1
|
Heslop-Harrison G, Nakabayashi K, Espinosa-Ruiz A, Robertson F, Baines R, Thompson CRL, Hermann K, Alabadí D, Leubner-Metzger G, Williams RSB. Functional mechanism study of the allelochemical myrigalone A identifies a group of ultrapotent inhibitors of ethylene biosynthesis in plants. PLANT COMMUNICATIONS 2024; 5:100846. [PMID: 38460510 PMCID: PMC11211550 DOI: 10.1016/j.xplc.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/11/2024]
Abstract
Allelochemicals represent a class of natural products released by plants as root, leaf, and fruit exudates that interfere with the growth and survival of neighboring plants. Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function. One such allelochemical, Myrigalone A (MyA) produced by Myrica gale, inhibits seed germination and seedling growth through an unknown mechanism. Here, we investigate MyA using the tractable model Dictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylene synthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase (ACO). Furthermore, in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket. In D. discoideum, ablation of ACO mimics the MyA-dependent developmental delay, which is partially restored by exogenous ethylene, and MyA reduces ethylene production. In Arabidopsis thaliana, MyA treatment delays seed germination, and this effect is rescued by exogenous ethylene. It also mimics the effect of established ACO inhibitors on root and hypocotyl extension, blocks ethylene-dependent root hair production, and reduces ethylene production. Finally, in silico binding analyses identify a range of highly potent ethylene inhibitors that block ethylene-dependent response and reduce ethylene production in Arabidopsis. Thus, we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.
Collapse
Affiliation(s)
- George Heslop-Harrison
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Kazumi Nakabayashi
- Centre for Plant Molecular Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Ana Espinosa-Ruiz
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Francesca Robertson
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; Centre for Plant Molecular Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Robert Baines
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Gerhard Leubner-Metzger
- Centre for Plant Molecular Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK.
| |
Collapse
|
2
|
Hernández M, Areche C, Castañeta G, Rojas D, Varas MA, Marcoleta AE, Chávez FP. Dictyostelium discoideum-assisted pharmacognosy of plant resources for discovering antivirulence molecules targeting Klebsiella pneumoniae. Nat Prod Res 2024:1-8. [PMID: 38829280 DOI: 10.1080/14786419.2024.2360166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
The rise of antibiotic-resistant bacterial strains represents an important challenge for global health, underscoring the critical need for innovative strategies to confront this threat. Natural products and their derivatives have emerged as a promising reservoir for drug discovery. The social amoeba Dictyostelium discoideum is a potent model organism in this effort. Employing this invertebrate model, we introduce a novel perspective to investigate natural plant extracts in search of molecules with potential antivirulence activity. Our work established an easy-scalable developmental assay targeting a virulent strain of Klebsiella pneumoniae, with Helenium aromaticum as the representative plant. The main objective was to identify tentative compounds from the Helenium aromaticum extract that attenuate the virulence of K. pneumoniae virulence without inducing cytotoxic effects on amoeba cells. Notably, the methanolic root extract of H. aromaticum fulfilled these prerequisites compared to the dichloromethane extract. Using UHPLC Q/Orbitrap/ESI/MS/MS, 63 compounds were tentatively identified in both extracts, 47 in the methanolic and 29 in the dichloromethane, with 13 compounds in common. This research underscores the potential of employing D. discoideum-assisted pharmacognosy to discover new antivirulence agents against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Marcos Hernández
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos Areche
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Grover Castañeta
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Rojas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Macarena A Varas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Andrés E Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco P Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Alsaffar N, Fang Y, Walters E. Thymoquinone effect on the Dictyostelium discoideum model correlates with functional roles for glutathione S-transferases in eukaryotic proliferation, chemotaxis, and development. PLoS One 2023; 18:e0282399. [PMID: 36857392 PMCID: PMC9977050 DOI: 10.1371/journal.pone.0282399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
An increasing body of literature demonstrates the therapeutic relevance of polyphenols in eukaryotic cell and animal model studies. The phase II glutathione S-transferases (GST) show differential responses to thymoquinone, a major bioactive polyphenol constituent of the black seed, Nigella sativa. Beyond antioxidant defense, GSTs may act in non-enzymatic capacities to effect cell cycle, motility, and differentiation. Here, we report the impact of thymoquinone on the life cycle of the eukaryotic model Dictyostelium discoideum and accompanying profiles of its GST-alpha (DdGSTA) enzyme activity and isozyme expression. In silico molecular modeling revealed strong interaction(s) between thymoquinone and DdGSTA2 and DdGSTA3 isozymes that correlated with in vivo, dose-dependent inhibition of cell proliferation of amoebae at 24, 48, and 72hr. Similarly, cytosolic DdGST enzyme activity (CDNB activity) was also responsive to different thymoquinone concentrations. Thymoquinone generally reduced expression of DdGSTA2 and DdGSTA3 isozymes in proliferating cells, however differential expression of the isozymes occurred during starvation. Thymoquinone effectively reduced early-stage aggregation of starved amoeba, accompanied by increased reactive oxygen species and altered expression of tubulin and contact site A (gp80), which resulted in reduced morphogenesis and fruiting body formation. These observations reveal that thymoquinone can impact signaling mechanisms that regulate proliferation and development in D. discoideum.
Collapse
Affiliation(s)
- Nida Alsaffar
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Yayin Fang
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
| | - Eric Walters
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
4
|
Lovato A, Pignatti A, Vitulo N, Vandelle E, Polverari A. Inhibition of Virulence-Related Traits in Pseudomonas syringae pv. actinidiae by Gunpowder Green Tea Extracts. Front Microbiol 2019; 10:2362. [PMID: 31681224 PMCID: PMC6797950 DOI: 10.3389/fmicb.2019.02362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Green tea is a widely-consumed healthy drink produced from the leaves of Camellia sinensis. It is renowned for its antioxidant and anticarcinogenic properties, but also displays significant antimicrobial activity against numerous human pathogens. Here we analyzed the antimicrobial activity of Gunpowder green tea against Pseudomonas syringae pv. actinidiae (Psa), the agent that causes kiwifruit bacterial canker. At the phenotypic level, tea extracts strongly inhibited Psa growth and swimming motility, suggesting it could reduce Psa epiphytic survival during plant colonization. The loss of bacterial virulence-related traits following treatment with tea extracts was also investigated by large-scale transcriptome analysis, which confirmed the in vitro phenotypes and revealed the induction of adaptive responses in the treated bacteria allowing them to cope with iron deficiency and oxidative stress. Such molecular changes may account for the ability of Gunpowder green tea to protect kiwifruit against Psa infection.
Collapse
Affiliation(s)
| | | | | | - Elodie Vandelle
- Biotechnology Department, University of Verona, Verona, Italy
| | | |
Collapse
|
5
|
Fujimori T, Nakajima A, Shimada N, Sawai S. Tissue self-organization based on collective cell migration by contact activation of locomotion and chemotaxis. Proc Natl Acad Sci U S A 2019; 116:4291-4296. [PMID: 30782791 PMCID: PMC6410881 DOI: 10.1073/pnas.1815063116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite their central role in multicellular organization, navigation rules that dictate cell rearrangement remain largely undefined. Contact between neighboring cells and diffusive attractant molecules are two of the major determinants of tissue-level patterning; however, in most cases, molecular and developmental complexity hinders one from decoding the exact governing rules of individual cell movement. A primordial example of tissue patterning by cell rearrangement is found in the social amoeba Dictyostelium discoideum where the organizing center or the "tip" self-organizes as a result of sorting of differentiating prestalk and prespore cells. By employing microfluidics and microsphere-based manipulation of navigational cues at the single-cell level, here we uncovered a previously overlooked mode of Dictyostelium cell migration that is strictly directed by cell-cell contact. The cell-cell contact signal is mediated by E-set Ig-like domain-containing heterophilic adhesion molecules TgrB1/TgrC1 that act in trans to induce plasma membrane recruitment of the SCAR complex and formation of dendritic actin networks, and the resulting cell protrusion competes with those induced by chemoattractant cAMP. Furthermore, we demonstrate that both prestalk and prespore cells can protrude toward the contact signal as well as to chemotax toward cAMP; however, when given both signals, prestalk cells orient toward the chemoattractant, whereas prespore cells choose the contact signal. These data suggest a model of cell sorting by competing juxtacrine and diffusive cues, each with potential to drive its own mode of collective cell migration.
Collapse
Affiliation(s)
- Taihei Fujimori
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Akihiko Nakajima
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Nao Shimada
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| | - Satoshi Sawai
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, 153-8902 Tokyo, Japan;
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, 153-8902 Tokyo, Japan
| |
Collapse
|
6
|
Theaflavins from black tea affect growth, development, and motility in Dictyostelium discoideum. Biochem Biophys Res Commun 2017; 491:449-454. [PMID: 28711497 DOI: 10.1016/j.bbrc.2017.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 01/29/2023]
Abstract
Theaflavins, flavonoids found in black tea, exhibit a variety of health-promoting activities, but the mechanisms by which they act are not clear. Here, we assess the effects of black tea extract and isolated theaflavins on Dictyostelium discoideum, a model organism exhibiting an unusual life cycle relying on conserved pathways involved in human disease. Dictyostelium has been used to characterize the activities of numerous bioactive small molecules, including catechins, from which theaflavins are produced during the preparation of black tea. We show that theaflavins block growth, development, and motility in Dictyostelium, results that suggest catechins and theaflavins exert similar activities in this organism.
Collapse
|
7
|
Basharat Z, Zaib S, Yasmin A. Computational study of some amoebicidal phytochemicals against heat shock protein of Naegleria fowleri. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2016.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Pescosolido N, Barbato A, Giannotti R, Komaiha C, Lenarduzzi F. Age-related changes in the kinetics of human lenses: prevention of the cataract. Int J Ophthalmol 2016; 9:1506-1517. [PMID: 27803872 DOI: 10.18240/ijo.2016.10.23] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
The crystalline lens is a transparent, biconvex structure in the eye that, along with the cornea, helps to refract light to be focused on the retina and, by changing shape, it adjusts focal distance (accommodation). The three classes of structural proteins found in the lens are α, β, and γ crystallins. These proteins make up more than 90% of the total dry mass of the eye lens. Other components which can be found are sugars, lipids, water, several antioxidants and low weight molecules. When ageing changes occur in the lens, it causes a gradual reduction in transparency, presbyopia and an increase in the scattering and aberration of light waves as well as a degradation of the optical quality of the eye. The main changes that occur with aging are: 1) reduced diffusion of water from the outside to the inside of the lens and from its cortical to its nuclear zone; 2) crystalline change due to the accumulation of high molecular weight aggregates and insoluble proteins; 3) production of advanced glycation end products (AGEs), lipid accumulation, reduction of reduced glutathione content and destruction of ascorbic acid. Even if effective strategies in preventing cataract onset are not already known, good results have been reached in some cases with oral administration of antioxidant substances such as caffeine, pyruvic acid, epigallocatechin gallate (EGCG), α-lipoic acid and ascorbic acid. Furthermore, methionine sulfoxide reductase A (MSRA) over expression could protect lens cells both in presence and in absence of oxidative stress-induced damage. Nevertheless, promising results have been obtained by reducing ultraviolet-induced oxidative damage.
Collapse
Affiliation(s)
- Nicola Pescosolido
- Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Barbato
- Department of Sense Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Rossella Giannotti
- Department of Sense Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Chiara Komaiha
- Department of Sense Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Fiammetta Lenarduzzi
- Department of Sense Organs, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
9
|
A High-Throughput, Multi-Cell Phenotype Assay for the Identification of Novel Inhibitors of Chemotaxis/Migration. Sci Rep 2016; 6:22273. [PMID: 26956526 PMCID: PMC4783656 DOI: 10.1038/srep22273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
Chemotaxis and cell migration are fundamental, universal eukaryotic processes essential for biological functions such as embryogenesis, immunity, cell renewal, and wound healing, as well as for pathogenesis of many diseases including cancer metastasis and chronic inflammation. To identify novel chemotaxis inhibitors as probes for mechanistic studies and leads for development of new therapeutics, we developed a unique, unbiased phenotypic chemotaxis-dependent Dictyostelium aggregation assay for high-throughput screening using rapid, laser-scanning cytometry. Under defined conditions, individual Dictyostelium secrete chemoattractants, migrate, and aggregate. Chemotaxis is quantified by laser-scanning cytometry with a GFP marker expressed only in cells after chemotaxis/multi-cell aggregation. We applied the assay to screen 1,280 known compounds in a 1536-well plate format and identified two chemotaxis inhibitors. The chemotaxis inhibitory activities of both compounds were confirmed in both Dictyostelium and in human neutrophils in a directed EZ-TAXIscan chemotaxis assay. The compounds were also shown to inhibit migration of two human cancer cell lines in monolayer scratch assays. This test screen demonstrated that the miniaturized assay is extremely suited for high-throughput screening of very large libraries of small molecules to identify novel classes of chemotaxis/migratory inhibitors for drug development and research tools for targeting chemotactic pathways universal to humans and other systems.
Collapse
|
10
|
Curcumin inhibits development and cell adhesion in Dictyostelium discoideum: Implications for YakA signaling and GST enzyme function. Biochem Biophys Res Commun 2015; 467:275-81. [PMID: 26449461 DOI: 10.1016/j.bbrc.2015.09.175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
The molecular basis for nutraceutical properties of the polyphenol curcumin (Curcuma longa, Turmeric) is complex, affecting multiple factors that regulate cell signaling and homeostasis. Here, we report the effect of curcumin on cellular and developmental mechanisms in the eukaryotic model, Dictyostelium discoideum. Dictyostelium proliferation was inhibited in the presence of curcumin, which also suppressed the prestarvation marker, discoidin I, members of the yakA-mediated developmental signaling pathway, and expression of the extracellular matrix/cell adhesion proteins (DdCAD and csA). This resulted in delayed chemotaxis, adhesion, and development of the organism. In contrast to the inhibitory effects on developmental genes, curcumin induced gstA gene expression, overall GST activity, and generated production of reactive oxygen species. These studies expand our knowledge of developmental and biochemical signaling influenced by curcumin, and lends greater consideration of GST enzyme function in eukaryotic cell signaling, development, and differentiation.
Collapse
|
11
|
Rectified directional sensing in long-range cell migration. Nat Commun 2014; 5:5367. [PMID: 25373620 PMCID: PMC4272253 DOI: 10.1038/ncomms6367] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
How spatial and temporal information are integrated to determine the direction of cell migration remains poorly understood. Here, by precise microfluidics emulation of dynamic chemoattractant waves, we demonstrate that, in Dictyostelium, directional movement as well as activation of small guanosine triphosphatase Ras at the leading edge is suppressed when the chemoattractant concentration is decreasing over time. This 'rectification' of directional sensing occurs only at an intermediate range of wave speed and does not require phosphoinositide-3-kinase or F-actin. From modelling analysis, we show that rectification arises naturally in a single-layered incoherent feedforward circuit with zero-order ultrasensitivity. The required stimulus time-window predicts ~5 s transient for directional sensing response close to Ras activation and inhibitor diffusion typical for protein in the cytosol. We suggest that the ability of Dictyostelium cells to move only in the wavefront is closely associated with rectification of adaptive response combined with local activation and global inhibition.
Collapse
|