1
|
Abstract
Copper is essential to most living beings but also highly toxic and as such is an important player at the host-pathogen interface. Bacteria have thus developed homeostatic mechanisms to tightly control its intracellular concentration. Known Cu export and import systems are under transcriptional control, whereas posttranscriptional regulatory mechanisms are yet to be characterized. We identified a three-gene operon, bp2923-bfrG-bp2921, downregulated by copper and notably encoding a TonB-dependent transporter in Bordetella pertussis. We show here that the protein encoded by the first gene, which is a member of the DUF2946 protein family, represents a new type of upstream Open Reading Frame (uORF) involved in posttranscriptional regulation of the downstream genes. In the absence of copper, the entire operon is transcribed and translated. Perception of copper by the nascent bp2923-coded protein via its conserved CXXC motif triggers Rho-dependent transcription termination between the first and second genes by relieving translation arrest on a conserved C-terminal RAPP motif. Homologs of bp2923 are widespread in bacterial genomes, where they head operons predicted to participate in copper homeostasis. This work has thus unveiled a new mode of genetic regulation by a transition metal and identified a regulatory function for a member of an uncharacterized family of bacterial proteins that we have named CruR, for copper-responsive upstream regulator.
Collapse
|
2
|
Castro JT, Oliveira GS, Nishigasako MA, Debrie AS, Miyaji EN, Soares-Schanoski A, Akamatsu MA, Locht C, Ho PL, Mielcarek N, Oliveira MLS. Evaluation of inactivated Bordetella pertussis as a delivery system for the immunization of mice with Pneumococcal Surface Antigen A. PLoS One 2020; 15:e0228055. [PMID: 31945121 PMCID: PMC6964896 DOI: 10.1371/journal.pone.0228055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/06/2020] [Indexed: 11/19/2022] Open
Abstract
Pneumococcal Surface Protein A (PspA) has been successfully tested as vaccine candidate against Streptococcus pneumoniae infections. Vaccines able to induce PspA-specific antibodies and Th1 cytokines usually provide protection in mice. We have shown that the whole cell pertussis vaccine (wP) or components from acellular pertussis vaccines, such as Pertussis Toxin or Filamentous Hemagglutinin (FHA), are good adjuvants to PspA, suggesting that combined pertussis-PspA vaccines would be interesting strategies against the two infections. Here, we evaluated the potential of wP as a delivery vector to PspA. Bordetella pertussis strains producing a PspA from clade 4 (PspA4Pro) fused to the N-terminal region of FHA (Fha44) were constructed and inactivated with formaldehyde for the production of wPPspA4Pro. Subcutaneous immunization of mice with wPPspA4Pro induced low levels of anti-PspA4 IgG, even after 3 doses, and did not protect against a lethal pneumococcal challenge. Prime-boost strategies using wPPspA4Pro and PspA4Pro showed that there was no advantage in using the wPPspA4Pro vaccine. Immunization of mice with purified PspA4Pro induced higher levels of antibodies and protection against pneumococcal infection than the prime-boost strategies. Finally, purified Fha44:PspA4Pro induced high levels of anti-PspA4Pro IgG, but no protection, suggesting that the antibodies induced by the fusion protein were not directed to protective epitopes.
Collapse
Affiliation(s)
- Julia T. Castro
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | | | - Anne-Sophie Debrie
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 –UMR 8204 –CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Eliane N. Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Milena A. Akamatsu
- Seção de Vacinas Aeróbicas, Divisão Bioindustrial, Instituto Butantan, São Paulo, SP, Brazil
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 –UMR 8204 –CIIL—Center for Infection and Immunity of Lille, Lille, France
| | - Paulo L. Ho
- Seção de Vacinas Aeróbicas, Divisão Bioindustrial, Instituto Butantan, São Paulo, SP, Brazil
| | - Nathalie Mielcarek
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 –UMR 8204 –CIIL—Center for Infection and Immunity of Lille, Lille, France
| | | |
Collapse
|
3
|
Gestal MC, Johnson HM, Harvill ET. Immunomodulation as a Novel Strategy for Prevention and Treatment of Bordetella spp. Infections. Front Immunol 2019; 10:2869. [PMID: 31921136 PMCID: PMC6923730 DOI: 10.3389/fimmu.2019.02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Well-adapted pathogens have evolved to survive the many challenges of a robust immune response. Defending against all host antimicrobials simultaneously would be exceedingly difficult, if not impossible, so many co-evolved organisms utilize immunomodulatory tools to subvert, distract, and/or evade the host immune response. Bordetella spp. present many examples of the diversity of immunomodulators and an exceptional experimental system in which to study them. Recent advances in this experimental system suggest strategies for interventions that tweak immunity to disrupt bacterial immunomodulation, engaging more effective host immunity to better prevent and treat infections. Here we review advances in the understanding of respiratory pathogens, with special focus on Bordetella spp., and prospects for the use of immune-stimulatory interventions in the prevention and treatment of infection.
Collapse
Affiliation(s)
- Monica C Gestal
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Hannah M Johnson
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| | - Eric T Harvill
- Department of Infectious Diseases, College of Veterinary Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Łęga T, Weiher P, Obuchowski M, Nidzworski D. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis. PLoS One 2016; 11:e0167225. [PMID: 27902762 PMCID: PMC5130239 DOI: 10.1371/journal.pone.0167225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/10/2016] [Indexed: 11/19/2022] Open
Abstract
Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e) features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human-avian-swine-human M2e (M2eH-A-S-H) peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system.
Collapse
Affiliation(s)
- Tomasz Łęga
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Paulina Weiher
- Department of Recombinant Vaccine, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Obuchowski
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology UG-GUMed, Medical University of Gdańsk, Gdańsk, Poland
| | - Dawid Nidzworski
- Department of Recombinant Vaccine, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Kolpe A, Schepens B, Fiers W, Saelens X. M2-based influenza vaccines: recent advances and clinical potential. Expert Rev Vaccines 2016; 16:123-136. [DOI: 10.1080/14760584.2017.1240041] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Annasaheb Kolpe
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bert Schepens
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Walter Fiers
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- Medical Biotechnology Center, VIB, Ghent, B-9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Zhang H, El Zowalaty ME. DNA-based influenza vaccines as immunoprophylactic agents toward universality. Future Microbiol 2015; 11:153-64. [PMID: 26673424 DOI: 10.2217/fmb.15.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.
Collapse
Affiliation(s)
- Han Zhang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mohamed E El Zowalaty
- Biomedical Research Center, Vice President Office for Research, Qatar University, Doha 2713, Qatar
| |
Collapse
|
7
|
Abstract
The intensive use of pertussis vaccines has dramatically reduced the incidence of whooping cough during the 20th century. However, recent outbreaks in countries with high vaccination coverage illustrate the shortcomings of current vaccination regimens, and immunity induced by the most recent, acellular vaccines wanes much faster than anticipated. As an alternative, live attenuated vaccine candidates have recently been developed in order to mimic natural infection, which induces long-lasting immunity. One of them has successfully completed a Phase I trial in humans and is now undergoing further product and clinical developments. This article describes the development of such vaccines, discusses their advantages over existing vaccines and their interesting bystander properties as powerful anti-inflammatory agents, which widens their potential use far beyond that for protection against whooping cough.
Collapse
Affiliation(s)
- Camille Locht
- Institut Pasteur de Lille, Center for Infection and Immunity of Lille, 1, rue du Prof. Calmette, F-59019 Lille, France
| | | |
Collapse
|
8
|
Schnoeller C, Roux X, Sawant D, Raze D, Olszewska W, Locht C, Openshaw PJ. Attenuated Bordetella pertussis vaccine protects against respiratory syncytial virus disease via an IL-17-dependent mechanism. Am J Respir Crit Care Med 2014; 189:194-202. [PMID: 24261996 DOI: 10.1164/rccm.201307-1227oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE We attenuated virulent Bordetella pertussis by genetically eliminating or detoxifying three major toxins. This strain, named BPZE1, is being developed as a possible live nasal vaccine for the prevention of whooping cough. It is immunogenic and safe when given intranasally in adult volunteers. OBJECTIVES Before testing in human infants, we wished to examine the potential effect of BPZE1 on a common pediatric infection (respiratory syncytial virus [RSV]) in a preclinical model. METHODS BPZE1 was administered before or after RSV administration in adult or neonatal mice. Pathogen replication, inflammation, immune cell recruitment, and cytokine responses were measured. MEASUREMENTS AND MAIN RESULTS BPZE1 alone did not cause overt disease, but induced efflux of neutrophils into the airway lumen and production of IL-10 and IL-17 by mucosal CD4(+) T cells. Given intranasally before RSV infection, BPZE1 markedly attenuated RSV, preventing weight loss, reducing viral load, and attenuating lung cell recruitment. Given neonatally, BPZE1 also protected against RSV-induced weight loss even through to adulthood. Furthermore, it markedly increased IL-17 production by CD4(+) T cells and natural killer cells and recruited regulatory cells and neutrophils after virus challenge. Administration of anti-IL-17 antibodies ablated the protective effect of BPZE1 on RSV disease. CONCLUSIONS Rather than enhancing RSV disease, BPZE1 protected against viral infection, modified viral responses, and enhanced natural mucosal resistance. Prevention of RSV infection by BPZE1 seems in part to be caused by induction of IL-17. Clinical trial registered with www.clinicaltrials.gov (NCT 01188512).
Collapse
Affiliation(s)
- Corinna Schnoeller
- 1 Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Halperin SA. Pertussis: A Global Perspective. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2014; 40:55-58. [PMID: 29769883 PMCID: PMC5864447 DOI: 10.14745/ccdr.v40i03a05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- SA Halperin
- . Canadian Center for Vaccinology, Departments of Pediatrics and Microbiology & Immunology, Dalhousie University, IWK Health Centre, Halifax, NS
| |
Collapse
|