1
|
Rohrer L, Kato S, Browne SA, Striedinger-Melo K, Healy K, Pomerantz JH. Acrylated Hyaluronic-Acid Based Hydrogel for the Treatment of Craniofacial Volumetric Muscle Loss. Tissue Eng Part A 2024; 30:704-711. [PMID: 38534963 DOI: 10.1089/ten.tea.2023.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Current treatment options for craniofacial volumetric muscle loss (VML) have disadvantages and cannot fully restore normal function. Bio-inspired semisynthetic acrylated hyaluronic acid (AcHyA) hydrogel, which fills irregularly shaped defects, resembles an extracellular matrix, and induces a minimal inflammatory response, has shown promise in experimental studies of extremity VML. We therefore sought to study AcHyA hydrogel in the treatment of craniofacial VML. For this, we used a novel model of masseter VML in the rat. Following the creation of a 5 mm × 5 mm injury to the superficial masseter and administration of AcHyA to the wound, masseters were explanted between 2 and 16 weeks postoperatively and were analyzed for evidence of muscle regeneration including fibrosis, defect size, and fiber cross-sectional area (FCSA). At 8 and 16 weeks, masseters treated with AcHyA showed significantly less fibrosis than nonrepaired controls and a smaller decrease in defect size. The mean FCSA among fibers near the defect was significantly greater among hydrogel-repaired than control masseters at 8 weeks, 12 weeks, and 16 weeks. These results show that the hydrogel mitigates the fibrotic healing response and wound contracture. Our findings also suggest that hydrogel-based treatments have potential use as a treatment for the regeneration of craniofacial VML and demonstrate a system for evaluating subsequent iterations of materials in VML injuries. Impact Statement Craniofacial volumetric muscle loss (VML) is a debilitating condition for which current treatment options are unable to restore normal appearance, or function. Tissue engineering approaches, such as hydrogel implants, may be an effective strategy to fill the volumetric defects and promote de novo muscle regeneration. In this study, we describe a novel rodent model for the study of craniofacial VML and a hyaluronic acid-based hydrogel that can be used as a treatment for the regeneration of craniofacial VML.
Collapse
Affiliation(s)
- Lucas Rohrer
- School of Medicine, University of California San Francisco, San Francisco, California, USA
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Shinji Kato
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Shane A Browne
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Katharine Striedinger-Melo
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| | - Kevin Healy
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Jason H Pomerantz
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Wang Z, Knight R, Stephens P, Ongkosuwito EM, Wagener FADTG, Von den Hoff JW. Stem cells and extracellular vesicles to improve preclinical orofacial soft tissue healing. Stem Cell Res Ther 2023; 14:203. [PMID: 37580820 PMCID: PMC10426149 DOI: 10.1186/s13287-023-03423-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Orofacial soft tissue wounds caused by surgery for congenital defects, trauma, or disease frequently occur leading to complications affecting patients' quality of life. Scarring and fibrosis prevent proper skin, mucosa and muscle regeneration during wound repair. This may hamper maxillofacial growth and speech development. To promote the regeneration of injured orofacial soft tissue and attenuate scarring and fibrosis, intraoral and extraoral stem cells have been studied for their properties of facilitating maintenance and repair processes. In addition, the administration of stem cell-derived extracellular vesicles (EVs) may prevent fibrosis and promote the regeneration of orofacial soft tissues. Applying stem cells and EVs to treat orofacial defects forms a challenging but promising strategy to optimize treatment. This review provides an overview of the putative pitfalls, promises and the future of stem cells and EV therapy, focused on orofacial soft tissue regeneration.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Rob Knight
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Phil Stephens
- Advanced Therapeutics Group, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - E M Ongkosuwito
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Dentistry, Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Centre, 6525EX, Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Lijten OW, Rosero Salazar DH, van Erp M, Bronkhorst E, Von den Hoff JW. Effect of niche components on masseter satellite cell differentiation on fibrin coatings. Eur J Oral Sci 2022; 130:e12849. [PMID: 35020959 PMCID: PMC9303748 DOI: 10.1111/eos.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
In skeletal muscles, niche factors stimulate satellite cells to activate and induce muscle regeneration after injury. In vitro, matrigel is widely used for myoblast differentiation, however, is unsuitable for clinical applications. Therefore, this study aimed to analyze attachment and differentiation of satellite cells into myotubes on fibrin coatings with selected niche components. The attachment of satellite cells to fibrin alone and fibrin with niche components (laminin, collagen‐IV, laminin‐entactin complex [LEC]) were compared to matrigel. Only on matrigel and fibrin with LEC, Pax7‐positive cells attached well. Then, LEC was selected to analyze proliferation, differentiation, and fusion indices. The proliferation index at day 1 on fibrin‐LEC (22.5%, SD 9.1%) was similar to that on matrigel (30.8% [SD 11.1%]). The differentiation index on fibrin‐LEC (28.7% [SD 6.1%] at day 5 and 32.8% [SD 6.7%] at day 7) was similar to that on matrigel (40.1% [5.1%] at day 5 and 27.1% [SD 4.3%] at day 7). On fibrin‐LEC, the fusion index at day 9 (26.9% [SD 11.5%]) was similar to that on matrigel (25.5% [SD 4.7%]). Our results showed that the addition of LEC enhances the formation of myotubes on fibrin. Fibrin with LEC might be suitable to enhance muscle regeneration after surgery such as cleft palate repair and other muscle defects.
Collapse
Affiliation(s)
- Olivier Willem Lijten
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Doris Haydee Rosero Salazar
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali, Colombia
| | - Merijn van Erp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewald Bronkhorst
- Department of Dentistry, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
An Evaluation of Muscle Repair Techniques: Implications in Musculoskeletal Healing and Corollaries in Oral-Facial Clefting. J Clin Med 2021; 10:jcm10214803. [PMID: 34768323 PMCID: PMC8584801 DOI: 10.3390/jcm10214803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
We performed an animal study to identify the techniques associated with the best muscle healing outcomes in cleft lip/palate surgery. The right triceps of thirty adult male Sprague-Dawley rats were cut and repaired by three different suture techniques: simple (n = 10), overlapping (n = 10), and splitting sutures (n = 10). Muscle tissues were isolated from 5 rats per group 1 and 8 weeks postoperation. The inflammatory response and muscle fiber healing were evaluated by hematoxylin and eosin (H&E) staining, Western blotting, immunohistochemistry for TNF-α and IL-1β, and immunofluorescence for laminin and MyoD. Grip strength (N/100 g) and spatial gait symmetry were evaluated before surgery and 1, 2, 4 and 8 weeks postoperation. Eight weeks postoperation, grip force per weight was significantly higher in the simple suture (median, 3.49; IQR, 3.28-3.66) and overlapping groups (median, 3.3; IQR, 3.17-3.47) than the splitting group (median, 2.91; IQR, 2.76-3.05). There was no significant difference in range of motion between groups. The simple group exhibited significant remission of inflammation by H&E staining and lower expression of TNF-α and IL-1β than the other groups by Western blotting and immunohistochemistry. Immunofluorescence revealed stronger expression of MyoD and weaker expression of laminin in the splitting group than in the other groups at week 8, indicating prolonged inflammation and healing followed by poor muscle fiber remodeling. Simple and overlapping sutures demonstrated similar functional healing, although greater inflammation and failure to maintain a thicker muscle belly were observed in the overlapping suture group compared with the simple suture group. Therefore, reconstruction of the philtral column with overlapping sutures alone may result in limited long-term fullness, and additional procedures may be needed.
Collapse
|
5
|
Rosero Salazar DH, van Rheden REM, van Hulzen M, Carvajal Monroy PL, Wagener FADTG, Von den Hoff JW. Fibrin with Laminin-Nidogen Reduces Fibrosis and Improves Soft Palate Regeneration Following Palatal Injury. Biomolecules 2021; 11:1547. [PMID: 34680180 PMCID: PMC8533998 DOI: 10.3390/biom11101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
This study aimed to analyze the effects of fibrin constructs enhanced with laminin-nidogen, implanted in the wounded rat soft palate. Fibrin constructs with and without laminin-nidogen were implanted in 1 mm excisional wounds in the soft palate of 9-week-old rats and compared with the wounded soft palate without implantation. Collagen deposition and myofiber formation were analyzed at days 3, 7, 28 and 56 after wounding by histochemistry. In addition, immune staining was performed for a-smooth muscle actin (a-SMA), myosin heavy chain (MyHC) and paired homeobox protein 7 (Pax7). At day 56, collagen areas were smaller in both implant groups (31.25 ± 7.73% fibrin only and 21.11 ± 6.06% fibrin with laminin-nidogen)) compared to the empty wounds (38.25 ± 8.89%, p < 0.05). Moreover, the collagen area in the fibrin with laminin-nidogen group was smaller than in the fibrin only group (p ˂ 0.05). The areas of myofiber formation in the fibrin only group (31.77 ± 10.81%) and fibrin with laminin-nidogen group (43.13 ± 10.39%) were larger than in the empty wounds (28.10 ± 11.68%, p ˂ 0.05). Fibrin-based constructs with laminin-nidogen reduce fibrosis and improve muscle regeneration in the wounded soft palate. This is a promising strategy to enhance cleft soft palate repair and other severe muscle injuries.
Collapse
Affiliation(s)
- Doris H. Rosero Salazar
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
- Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali 760008, Colombia
| | - René E. M. van Rheden
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| | - Manon van Hulzen
- Central Facility for Research with Laboratory Animals (CDL), Radboud University Medical Centre, 6525EZ Nijmegen, The Netherlands;
| | - Paola L. Carvajal Monroy
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, 3015GD Rotterdam, The Netherlands;
| | - Frank A. D. T. G. Wagener
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| | - Johannes W. Von den Hoff
- Department of Dentistry, Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6525EX Nijmegen, The Netherlands; (D.H.R.S.); (R.E.M.v.R.); (F.A.D.T.G.W.)
| |
Collapse
|
6
|
Emara A, Shah R. Recent update on craniofacial tissue engineering. J Tissue Eng 2021; 12:20417314211003735. [PMID: 33959245 PMCID: PMC8060749 DOI: 10.1177/20417314211003735] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
The craniofacial region consists of several different tissue types. These tissues are quite commonly affected by traumatic/pathologic tissue loss which has so far been traditionally treated by grafting procedures. With the complications and drawbacks of grafting procedures, the emerging field of regenerative medicine has proved potential. Tissue engineering advancements and the application in the craniofacial region is quickly gaining momentum although most research is still at early in vitro/in vivo stages. We aim to provide an overview on where research stands now in tissue engineering of craniofacial tissue; namely bone, cartilage muscle, skin, periodontal ligament, and mucosa. Abstracts and full-text English articles discussing techniques used for tissue engineering/regeneration of these tissue types were summarized in this article. The future perspectives and how current technological advancements and different material applications are enhancing tissue engineering procedures are also highlighted. Clinically, patients with craniofacial defects need hybrid reconstruction techniques to overcome the complexity of these defects. Cost-effectiveness and cost-efficiency are also required in such defects. The results of the studies covered in this review confirm the potential of craniofacial tissue engineering strategies as an alternative to avoid the problems of currently employed techniques. Furthermore, 3D printing advances may allow for fabrication of patient-specific tissue engineered constructs which should improve post-operative esthetic results of reconstruction. There are on the other hand still many challenges that clearly require further research in order to catch up with engineering of other parts of the human body.
Collapse
Affiliation(s)
- Aala’a Emara
- OMFS Department, Faculty of Dentistry,
Cairo University, Cairo, Egypt
- Division of Craniofacial and Surgical
Care, University of North Carolina (UNC) School of Dentistry, Chapel Hill, NC,
USA
| | - Rishma Shah
- Division of Craniofacial and Surgical
Care, University of North Carolina (UNC) School of Dentistry, Chapel Hill, NC,
USA
| |
Collapse
|
7
|
Rosero-Salazar DH, Carvajal-Monroy PL, Wagener FADTG, Von den Hoff JW. Functional analysis of the rat soft palate by real-time wireless electromyography. Arch Oral Biol 2020; 122:105021. [PMID: 33348206 DOI: 10.1016/j.archoralbio.2020.105021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of this study was to analyze the function of the palatal muscles in vivo by real-time wireless electromyography in rats. The effects of palatal wounding were also analyzed. METHODS Microelectrodes were implanted six rats; in the masseter muscle (two-rats) for comparison, in the unwounded soft palate (two-rats) and the soft palate that received a surgical wound (two-rats). Two weeks after implantation, a wound was made in the soft palate using a 1 mm biopsy-punch. Electromyographic measurements and video-recordings were taken weekly to monitor train-duration and peak-amplitude during eating, grooming and drinking. RESULTS The train-duration of the masseter muscle during eating was 0.49 ± 0.11 s (rat-1) and 0.56 ± 0.09 s (rat-2), which was higher than during grooming. In the unwounded soft palate the train-duration during eating was 0.63 ± 0.12 s (rat-1) and 0.69 ± 0.069 s (rat-2), which was higher than during grooming and drinking. The peak-amplitude for eating in the normal soft palate before surgery was 0.31 ± 0.001 mV (rat-1) and 0.33 ± 0.02 mV (rat-2). This decreased to 0.23 ± 0.03 mV and 0.25 ± 0.11 mV respectively, after surgery. For drinking the peak-amplitude was 0.30 ± 0.01 mV (rat-1) and 0.39 ± 0.01 mV (rat-2) before surgery, which decreased to 0.23 ± 0.09 mV and 0.20 ± 0.14 mV respectively, after surgery. CONCLUSION The reduced peak-amplitude suggests impaired soft palate function after wounding. This is the first study into the in vivo function of the soft palate after surgical wounding. This model will contribute to develop strategies to improve soft palate function in patients.
Collapse
Affiliation(s)
- Doris H Rosero-Salazar
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali, Colombia
| | - Paola L Carvajal-Monroy
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Formulation and Evaluation of <i>Binahong </i>Leaves Extract Gel on Wound Healing of the Palatal Mucosa. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2020. [DOI: 10.4028/www.scientific.net/jbbbe.48.85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wound healing is a complex and integrated process that requires the collective roles of various cells and tissues of the palatal mucosa. During the proliferation phase, the sum of fibroblasts increases in response to damaged oral tissues. Thus, the number of fibroblast cells in the palatal mucosa is a substantial indicator of wound healing. Binahong leaves possess the potential to accelerate wound healing by stimulating fibroblast proliferation. This study aimed to formulate and evaluate the effect of Binahong leaves extract (BLE) gel on wound healing of the palatal mucosa by investigating the fibroblast cell count in Wistar rats. This experimental study was carried out in several stages which included the collection and processing of fresh Binahong leaves followed by extraction with 70% ethanol using maceration method. The extract was formulated to be a gel product with a concentration of 3%, 5%, and 7%. BLE gel was administered to Wistar rats which were deliberately injured at the palatal mucosa by excision. Wound healing was assessed using hematoxylin-eosin staining and the number of fibroblast cells was counted. The result of fibroblast proliferation was analyzed by One Way ANOVA followed by Bonferroni’s test with a significance level of 95%. There were significant differences in fibroblast cell proliferation between all test groups except between base gel and Aloclair® gel, base gel and BLE gel 7%, Aloclair® gel and BLE gel 7%, BLE gel 3% and BLE gel 5%. Application of BLE gel 3% promotes better wound healing of the palatal mucosa of Wistar rats.
Collapse
|
9
|
Balzer C, Cleveland WJ, Jinka TR, Riess ML. Video laryngoscopic oral intubation in rats: a simple and effective method. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1032-L1035. [PMID: 32233786 DOI: 10.1152/ajplung.00498.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endotracheal intubation is a vital component of many rat in vivo experiments to secure the airway and allow controlled ventilation. Even in the hands of experienced researchers, however, the procedure remains technically challenging. The safest and most reliable way for human intubation is by video laryngoscopy. Previous attempts to apply this technique in rodents have been complicated and expensive. We, hereby, describe a novel, noninvasive method to safely intubate rats orally by video laryngoscopy, thus avoiding the need for a surgical tracheostomy. By repurposing a commercially available ear wax removal device, visualization of the rat larynx can be significantly enhanced. Because of its small diameter, integrated illumination, and a powerful camera with adequate focal length, the device has all of the necessary properties for exploring the upper airway of a rat. After identifying the vocal cords by video laryngoscopy, the insertion of an endotracheal tube (a 14G intravenous catheter) into the trachea under constant visual control is facilitated by using PE50 polyethylene tubing as a stylet (Seldinger technique). The procedure has been performed more than 60 times in our laboratory; all intubations were successful on the first attempt, and no adverse events were observed. We conclude that the described procedure is a simple and effective way to intubate a rat noninvasively, using inexpensive and commercially available equipment.
Collapse
Affiliation(s)
- Claudius Balzer
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - William J Cleveland
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tulasi R Jinka
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, Michigan
| | - Matthias L Riess
- Department of Anesthesiology, Tennessee Valley Healthcare System Veterans Affairs Medical Center, Vanderbilt University, Nashville, Tennessee.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
10
|
Rosero Salazar DH, Carvajal Monroy PL, Wagener FADTG, Von den Hoff JW. Orofacial Muscles: Embryonic Development and Regeneration after Injury. J Dent Res 2019; 99:125-132. [PMID: 31675262 PMCID: PMC6977159 DOI: 10.1177/0022034519883673] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Orofacial congenital defects such as cleft lip and/or palate are associated with impaired muscle regeneration and fibrosis after surgery. Also, other orofacial reconstructions or trauma may end up in defective muscle regeneration and fibrosis. The aim of this review is to discuss current knowledge on the development and regeneration of orofacial muscles in comparison to trunk and limb muscles. The orofacial muscles include the tongue muscles and the branchiomeric muscles in the lower face. Their main functions are chewing, swallowing, and speech. All orofacial muscles originate from the mesoderm of the pharyngeal arches under the control of cranial neural crest cells. Research in vertebrate models indicates that the molecular regulation of orofacial muscle development is different from that of trunk and limb muscles. In addition, the regenerative ability of orofacial muscles is lower, and they develop more fibrosis than other skeletal muscles. Therefore, specific approaches need to be developed to stimulate orofacial muscle regeneration. Regeneration may be stimulated by growth factors such fibroblast growth factors and hepatocyte growth factor, while fibrosis may be reduced by targeting the transforming growth factor β1 (TGFβ1)/myofibroblast axis. New approaches that combine these 2 aspects will improve the surgical treatment of orofacial muscle defects.
Collapse
Affiliation(s)
- D H Rosero Salazar
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - P L Carvajal Monroy
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands.,Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - F A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - J W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
11
|
Von den Hoff JW, Carvajal Monroy PL, Ongkosuwito EM, van Kuppevelt TH, Daamen WF. Muscle fibrosis in the soft palate: Delivery of cells, growth factors and anti-fibrotics. Adv Drug Deliv Rev 2019; 146:60-76. [PMID: 30107211 DOI: 10.1016/j.addr.2018.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/29/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The healing of skeletal muscle injuries after major trauma or surgical reconstruction is often complicated by the development of fibrosis leading to impaired function. Research in the field of muscle regeneration is mainly focused on the restoration of muscle mass while far less attention is paid to the prevention of fibrosis. In this review, we take as an example the reconstruction of the muscles in the soft palate of cleft palate patients. After surgical closure of the soft palate, muscle function during speech is often impaired by a shortage of muscle tissue as well as the development of fibrosis. We will give a short overview of the most common approaches to generate muscle mass and then focus on strategies to prevent fibrosis. These include anti-fibrotic strategies that have been developed for muscle and other organs by the delivery of small molecules, decorin and miRNAs. Anti-fibrotic compounds should be delivered in aligned constructs in order to obtain the organized architecture of muscle tissue. The available techniques for the preparation of aligned muscle constructs will be discussed. The combination of approaches to generate muscle mass with anti-fibrotic components in an aligned muscle construct may greatly improve the functional outcome of regenerative therapies for muscle injuries.
Collapse
Affiliation(s)
- Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Paola L Carvajal Monroy
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus Medical Center, P.O. Box 2060, 3000CB Rotterdam, The Netherlands.
| | - Edwin M Ongkosuwito
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500HB Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Schreurs M, Suttorp CM, Mutsaers HAM, Kuijpers-Jagtman AM, Von den Hoff JW, Ongkosuwito EM, Carvajal Monroy PL, Wagener FADTG. Tissue engineering strategies combining molecular targets against inflammation and fibrosis, and umbilical cord blood stem cells to improve hampered muscle and skin regeneration following cleft repair. Med Res Rev 2019; 40:9-26. [PMID: 31104334 PMCID: PMC6972684 DOI: 10.1002/med.21594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
Abstract
Cleft lip with or without cleft palate is a congenital deformity that occurs in about 1 of 700 newborns, affecting the dentition, bone, skin, muscles and mucosa in the orofacial region. A cleft can give rise to problems with maxillofacial growth, dental development, speech, and eating, and can also cause hearing impairment. Surgical repair of the lip may lead to impaired regeneration of muscle and skin, fibrosis, and scar formation. This may result in hampered facial growth and dental development affecting oral function and lip and nose esthetics. Therefore, secondary surgery to correct the scar is often indicated. We will discuss the molecular and cellular pathways involved in facial and lip myogenesis, muscle anatomy in the normal and cleft lip, and complications following surgery. The aim of this review is to outline a novel molecular and cellular strategy to improve musculature and skin regeneration and to reduce scar formation following cleft repair. Orofacial clefting can be diagnosed in the fetus through prenatal ultrasound screening and allows planning for the harvesting of umbilical cord blood stem cells upon birth. Tissue engineering techniques using these cord blood stem cells and molecular targeting of inflammation and fibrosis during surgery may promote tissue regeneration. We expect that this novel strategy improves both muscle and skin regeneration, resulting in better function and esthetics after cleft repair.
Collapse
Affiliation(s)
- Michaël Schreurs
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C Maarten Suttorp
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | - Johannes W Von den Hoff
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Edwin M Ongkosuwito
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paola L Carvajal Monroy
- Department of Oral & Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry, Section of Orthodontics and Craniofacial Biology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Cheng X, Huang H, Shi B, Li J. A novel intraoral injection technique for rat levator veli palatini muscle regeneration. Ann Anat 2019; 223:77-84. [DOI: 10.1016/j.aanat.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 11/17/2022]
|
14
|
Abstract
The aim of the present study is to test the feasibility of modified Z-plasty palatoplasty for cleft palate repair in surgeries and provide a new surgical method. Forty cleft palate patients were selected as participants and divided into 2 groups in random. Twenty patients in the experiment group were treated by modified Z-plasty palatoplasty while the other 20 patients in the control group by double opposing Z-plasty and Sommerlad palatoplasty. By evaluating and observing postoperative velopharyngeal movement, speech intelligibility, nasal leaking, analysis of CSL (Computer Structure Language) and X-ray velopharyngeal lateral radiographs, Modified Z-plasty palatoplasty achieved better results than traditional operation. Satisfactory linguistic effects on incomplete cleft palate can be observed after modified Z-plasty palatoplasty treatment. So this method may be used as a clinical choice.
Collapse
|
15
|
Gawron K, Łazarz-Bartyzel K, Kowalska A, Bereta G, Nowakowska Z, Plakwicz P, Potempa J, Fertala A, Chomyszyn-Gajewska M. Fibroblasts from recurrent fibrotic overgrowths reveal high rate of proliferation in vitro - findings from the study of hereditary and idiopathic gingival fibromatosis. Connect Tissue Res 2019; 60:29-39. [PMID: 30231645 DOI: 10.1080/03008207.2018.1517758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Investigate the content of fibrotic fibrils in gingival tissue and the proliferation of fibroblasts collected from recurrent and non-recurrent hereditary gingival fibromatosis (HGF) and idiopathic gingival fibromatosis (IGF). METHODS Gingival biopsies were collected from HGF (n = 3) and IGF (n = 3) donors with recurrent and non-recurrent gingival overgrowths and from a control group (Ctrl, n = 3). Hematoxylin staining was performed to evaluate the histomorphology of gingival tissue. Heidenhain's AZAN trichrome staining served for visualization of fibrotic fibrils in gingiva. Quantitative analysis of the content of fibrotic fibrils in gingival tissue was performed using a polarized light microscope. Proliferation was evaluated at 24 h, 48 h, and 72 h in fibroblast cultures using a cell proliferation ELISA assay based on 5-bromo-2'-deoxyuridine (BrdU). RESULTS Numerous blood vessels and fibroblasts were observed in recurrent overgrowths, whereas moderate blood vessels and moderate to scanty fibroblasts were detected in non-recurrent overgrowths. Heidenhain's staining revealed numerous collagen fibers in both recurrent and non-recurrent overgrowths. Quantitative analysis in a polarizing microscope showed significant accumulation of fibrotic fibrils exclusively in the overgrowths with the recurrence. In all time-points, increased proliferation of cells from all recurrent overgrowths was observed, but not from overgrowths which do not reoccur. CONCLUSIONS The study revealed that recurrent gingival overgrowths consist of highly fibrotic and dense connective tissue with numerous blood vessels and abundant fibroblasts. We also demonstrated that unlike fibroblasts derived from overgrowths, which did not present recurrence, fibroblasts derived from highly fibrotic and recurrent overgrowths maintain high rate of proliferation in vitro.
Collapse
Affiliation(s)
- Katarzyna Gawron
- a Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , Krakow , Poland
| | - Katarzyna Łazarz-Bartyzel
- b Department of Periodontology and Oral Medicine, Medical College , Jagiellonian University , Krakow , Poland
| | - Anna Kowalska
- a Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , Krakow , Poland
| | - Grzegorz Bereta
- a Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , Krakow , Poland
| | - Zuzanna Nowakowska
- a Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , Krakow , Poland
| | - Paweł Plakwicz
- c Department of Periodontology , Medical University of Warsaw , Warsaw , Poland
| | - Jan Potempa
- a Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology , Jagiellonian University , Krakow , Poland.,d Department of Oral Immunology and Infectious Diseases , School of Dentistry, University of Louisville , Louisville , KY , USA
| | - Andrzej Fertala
- e Department of Orthopaedic Surgery , Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia , PA , USA
| | - Maria Chomyszyn-Gajewska
- b Department of Periodontology and Oral Medicine, Medical College , Jagiellonian University , Krakow , Poland
| |
Collapse
|
16
|
Gawron K, Ochała-Kłos A, Nowakowska Z, Bereta G, Łazarz-Bartyzel K, Grabiec AM, Plakwicz P, Górska R, Fertala A, Chomyszyn-Gajewska M, Potempa J. TIMP-1 association with collagen type I overproduction in hereditary gingival fibromatosis. Oral Dis 2018; 24:1581-1590. [PMID: 29989318 DOI: 10.1111/odi.12938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To investigate the processes associated with the excessive production of collagen I in hereditary gingival fibromatosis (HGF). MATERIALS AND METHODS Three HGF subjects and five controls were enrolled in the study. Histomorphological and immunohistological analyses were performed on gingival tissues. The expression of heat-shock protein 47 (HSP47), collagen I, transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) by gingival fibroblasts isolated from HGF and controls was analysed using qRT-PCR, Western blotting and ELISA. RESULTS Considerable accumulation of fibrotic fibrils and increased synthesis of HSP47 were noted in HGF gingival tissues. The synthesis of collagen I, HSP47, TGF-β1, CTGF and TIMP-1 was significantly elevated in HGF gingival fibroblasts compared with controls, while the production of MMP-1 was decreased. CONCLUSIONS We report that fibrosis in HGF gingival tissues is associated with increased synthesis of HSP47. This finding was confirmed by an in vitro study, where excessive production of collagen I was associated with increased synthesis of HSP47, TGF-β1 and CTGF by HGF gingival fibroblasts. Moreover, the shift in the TIMP-1/MMP-1 ratio identifies increased synthesis of TIMP-1 as one of the processes associated with collagen I overproduction in HGF fibroblasts.
Collapse
Affiliation(s)
- Katarzyna Gawron
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Ochała-Kłos
- Department of Anatomy, Medical College, Jagiellonian University, Krakow, Poland
| | - Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grzegorz Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paweł Plakwicz
- Department of Periodontology, Medical University of Warsaw, Warsaw, Poland
| | - Renata Górska
- Department of Periodontology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
17
|
Cheng X, Huang H, Luo X, Shi B, Li J. Wnt7a induces satellite cell expansion, myofiber hyperplasia and hypertrophy in rat craniofacial muscle. Sci Rep 2018; 8:10613. [PMID: 30006540 PMCID: PMC6045621 DOI: 10.1038/s41598-018-28917-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023] Open
Abstract
Craniofacial muscles drive critical functions in the head, including speech, feeding and expression. Compared with their counterparts in trunk and limbs, craniofacial muscles are of distinct embryonic origins, which might consequently lead to different growth patterns and regenerative potential. In this study, rat levator veli palatini muscle and masseter muscle were compared with tibialis anterior muscle in their response to exogenous Wnt7a stimulus, which has been proved effective in promoting muscle regeneration in the limbs. Histological, cellular and molecular analyses were performed both under basal condition and after a single dose injection of recombinant human Wnt7a. Under basal condition, levator veli palatini muscle demonstrated considerably more satellite cells than the others. After Wnt7a administration, regeneration-related activities, including satellite cell expansion, myofiber hyperplasia and hypertrophy were generally observed in all three muscles, but with obvious differences in the extent. The composition of fast/slow myofibers underwent substantial alterations, and the pattern varied among the three muscles. Location-specific alterations in the expression level of core components in planar cell polarity pathway, Akt/mTOR pathway and myostatin pathway were also observed. In conclusion, both craniofacial and limb muscles could be effectively expanded by exogenous Wnt7a stimulus, but muscle-to-muscle variations in response patterns existed.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Xiangyou Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Jingtao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China.
| |
Collapse
|
18
|
Cheng X, Song L, Lan M, Shi B, Li J. Morphological and molecular comparisons between tibialis anterior muscle and levator veli palatini muscle: A preliminary study on their augmentation potential. Exp Ther Med 2017; 15:247-253. [PMID: 29375687 PMCID: PMC5763646 DOI: 10.3892/etm.2017.5391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/14/2017] [Indexed: 02/05/2023] Open
Abstract
Tibialis anterior (TA) muscle and other somite-derived limb muscles remain the prototype in skeletal muscle study. The majority of head muscles, however, develop from branchial arches and maintain a number of heterogeneities in comparison with their limb counterparts. Levator veli palatini (LVP) muscle is a deep-located head muscle responsible for breathing, swallowing and speech, and is central to cleft palate surgery, yet lacks morphological and molecular investigation. In the present study, multiscale in vivo analyses were performed to compare TA and LVP muscle in terms of their myofiber composition, in-situ stem cell population and augmentation potential. TA muscle was identified to be primarily composed of type 2B myofibers while LVP muscle primarily consisted of type 2A and 2X myofibers. In addition, LVP muscle maintained a higher percentage of centrally-nucleated myofibers and a greater population of satellite cells. Notably, TA and LVP muscle responded to exogenous Wnt7a stimulus in different ways. Three weeks after Wnt7a administration, TA muscle exhibited an increase in myofiber number and a decrease in myofiber size, while LVP muscle demonstrated no significant changes in myofiber number or myofiber size. These results suggested that LVP muscle exhibits obvious differences in comparison with TA muscle. Therefore, knowledge acquired from TA muscle studies requires further testing before being applied to LVP muscle.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Song
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Lan
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bing Shi
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingtao Li
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
19
|
Carvajal Monroy PL, Grefte S, Kuijpers-Jagtman AM, Von den Hoff JW, Wagener FADTG. Neonatal Satellite Cells Form Small Myotubes In Vitro. J Dent Res 2016; 96:331-338. [PMID: 27856964 DOI: 10.1177/0022034516679136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although palatal muscle reconstruction in patients with cleft palate takes place during early childhood, normal speech development is often not achieved. We hypothesized that the intrinsic properties of head satellite cells (SCs) and the young age of these patients contribute to the poor muscle regeneration after surgery. First, we studied the fiber type distribution and the expression of SC markers in ex vivo muscle tissue from head (branchiomeric) and limb (somite-derived) muscles from neonatal (2-wk-old) and young (9-wk-old) rats. Next, we cultured SCs isolated from these muscles for 5, 7, and 9 d, and investigated the in vitro expression of SC markers, as well as changes in proliferation, early differentiation, and fusion index (myotube formation) in these cells. In our ex vivo samples, we found that virtually all myofibers in both the masseter (Mass) and the levator veli palatini (LVP) muscles contained fast myosin heavy chain (MyHC), and a small percentage of digastric (Dig) and extensor digitorum longus myofibers also contained slow MyHC. This was independent of age. More SCs were found in muscles from neonatal rats as compared with young rats [17.6 (3.8%) v. 2.3 (1.6%); P < 0.0001]. In vitro, young branchiomeric head muscle (BrHM) SCs proliferated longer and differentiated later than limb muscle SCs. No differences were found between SC cultures from the different BrHMs. SC cultures from neonatal muscles showed a much higher proliferation index than those from young animals at 5 d (0.8 v. 0.2; P < 0.001). In contrast, the fusion index in neonate SCs was about twice as low as that in SCs from young muscles at 9 d [27.6 (1.4) v. 62.8 (10.2), P < 0.0001]. In conclusion, SCs from BrHM differ from limb muscles especially in their delayed differentiation. SCs from neonatal muscles form myotubes less efficiently than those from young muscles. These age-dependent differences in stem cell properties urge careful consideration for future clinical applications in patients with cleft palate.
Collapse
Affiliation(s)
- P L Carvajal Monroy
- 1 Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - S Grefte
- 2 Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - A M Kuijpers-Jagtman
- 1 Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J W Von den Hoff
- 1 Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - F A D T G Wagener
- 1 Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Effect of Dissection and Reconstruction of Palatal Muscles on Morphological Features and Ultrastructure of the Oral Musculature in Cats. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6807678. [PMID: 27699171 PMCID: PMC5028850 DOI: 10.1155/2016/6807678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/03/2016] [Accepted: 08/16/2016] [Indexed: 02/05/2023]
Abstract
The study was designed to determine the effect of dissection and reconstruction of palatal muscles on muscle morphology in cats. 27 cats were randomly divided into three groups according to the extent of muscle dissection from the palatal midline. All dissections were performed from the posterior border of the hard palate, and the muscles were allowed to reconstruct over time. The morphological features were determined by hematoxylin and eosin staining of tissue sections, and ultrastructure was observed under a transmission electron microscope. As a result, no obvious differences were evident in the morphological features or ultrastructure of animals in the <1/3rd and 1/3rd-2/3rd area groups. In the >2/3rd area group, the muscles fibers were disordered and inflammatory cell infiltration and naïve muscle cells were found at one month after surgery. At the second and third month after surgery, the muscle fibers showed regular alignment, the naïve muscle fibers gradually matured, and the number of infiltrating inflammatory cells decreased. Muscle ultrastructure analysis revealed that myocommata were correctly aligned, and the Z line was more distinct. In conclusion, extensive dissection of palatal muscles does not result in fibrosis. Injury to oral musculature can be repaired and the musculature regenerated over time.
Collapse
|
21
|
Carvajal Monroy PL, Grefte S, Kuijpers-Jagtman AM, Helmich MP, Wagener FA, Von den Hoff JW. Fibrosis impairs the formation of new myofibers in the soft palate after injury. Wound Repair Regen 2015. [DOI: 10.1111/wrr.12345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Paola L. Carvajal Monroy
- Department of Orthodontics and Craniofacial Biology; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - Sander Grefte
- Department of Human and Animal Physiology; Wageningen University; Wageningen The Netherlands
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - Maria P.A.C. Helmich
- Department of Orthodontics and Craniofacial Biology; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - Frank A.D.T.G. Wagener
- Department of Orthodontics and Craniofacial Biology; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| | - Johannes W. Von den Hoff
- Department of Orthodontics and Craniofacial Biology; Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center; Nijmegen The Netherlands
| |
Collapse
|
22
|
Carvajal Monroy PL, Yablonka-Reuveni Z, Grefte S, Kuijpers-Jagtman AM, Wagener FADTG, Von den Hoff JW. Isolation and Characterization of Satellite Cells from Rat Head Branchiomeric Muscles. J Vis Exp 2015:e52802. [PMID: 26274878 PMCID: PMC4544364 DOI: 10.3791/52802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fibrosis and defective muscle regeneration can hamper the functional recovery of the soft palate muscles after cleft palate repair. This causes persistent problems in speech, swallowing, and sucking. In vitro culture systems that allow the study of satellite cells (myogenic stem cells) from head muscles are crucial to develop new therapies based on tissue engineering to promote muscle regeneration after surgery. These systems will offer new perspectives for the treatment of cleft palate patients. A protocol for the isolation, culture and differentiation of satellite cells from head muscles is presented. The isolation is based on enzymatic digestion and trituration to release the satellite cells. In addition, this protocol comprises an innovative method using extracellular matrix gel coatings of millimeter size, which requires only low numbers of satellite cells for differentiation assays.
Collapse
Affiliation(s)
- Paola L Carvajal Monroy
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center
| | | | - Sander Grefte
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center
| | - Anne Marie Kuijpers-Jagtman
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center;
| |
Collapse
|
23
|
Brouwer KM, Lundvig DMS, Middelkoop E, Wagener FADTG, Von den Hoff JW. Mechanical cues in orofacial tissue engineering and regenerative medicine. Wound Repair Regen 2015; 23:302-11. [PMID: 25787133 DOI: 10.1111/wrr.12283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/11/2015] [Indexed: 01/26/2023]
Abstract
Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of tissues and organs in conditions such as birth defects or after injury. A crucial factor in cell differentiation, tissue formation, and tissue function is mechanical strain. Regardless of this, mechanical cues are not yet widely used in TE/RM. The effects of mechanical stimulation on cells are not straight-forward in vitro as cellular responses may differ with cell type and loading regime, complicating the translation to a therapeutic protocol. We here give an overview of the different types of mechanical strain that act on cells and tissues and discuss the effects on muscle, and skin and mucosa. We conclude that presently, sufficient knowledge is lacking to reproducibly implement external mechanical loading in TE/RM approaches. Mechanical cues can be applied in TE/RM by fine-tuning the stiffness and architecture of the constructs to guide the differentiation of the seeded cells or the invading surrounding cells. This may already improve the treatment of orofacial clefts and other disorders affecting soft tissues.
Collapse
Affiliation(s)
- Katrien M Brouwer
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands
| | - Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Research Institute MOVE, VU University Medical Center, Amsterdam, The Netherlands.,Association of Dutch Burn Centers, Beverwijk, The Netherlands
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|