1
|
Shi G, Shaw GX, Ji X. Bisubstrate inhibitors of 6-hydroxymethyl-7,8-dihydroptein pyrophosphokinase: Toward cell permeability. Bioorg Med Chem Lett 2024; 113:129977. [PMID: 39332646 DOI: 10.1016/j.bmcl.2024.129977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/13/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a key enzyme in the folate biosynthesis pathway. It catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). HPPK is essential for microorganisms but is absent in mammals. Yet, it is not the target of any existing antibiotics. Hence, this enzyme is an attractive target for developing novel antimicrobial agents. A wealth of structural and mechanistic information has provided solid basis for structure-based design of HPPK inhibitors. Our bisubstrate inhibitors were initially created by linking 6-hydroxymethylpterin to adenosine through 2, 3, or 4 phosphate groups (HPnA, n = 2, 3, or 4), among which HP4A exhibited the highest binding affinity (Kd = 0.47 ± 0.04 μM). Further development was carried out based on high-resolution structures of HPPK in complex with HP4A. Replacing the phosphate bridge with a piperidine linked thioether eliminated multiple negative charges of the bridge. Substituting the pterin moiety with 7,7-dimethyl-7,8-dihydropterin improved the binding affinity. Arming the piperidine ring with a carboxyl group and oxidizing the thioether further enhanced the potency, resulting in a druglike inhibitor of HPPK (Kd = 0.047 ± 0.007 μM). None of these inhibitors, however, exhibits bacterial cell permeability. It is most likely due to the lack of active folate transporters in bacteria. Replacing the pterin moiety with a 7-deazagaunine moiety, we have obtained a novel bisubstrate inhibitor (HP-101) showing observable cell permeability toward a Gram-positive bacterium. Here, we report the in vitro activity of HP-101 and its structure in complex with HPPK, providing a framework for structure-based further development.
Collapse
Affiliation(s)
- Genbin Shi
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA.
| | - Gary X Shaw
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA; Current Address: Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Xinhua Ji
- Center for Structural Biology, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
2
|
Chowdhury S, Zielinski DC, Dalldorf C, Rodrigues JV, Palsson BO, Shakhnovich EI. Empowering drug off-target discovery with metabolic and structural analysis. Nat Commun 2023; 14:3390. [PMID: 37296102 PMCID: PMC10256842 DOI: 10.1038/s41467-023-38859-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Elucidating intracellular drug targets is a difficult problem. While machine learning analysis of omics data has been a promising approach, going from large-scale trends to specific targets remains a challenge. Here, we develop a hierarchic workflow to focus on specific targets based on analysis of metabolomics data and growth rescue experiments. We deploy this framework to understand the intracellular molecular interactions of the multi-valent dihydrofolate reductase-targeting antibiotic compound CD15-3. We analyse global metabolomics data utilizing machine learning, metabolic modelling, and protein structural similarity to prioritize candidate drug targets. Overexpression and in vitro activity assays confirm one of the predicted candidates, HPPK (folK), as a CD15-3 off-target. This study demonstrates how established machine learning methods can be combined with mechanistic analyses to improve the resolution of drug target finding workflows for discovering off-targets of a metabolic inhibitor.
Collapse
Affiliation(s)
- Sourav Chowdhury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Christopher Dalldorf
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Joao V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kongens Lyngby, Denmark
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Vadlamani G, Sukhoverkov KV, Haywood J, Breese KJ, Fisher MF, Stubbs KA, Bond CS, Mylne JS. Crystal structure of Arabidopsis thaliana HPPK/DHPS, a bifunctional enzyme and target of the herbicide asulam. PLANT COMMUNICATIONS 2022; 3:100322. [PMID: 35605193 PMCID: PMC9284294 DOI: 10.1016/j.xplc.2022.100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Herbicides are vital for modern agriculture, but their utility is threatened by genetic or metabolic resistance in weeds, as well as regulatory barriers. Of the known herbicide modes of action, 7,8-dihydropterin synthase (DHPS), which is involved in folate biosynthesis, is targeted by just one commercial herbicide, asulam. A mimic of the substrate para-aminobenzoic acid, asulam is chemically similar to sulfonamide antibiotics, and although it is still in widespread use, asulam has faced regulatory scrutiny. With an entire mode of action represented by just one commercial agrochemical, we sought to improve the understanding of its plant target. Here we solve a 2.3 Å resolution crystal structure for Arabidopsis thaliana DHPS that is conjoined to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), and we reveal a strong structural conservation with bacterial counterparts at the sulfonamide-binding pocket of DHPS. We demonstrate that asulam and the antibiotic sulfamethoxazole have herbicidal as well as antibacterial activity, and we explore the structural basis of their potency by modeling these compounds in mitochondrial HPPK/DHPS. Our findings suggest limited opportunity for the rational design of plant selectivity from asulam and indicate that pharmacokinetic or delivery differences between plants and microbes might be the best ways to safeguard this mode of action.
Collapse
Affiliation(s)
- Grishma Vadlamani
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kirill V Sukhoverkov
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Karen J Breese
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark F Fisher
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
4
|
Shi G, Shaw GX, Zhu F, Tarasov SG, Ji X. Bisubstrate inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase: Transition state analogs for high affinity binding. Bioorg Med Chem 2021; 29:115847. [PMID: 33199204 PMCID: PMC7855645 DOI: 10.1016/j.bmc.2020.115847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a key enzyme in the folate biosynthesis pathway. It catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). HPPK is essential for microorganisms but absent in mammals; therefore, it is an attractive target for developing novel antimicrobial agents. Previously, based on our studies of the structure and mechanism of HPPK, we created first-generation bisubstrate inhibitors by linking 6-hydroxymethylpterin to adenosine through phosphate groups, and developed second-generation inhibitors by replacing the phosphate bridge with a linkage that contains a piperidine moiety. Here, we report third-generation inhibitors designed based on the piperidine-containing inhibitor, mimicking the transition state. We synthesized two such inhibitors, characterized their protein-binding and enzyme inhibition properties, and determined their crystal structures in complex with HPPK, advancing the development of such bisubstrate analog inhibitors.
Collapse
Affiliation(s)
- Genbin Shi
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Gary X Shaw
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Fengxia Zhu
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA; School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaiyin, Jiangsu Province, China(1)
| | - Sergey G Tarasov
- Structural Biophysics Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
5
|
Kordus SL, Baughn AD. Revitalizing antifolates through understanding mechanisms that govern susceptibility and resistance. MEDCHEMCOMM 2019; 10:880-895. [PMID: 31303985 PMCID: PMC6595967 DOI: 10.1039/c9md00078j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022]
Abstract
In prokaryotes and eukaryotes, folate (vitamin B9) is an essential metabolic cofactor required for all actively growing cells. Specifically, folate serves as a one-carbon carrier in the synthesis of amino acids (such as methionine, serine, and glycine), N-formylmethionyl-tRNA, coenzyme A, purines and thymidine. Many microbes are unable to acquire folates from their environment and rely on de novo folate biosynthesis. In contrast, mammals lack the de novo folate biosynthesis pathway and must obtain folate from commensal microbiota or the environment using proton-coupled folate transporters. The essentiality and dichotomy between mammalian and bacterial folate biosynthesis and utilization pathways make it an ideal drug target for the development of antimicrobial agents and cancer chemotherapeutics. In this minireview, we discuss general aspects of folate biosynthesis and the underlying mechanisms that govern susceptibility and resistance of organisms to antifolate drugs.
Collapse
Affiliation(s)
- Shannon Lynn Kordus
- Department of Microbiology and Immunology , University of Minnesota , Minneapolis , MN , USA .
| | - Anthony David Baughn
- Department of Microbiology and Immunology , University of Minnesota , Minneapolis , MN , USA .
| |
Collapse
|
6
|
The discovery of purine-based agents targeting triple-negative breast cancer and the αB-crystallin/VEGF protein–protein interaction. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2275-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases. Future Med Chem 2018; 10:935-959. [PMID: 29629843 DOI: 10.4155/fmc-2017-0168] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Folate pathway is a key target for the development of new drugs against infectious diseases since the discovery of sulfa drugs and trimethoprim. The knowledge about this pathway has increased in the last years and the catalytic mechanism and structures of all enzymes of the pathway are fairly understood. In addition, differences among enzymes from prokaryotes and eukaryotes could be used for the design of specific inhibitors. In this review, we show a panorama of progress that has been achieved within the folate pathway obtained in the last years. We explored the structure and mechanism of enzymes, several genetic features, strategies, and approaches used in the design of new inhibitors that have been used as targets in pathogen chemotherapy.
Collapse
|
8
|
Dennis ML, Lee MD, Harjani JR, Ahmed M, DeBono AJ, Pitcher NP, Wang ZC, Chhabra S, Barlow N, Rahmani R, Cleary B, Dolezal O, Hattarki M, Aurelio L, Shonberg J, Graham B, Peat TS, Baell JB, Swarbrick JD. 8-Mercaptoguanine Derivatives as Inhibitors of Dihydropteroate Synthase. Chemistry 2018; 24:1922-1930. [PMID: 29171692 DOI: 10.1002/chem.201704730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 01/26/2023]
Abstract
Dihydropteroate synthase (DHPS) is an enzyme of the folate biosynthesis pathway, which catalyzes the formation of 7,8-dihydropteroate (DHPt) from 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPPP) and para-aminobenzoic acid (pABA). DHPS is the long-standing target of the sulfonamide class of antibiotics that compete with pABA. In the wake of sulfa drug resistance, targeting the structurally rigid (and more conserved) pterin site has been proposed as an alternate strategy to inhibit DHPS in wild-type and sulfa drug resistant strains. Following the work on developing pterin-site inhibitors of the adjacent enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), we now present derivatives of 8-mercaptoguanine, a fragment that binds weakly within both enzymes, and quantify sub-μm binding using surface plasmon resonance (SPR) to Escherichia coli DHPS (EcDHPS). Eleven ligand-bound EcDHPS crystal structures delineate the structure-activity relationship observed providing a structural framework for the rational development of novel, substrate-envelope-compliant DHPS inhibitors.
Collapse
Affiliation(s)
- Matthew L Dennis
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia.,CSIRO Biomedical Program, Manufacturing, Parkville, 3052, Victoria, Australia
| | - Michael D Lee
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia.,CSIRO Biomedical Program, Manufacturing, Parkville, 3052, Victoria, Australia
| | - Jitendra R Harjani
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Mohamed Ahmed
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia.,School of Pharmacy, University College London, Bloomsbury, London, WC1N 1AX, UK
| | - Aaron J DeBono
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Noel P Pitcher
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Zhong-Chang Wang
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210093, P. R. China
| | - Sandeep Chhabra
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Nicholas Barlow
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Raphaël Rahmani
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Ben Cleary
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Olan Dolezal
- CSIRO Biomedical Program, Manufacturing, Parkville, 3052, Victoria, Australia
| | - Meghan Hattarki
- CSIRO Biomedical Program, Manufacturing, Parkville, 3052, Victoria, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Jeremy Shonberg
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| | - Thomas S Peat
- CSIRO Biomedical Program, Manufacturing, Parkville, 3052, Victoria, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia.,School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - James D Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, 3052, Victoria, Australia
| |
Collapse
|
9
|
Jongkon N, Gleeson D, Gleeson MP. Elucidation of the catalytic mechanism of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase using QM/MM calculations. Org Biomol Chem 2018; 16:6239-6249. [DOI: 10.1039/c8ob01428k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This account describes the application of QM/MM calculations to understand the reaction mechanism of HPPK, an important pharmacological target on the folate pathway for the treatment of diseases including anti-microbial resistance, malaria and cancer.
Collapse
Affiliation(s)
- Nathjanan Jongkon
- Department of Social and Applied Science
- College of Industrial Technology
- King Mongkut's University of Technology North Bangkok
- Bangkok 10800
- Thailand
| | - Duangkamol Gleeson
- Department of Chemistry
- Faculty of Science
- King Mongkut's Institute of Technology Ladkrabang
- Thailand
| | - M. Paul Gleeson
- Department of Biomedical Engineering
- Faculty of Engineering
- King Mongkut's Institute of Technology Ladkrabang
- Bangkok 10520
- Thailand
| |
Collapse
|
10
|
Marimuthu P, Singaravelu K, Namasivayam V. Probing the binding mechanism of mercaptoguanine derivatives as inhibitors of HPPK by docking and molecular dynamics simulations. J Biomol Struct Dyn 2016; 35:3507-3521. [PMID: 27844507 DOI: 10.1080/07391102.2016.1260496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a promising antimicrobial target involved in the folate biosynthesis pathway. Although, the results from crystallographic studies of HPPK have attracted a great interest in the design of novel HPPK inhibitors, the mechanism of action of HPPK due to inhibitor binding remains questionable. Recently, mercaptoguanine derivatives were reported to inhibit the pyrophosphoryl transfer mechanism of Staphylococcus aureus HPPK (SaHPPK). The present study is an attempt to understand the SaHPPK-inhibitors binding mechanism and to highlight the key residues that possibly involve in the complex formation. To decipher these questions, we used the state-of-the-art advanced insilico approach such as molecular docking, molecular dynamics (MD), molecular mechanics-generalized Born surface area approach. Domain cross correlation and principle component analysis were applied to the snapshots obtained from MD revealed that the compounds with high binding affinity stabilize the conformational dynamics of SaHPPK. The binding free energy estimation showed that the van der Waals and electrostatic interactions played a vital role for the binding mechanism. Additionally, the predicted binding free energy was in good agreement with the experimental values (R2 = .78). Moreover, the free energy decomposition on per-residue confirms the key residues that significantly contribute to the complex formation. These results are expected to be useful for rational design of novel SaHPPK inhibitors.
Collapse
Affiliation(s)
- Parthiban Marimuthu
- a Structural Bioinformatics Laboratory (SBL), Faculty of Science and Engineering , Åbo Akademi University , Turku FI-20520 , Finland
| | - Kalaimathy Singaravelu
- b Department of Information Technology, Turku Centre for Biotechnology , University of Turku , Turku FI-20520 , Finland
| | - Vigneshwaran Namasivayam
- c PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , An der Immenburg 4, Bonn D-53121 , Germany
| |
Collapse
|
11
|
Dennis ML, Pitcher NP, Lee MD, DeBono AJ, Wang ZC, Harjani JR, Rahmani R, Cleary B, Peat TS, Baell JB, Swarbrick JD. Structural Basis for the Selective Binding of Inhibitors to 6-Hydroxymethyl-7,8-dihydropterin Pyrophosphokinase from Staphylococcus aureus and Escherichia coli. J Med Chem 2016; 59:5248-63. [PMID: 27094768 DOI: 10.1021/acs.jmedchem.6b00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a member of the folate biosynthesis pathway found in prokaryotes and lower eukaryotes that catalyzes the pyrophosphoryl transfer from the ATP cofactor to a 6-hydroxymethyl-7,8-dihydropterin substrate. We report the chemical synthesis of a series of S-functionalized 8-mercaptoguanine (8MG) analogues as substrate site inhibitors of HPPK and quantify binding against the E. coli and S. aureus enzymes (EcHPPK and SaHPPK). The results demonstrate that analogues incorporating acetophenone-based substituents have comparable affinities for both enzymes. Preferential binding of benzyl-substituted 8MG derivatives to SaHPPK was reconciled when a cryptic pocket unique to SaHPPK was revealed by X-ray crystallography. Differential chemical shift perturbation analysis confirmed this to be a common mode of binding for this series to SaHPPK. One compound (41) displayed binding affinities of 120 nM and 1.76 μM for SaHPPK and EcHPPK, respectively, and represents a lead for the development of more potent and selective inhibitors of SaHPPK.
Collapse
Affiliation(s)
- Matthew L Dennis
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,CSIRO Biosciences Program , Parkville, Victoria 3052, Australia
| | - Noel P Pitcher
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Michael D Lee
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Aaron J DeBono
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Zhong-Chang Wang
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing 210093, People's Republic of China
| | - Jitendra R Harjani
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Raphaël Rahmani
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Ben Cleary
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - Thomas S Peat
- CSIRO Biosciences Program , Parkville, Victoria 3052, Australia
| | - Jonathan B Baell
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | - James D Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| |
Collapse
|
12
|
Abstract
How to design a ligand to bind multiple targets, rather than to a single target, is the focus of this review. Rational polypharmacology draws on knowledge that is both broad ranging and hierarchical. Computer-aided multitarget ligand design methods are described according to their nested knowledge level. Ligand-only and then receptor-ligand strategies are first described; followed by the metabolic network viewpoint. Subsequently strategies that view infectious diseases as multigenomic targets are discussed, and finally the disease level interpretation of medicinal therapy is considered. As yet there is no consensus on how best to proceed in designing a multitarget ligand. The current methodologies are bought together in an attempt to give a practical overview of how polypharmacology design might be best initiated.
Collapse
|
13
|
Dennis ML, Chhabra S, Wang ZC, Debono A, Dolezal O, Newman J, Pitcher NP, Rahmani R, Cleary B, Barlow N, Hattarki M, Graham B, Peat TS, Baell JB, Swarbrick JD. Structure-based design and development of functionalized Mercaptoguanine derivatives as inhibitors of the folate biosynthesis pathway enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Staphylococcus aureus. J Med Chem 2014; 57:9612-26. [PMID: 25357262 DOI: 10.1021/jm501417f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), an enzyme from the folate biosynthesis pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin and is a yet-to-be-drugged antimicrobial target. Building on our previous discovery that 8-mercaptoguanine (8MG) is an inhibitor of Staphylococcus aureus HPPK (SaHPPK), we have identified and characterized the binding of an S8-functionalized derivative (3). X-ray structures of both the SaHPPK/3/cofactor analogue ternary and the SaHPPK/cofactor analogue binary complexes have provided insight into cofactor recognition and key residues that move over 30 Å upon binding of 3, whereas NMR measurements reveal a partially plastic ternary complex active site. Synthesis and binding analysis of a set of analogues of 3 have identified an advanced new lead compound (11) displaying >20-fold higher affinity for SaHPPK than 8MG. A number of these exhibited low micromolar affinity for dihydropteroate synthase (DHPS), the adjacent, downstream enzyme to HPPK, and may thus represent promising new leads to bienzyme inhibitors.
Collapse
Affiliation(s)
- Matthew L Dennis
- Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yun MK, Hoagland D, Kumar G, Waddell MB, Rock CO, Lee RE, White SW. The identification, analysis and structure-based development of novel inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase. Bioorg Med Chem 2014; 22:2157-65. [PMID: 24613625 DOI: 10.1016/j.bmc.2014.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/04/2014] [Accepted: 02/14/2014] [Indexed: 01/19/2023]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is an essential enzyme in the microbial folate biosynthetic pathway. This pathway has proven to be an excellent target for antimicrobial development, but widespread resistance to common therapeutics including the sulfa drugs has stimulated interest in HPPK as an alternative target in the pathway. A screen of a pterin-biased compound set identified several HPPK inhibitors that contain an aryl substituted 8-thioguanine scaffold, and structural analyses showed that these compounds engage the HPPK pterin-binding pocket and an induced cryptic pocket. A preliminary structure activity relationship profile was developed from biophysical and biochemical characterizations of derivative molecules. Also, a similarity search identified additional scaffolds that bind more tightly within the HPPK pterin pocket. These inhibitory scaffolds have the potential for rapid elaboration into novel lead antimicrobial agents.
Collapse
Affiliation(s)
- Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel Hoagland
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Gyanendra Kumar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M Brett Waddell
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
15
|
Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery. Antibiotics (Basel) 2014; 3:1-28. [PMID: 27025730 PMCID: PMC4790348 DOI: 10.3390/antibiotics3010001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 01/07/2023] Open
Abstract
The need for new antimicrobials is great in face of a growing pool of resistant pathogenic organisms. This review will address the potential for antimicrobial therapy based on polypharmacological activities within the currently utilized bacterial biosynthetic folate pathway. The folate metabolic pathway leads to synthesis of required precursors for cellular function and contains a critical node, dihydrofolate reductase (DHFR), which is shared between prokaryotes and eukaryotes. The DHFR enzyme is currently targeted by methotrexate in anti-cancer therapies, by trimethoprim for antibacterial uses, and by pyrimethamine for anti-protozoal applications. An additional anti-folate target is dihyropteroate synthase (DHPS), which is unique to prokaryotes as they cannot acquire folate through dietary means. It has been demonstrated as a primary target for the longest standing antibiotic class, the sulfonamides, which act synergistically with DHFR inhibitors. Investigations have revealed most DHPS enzymes possess the ability to utilize sulfa drugs metabolically, producing alternate products that presumably inhibit downstream enzymes requiring the produced dihydropteroate. Recent work has established an off-target effect of sulfonamide antibiotics on a eukaryotic enzyme, sepiapterin reductase, causing alterations in neurotransmitter synthesis. Given that inhibitors of both DHFR and DHPS are designed to mimic their cognate substrate, which contain shared substructures, it is reasonable to expect such “off-target” effects. These inhibitors are also likely to interact with the enzymatic neighbors in the folate pathway that bind products of the DHFR or DHPS enzymes and/or substrates of similar substructure. Computational studies designed to assess polypharmacology reiterate these conclusions. This leads to hypotheses exploring the vast utility of multiple members of the folate pathway for modulating cellular metabolism, and includes an appealing capacity for prokaryotic-specific polypharmacology for antimicrobial applications.
Collapse
|
16
|
Chhabra S, Dolezal O, Hattarki M, Peat TS, Simpson JS, Swarbrick JD. Fragment Screening on Staphylococcus aureus HPPK – a Folate Pathway Target. Aust J Chem 2013. [DOI: 10.1071/ch13298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An NMR-based screen of a commercially available fragment library was performed on the folate pathway antimicrobial target, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Staphylococcus aureus (SaHPPK). Initial 1D saturation transfer difference-NMR screening resulted in an impractically high hit rate (43 %), which advocated the use of a strategy based on 2D (SOFAST) 15N HMQC NMR experiments. Chemical shift perturbations were used to identify, validate, and map the location of 16 initial binders (hit rate of 2 %). Fourteen compounds were purchased based on an identified thioamide pharmacophore. Binding affinities (Kd) were measured by surface plasmon resonance, revealing a modest improvement in potency over the initial 16 hits, with the best fragment found to bind to the apo enzyme with a Kd of 420 µM, corresponding to a ligand efficiency of 1.8 kJ/heavy atom. Four fragments identified represent useful starting points for the generation of leads that may ultimately be developed into new antimicrobial agents.
Collapse
|