1
|
Vorobyeva NE, Krasnov AN, Erokhin M, Chetverina D, Mazina M. Su(Hw) interacts with Combgap to establish long-range chromatin contacts. Epigenetics Chromatin 2024; 17:17. [PMID: 38773468 PMCID: PMC11106861 DOI: 10.1186/s13072-024-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Insulator-binding proteins (IBPs) play a critical role in genome architecture by forming and maintaining contact domains. While the involvement of several IBPs in organising chromatin architecture in Drosophila has been described, the specific contribution of the Suppressor of Hairy wings (Su(Hw)) insulator-binding protein to genome topology remains unclear. RESULTS In this study, we provide evidence for the existence of long-range interactions between chromatin bound Su(Hw) and Combgap, which was first characterised as Polycomb response elements binding protein. Loss of Su(Hw) binding to chromatin results in the disappearance of Su(Hw)-Combgap long-range interactions and in a decrease in spatial self-interactions among a subset of Su(Hw)-bound genome sites. Our findings suggest that Su(Hw)-Combgap long-range interactions are associated with active chromatin rather than Polycomb-directed repression. Furthermore, we observe that the majority of transcription start sites that are down-regulated upon loss of Su(Hw) binding to chromatin are located within 2 kb of Combgap peaks and exhibit Su(Hw)-dependent changes in Combgap and transcriptional regulators' binding. CONCLUSIONS This study demonstrates that Su(Hw) insulator binding protein can form long-range interactions with Combgap, Polycomb response elements binding protein, and that these interactions are associated with active chromatin factors rather than with Polycomb dependent repression.
Collapse
Affiliation(s)
- Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
2
|
Carrington E, Cooijmans RHM, Keller D, Toenhake CG, Bártfai R, Voss TS. The ApiAP2 factor PfAP2-HC is an integral component of heterochromatin in the malaria parasite Plasmodium falciparum. iScience 2021; 24:102444. [PMID: 33997710 PMCID: PMC8105651 DOI: 10.1016/j.isci.2021.102444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Malaria parasites undergo a complex life cycle in the human host and the mosquito vector. The ApiAP2 family of DNA-binding proteins plays a dominant role in parasite development and life cycle progression. Most ApiAP2 factors studied to date act as transcription factors regulating stage-specific gene expression. Here, we characterized an ApiAP2 factor in Plasmodium falciparum that we termed PfAP2-HC. We demonstrate that PfAP2-HC specifically binds to heterochromatin throughout the genome. Intriguingly, PfAP2-HC does not bind DNA in vivo and recruitment of PfAP2-HC to heterochromatin is independent of its DNA-binding domain but strictly dependent on heterochromatin protein 1. Furthermore, our results suggest that PfAP2-HC functions neither in the regulation of gene expression nor in heterochromatin formation or maintenance. In summary, our findings reveal PfAP2-HC as a core component of heterochromatin in malaria parasites and identify unexpected properties and substantial functional divergence among the members of the ApiAP2 family of regulatory proteins. The ApiAP2 factor AP2-HC is a core component of heterochromatin in malaria parasites Binding of AP2-HC to heterochromatin strictly depends on heterochromatin protein 1 The AP2 DNA-binding domain of AP2-HC is dispensable for heterochromatin association
Collapse
Affiliation(s)
- Eilidh Carrington
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | | | - Dominique Keller
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | | | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525GA Nijmegen, The Netherlands
| | - Till Steffen Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
3
|
Systematic Analysis of SIN3 Histone Modifying Complex Components During Development. Sci Rep 2018; 8:17048. [PMID: 30451916 PMCID: PMC6242963 DOI: 10.1038/s41598-018-35093-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Establishment and maintenance of histone acetylation levels are critical for metazoan development and viability. Disruption of the balance between acetylation and deacetylation by treatment with chemical histone deacetylase (HDAC) inhibitors results in loss of cell proliferation, differentiation and/or apoptosis. Histone deacetylation by the SIN3 complex is essential in Drosophila and mice, as loss of the scaffolding factor SIN3 or the associated HDAC results in lethality. The objective of this study is to elucidate contributions of SIN3 complex components to these essential processes. We used the Drosophila model organism to carry out a systematic functional analysis of the SIN3 complex. We find that SIN3 associated proteins are essential for viability and cell proliferation during development. Additionally, tissue specific reduction of SIN3 complex components results in abnormal wing development. Interestingly, while knockdown of each factor resulted in similar phenotypes, their individual effects on recruitment of SIN3 to polytene chromosomes are distinct. Reduction of some factors leads to large changes in the morphology of the chromosome and/or greatly reduced SIN3 binding. These findings suggest that while individual SIN3 complex components work through distinct molecular mechanisms, they each make a substantial contribution to the overall function of this highly conserved histone deacetylase complex.
Collapse
|
4
|
Filarsky M, Fraschka SA, Niederwieser I, Brancucci NMB, Carrington E, Carrió E, Moes S, Jenoe P, Bártfai R, Voss TS. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing. Science 2018; 359:1259-1263. [PMID: 29590075 DOI: 10.1126/science.aan6042] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/17/2018] [Indexed: 11/02/2022]
Abstract
Malaria is caused by Plasmodium parasites that proliferate in the bloodstream. During each replication cycle, some parasites differentiate into gametocytes, the only forms able to infect the mosquito vector and transmit malaria. Sexual commitment is triggered by activation of AP2-G, the master transcriptional regulator of gametocytogenesis. Heterochromatin protein 1 (HP1)-dependent silencing of ap2-g prevents sexual conversion in proliferating parasites. In this study, we identified Plasmodium falciparum gametocyte development 1 (GDV1) as an upstream activator of sexual commitment. We found that GDV1 targeted heterochromatin and triggered HP1 eviction, thus derepressing ap2-g Expression of GDV1 was responsive to environmental triggers of sexual conversion and controlled via a gdv1 antisense RNA. Hence, GDV1 appears to act as an effector protein that induces sexual differentiation by antagonizing HP1-dependent gene silencing.
Collapse
Affiliation(s)
- Michael Filarsky
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Sabine A Fraschka
- Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, Netherlands
| | - Igor Niederwieser
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Nicolas M B Brancucci
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Eilidh Carrington
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Elvira Carrió
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Suzette Moes
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Paul Jenoe
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Richárd Bártfai
- Department of Molecular Biology, Radboud University, 6525 GA Nijmegen, Netherlands
| | - Till S Voss
- Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland. .,University of Basel, 4003 Basel, Switzerland
| |
Collapse
|
5
|
Berson A, Sartoris A, Nativio R, Van Deerlin V, Toledo JB, Porta S, Liu S, Chung CY, Garcia BA, Lee VMY, Trojanowski JQ, Johnson FB, Berger SL, Bonini NM. TDP-43 Promotes Neurodegeneration by Impairing Chromatin Remodeling. Curr Biol 2017; 27:3579-3590.e6. [PMID: 29153328 PMCID: PMC5720388 DOI: 10.1016/j.cub.2017.10.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
Regulation of chromatin structure is critical for brain development and function. However, the involvement of chromatin dynamics in neurodegeneration is less well understood. Here we find, launching from Drosophila models of amyotrophic lateral sclerosis and frontotemporal dementia, that TDP-43 impairs the induction of multiple key stress genes required to protect from disease by reducing the recruitment of the chromatin remodeler Chd1 to chromatin. Chd1 depletion robustly enhances TDP-43-mediated neurodegeneration and promotes the formation of stress granules. Conversely, upregulation of Chd1 restores nucleosomal dynamics, promotes normal induction of protective stress genes, and rescues stress sensitivity of TDP-43-expressing animals. TDP-43-mediated impairments are conserved in mammalian cells, and, importantly, the human ortholog CHD2 physically interacts with TDP-43 and is strikingly reduced in level in temporal cortex of human patient tissue. These findings indicate that TDP-43-mediated neurodegeneration causes impaired chromatin dynamics that prevents appropriate expression of protective genes through compromised function of the chromatin remodeler Chd1/CHD2. Enhancing chromatin dynamics may be a treatment approach to amyotrophic lateral scleorosis (ALS)/frontotemporal dementia (FTD).
Collapse
Affiliation(s)
- Amit Berson
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Sartoris
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raffaella Nativio
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivianna Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jon B Toledo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sílvia Porta
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shichong Liu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chia-Yu Chung
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Downregulation of Aedes aegypti chromodomain helicase DNA binding protein 7/Kismet by Wolbachia and its effect on dengue virus replication. Sci Rep 2016; 6:36850. [PMID: 27827425 PMCID: PMC5101808 DOI: 10.1038/srep36850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-transmitted virus imposing a significant burden on human health around the world. Since current control strategies are not sufficient, there is an urgent need to find alternative methods to control DENV transmission. It has been demonstrated that introduction of Wolbachia pipientis in Aedes aegypti mosquitoes can impede DENV transmission with the mechanism(s) not fully understood. Recently, a number of studies have found the involvement of chromodomain DNA binding helicases in case of Human Immunodeficiency virus (HIV) and Influenza A virus infection. In this study, we have identified three chromodomain helicase DNA binding protein (CHD) genes in Ae. aegypti and looked at their response in the case of Wolbachia and DENV infections. Foremost amongst them we have found that AeCHD7/Kismet is significantly downregulated in the presence of Wolbachia infection only in female mosquitoes. Furthermore, AeCHD7 levels showed significant increase during DENV infection, and AeCHD7 depletion led to severe reduction in the replication of DENV. Our data have identified AeCHD7 as a novel Ae. aegypti host factor that is important for DENV replication, and Wolbachia downregulates it, which may contribute towards the mechanism(s) of limiting DENV replication.
Collapse
|
7
|
An RNAi-Based Candidate Screen for Modifiers of the CHD1 Chromatin Remodeler and Assembly Factor in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2015; 6:245-54. [PMID: 26596648 PMCID: PMC4751545 DOI: 10.1534/g3.115.021691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The conserved chromatin remodeling and assembly factor CHD1 (chromodomains, helicase, DNA-binding domain) is present at active genes where it participates in histone turnover and recycling during transcription. In order to gain a more complete understanding of the mechanism of action of CHD1 during development, we created a novel genetic assay in Drosophila melanogaster to evaluate potential functional interactions between CHD1 and other chromatin factors. We found that overexpression of CHD1 results in defects in wing development and utilized this fully penetrant and reliable phenotype to conduct a small-scale RNAi-based candidate screen to identify genes that functionally interact with chd1 in vivo. Our results indicate that CHD1 may act in opposition to other remodeling factors, including INO80, and that the recruitment of CHD1 to active genes by RTF1 is conserved in flies.
Collapse
|
8
|
Histone H1: Lessons from Drosophila. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:526-32. [PMID: 26361208 DOI: 10.1016/j.bbagrm.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/28/2015] [Accepted: 09/02/2015] [Indexed: 01/02/2023]
Abstract
Eukaryotic genomes are structured in the form of chromatin with the help of a set of five small basic proteins, the histones. Four of them are highly conserved through evolution, form the basic unit of the chromatin, the nucleosome, and have been intensively studied and are well characterized. The fifth histone, histone H1, adds to this basic structure through its interaction at the entry/exit site of DNA in the nucleosome and makes an essential contribution to the higher order folding of the chromatin fiber. Histone H1 is the less conserved histone and the less known of them. Though for long time considered as a general repressor of gene expression, recent studies in Drosophila have rejected this view and have contributed to uncover important functions on genome stability and development. Here we present some of the most recent data obtained in the Drosophila model system and discuss how the lessons learnt in these studies compare and could be applied to all other eukaryotes.
Collapse
|
9
|
Siggens L, Cordeddu L, Rönnerblad M, Lennartsson A, Ekwall K. Transcription-coupled recruitment of human CHD1 and CHD2 influences chromatin accessibility and histone H3 and H3.3 occupancy at active chromatin regions. Epigenetics Chromatin 2015; 8:4. [PMID: 25621013 PMCID: PMC4305392 DOI: 10.1186/1756-8935-8-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/23/2014] [Indexed: 01/31/2023] Open
Abstract
Background CHD1 and CHD2 chromatin remodeling enzymes play important roles in development, cancer and differentiation. At a molecular level, the mechanisms are not fully understood but include transcriptional regulation, nucleosome organization and turnover. Results Here we show human CHD1 and CHD2 enzymes co-occupy active chromatin regions associated with transcription start sites (TSS), enhancer like regions and active tRNA genes. We demonstrate that their recruitment is transcription-coupled. CHD1 and CHD2 show distinct binding profiles across active TSS regions. Depletion of CHD1 influences chromatin accessibility at TSS and enhancer-like chromatin regions. CHD2 depletion causes increased histone H3 and reduced histone variant H3.3 occupancy. Conclusions We conclude that transcription-coupled recruitment of CHD1 and CHD2 occurs at transcribed gene TSSs and at intragenic and intergenic enhancer-like sites. The recruitment of CHD1 and CHD2 regulates the architecture of active chromatin regions through chromatin accessibility and nucleosome disassembly. Electronic supplementary material The online version of this article (doi:10.1186/1756-8935-8-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lee Siggens
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge, 141 83 Sweden
| | - Lina Cordeddu
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge, 141 83 Sweden
| | - Michelle Rönnerblad
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge, 141 83 Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge, 141 83 Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Huddinge, 141 83 Sweden
| |
Collapse
|
10
|
|