of DNase2 resulted in aberrantly increased concentrations of residual DNA and decreased amounts of the DNA metabolite uric acid in secreted sebum. These results define holocrine secretion as a DNase2-mediated form of programmed cell death and suggest that autophagy-dependent metabolism, DNA degradation, and the molecular composition of sebum are mechanistically linked.
Collapse
Affiliation(s)
- Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Judith Fumicz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Rossiter
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Maria Buchberger
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Autonomous and non-autonomous roles of DNase II during cell death in C. elegans embryos. Biosci Rep 2015; 35:BSR20150055. [PMID: 26182365 PMCID: PMC4613723 DOI: 10.1042/bsr20150055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/23/2015] [Indexed: 12/02/2022] Open
Abstract
The method of ToLFP (topoisomerase labelled fluorescence probes) is useful for detecting the DNA fragments generated by DNase II in Caenorhabditis elegans embryos. It reveals ~70% ToLFP signals in dying cells and 30% in engulfing cells during embryogenesis. Generation of DNA fragments is a hallmark of cell apoptosis and is executed within the dying cells (autonomous) or in the engulfing cells (non-autonomous). The TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) method is used as an in situ assay of apoptosis by labelling DNA fragments generated by caspase-associated DNase (CAD), but not those by the downstream DNase II. In the present study, we report a method of ToLFP (topoisomerase ligation fluorescence probes) for directly visualizing DNA fragments generated by DNase II in Caenorhabditis elegans embryos. ToLFP analysis provided the first demonstration of a cell autonomous mode of DNase II activity in dying cells in ced-1 embryos, which are defective in engulfing apoptotic bodies. Compared with the number of ToLFP signals between ced-1 and wild-type (N2) embryos, a 30% increase in N2 embryos was found, suggesting that the ratio of non-autonomous and autonomous modes of DNase II was ~3–7. Among three DNase II mutant embryos (nuc-1, crn-6 and crn-7), nuc-1 embryos exhibited the least number of ToLFP. The ToLFP results confirmed the previous findings that NUC-1 is the major DNase II for degrading apoptotic DNA. To further elucidate NUC-1′s mode of action, nuc-1-rescuing transgenic worms that ectopically express free or membrane-bound forms of NUC-1 fusion proteins were utilized. ToLFP analyses revealed that anteriorly expressed NUC-1 digests apoptotic DNA in posterior blastomeres in a non-autonomous and secretion-dependent manner. Collectively, we demonstrate that the ToLFP method can be used to differentiate the locations of blastomeres where DNase II acts autonomously or non-autonomously in degrading apoptotic DNA.
Collapse
|
19
|
Identification of neutral and acidic deoxyribonuclease activities in Tetrahymena thermophila life stages. Eur J Protistol 2015; 51:173-85. [DOI: 10.1016/j.ejop.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
|
20
|
DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nat Commun 2015; 6:5853. [DOI: 10.1038/ncomms6853] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/14/2014] [Indexed: 12/12/2022] Open
|