1
|
Jang IS, Nakamura M, Nonaka K, Noda M, Kotani N, Katsurabayashi S, Nagami H, Akaike N. Protein Kinase A Is Responsible for the Presynaptic Inhibition of Glycinergic and Glutamatergic Transmissions by Xenon in Rat Spinal Cord and Hippocampal CA3 Neurons. J Pharmacol Exp Ther 2023; 386:331-343. [PMID: 37391223 DOI: 10.1124/jpet.123.001599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/02/2023] Open
Abstract
The effects of a general anesthetic xenon (Xe) on spontaneous, miniature, electrically evoked synaptic transmissions were examined using the "synapse bouton preparation," with which we can clearly evaluate pure synaptic responses and accurately quantify pre- and postsynaptic transmissions. Glycinergic and glutamatergic transmissions were investigated in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xe presynaptically inhibited spontaneous glycinergic transmission, the effect of which was resistant to tetrodotoxin, Cd2+, extracellular Ca2+, thapsigargin (a selective sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor), SQ22536 (an adenylate cyclase inhibitor), 8-Br-cAMP (membrane-permeable cAMP analog), ZD7288 (an hyperpolarization-activated cyclic nucleotide-gated channel blocker), chelerythrine (a PKC inhibitor), and KN-93 (a CaMKII inhibitor) while being sensitive to PKA inhibitors (H-89, KT5720, and Rp-cAMPS). Moreover, Xe inhibited evoked glycinergic transmission, which was canceled by KT5720. Like glycinergic transmission, spontaneous and evoked glutamatergic transmissions were also inhibited by Xe in a KT5720-sensitive manner. Our results suggest that Xe decreases glycinergic and glutamatergic spontaneous and evoked transmissions at the presynaptic level in a PKA-dependent manner. These presynaptic responses are independent of Ca2+ dynamics. We conclude that PKA can be the main molecular target of Xe in the inhibitory effects on both inhibitory and excitatory neurotransmitter release. SIGNIFICANCE STATEMENT: Spontaneous and evoked glycinergic and glutamatergic transmissions were investigated using the whole-cell patch clamp technique in rat spinal sacral dorsal commissural nucleus and hippocampal CA3 neurons, respectively. Xenon (Xe) significantly inhibited glycinergic and glutamatergic transmission presynaptically. As a signaling mechanism, protein kinase A was responsible for the inhibitory effects of Xe on both glycine and glutamate release. These results may help understand how Xe modulates neurotransmitter release and exerts its excellent anesthetic properties.
Collapse
Affiliation(s)
- Il-Sung Jang
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Michiko Nakamura
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Kiku Nonaka
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Mami Noda
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Naoki Kotani
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Shutaro Katsurabayashi
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Hideaki Nagami
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| | - Norio Akaike
- Kyungpook National University, Daegu, Republic of Korea (I.S.J., M.Na); Kumamoto Health Science University, Kumamoto, Japan (K.N.); Kyushu University, Fukuoka, Japan (M.No); Kitamoto Hospital, Saitama, Japan (N.K., N.A.); Fukuoka University, Fukuoka, Japan (S.K.); and Kumamoto Kinoh Hospital, Kumamoto, Japan (H.N., N.A.)
| |
Collapse
|
2
|
Firestone E, Sonoda M, Kuroda N, Sakakura K, Jeong JW, Lee MH, Wada K, Takayama Y, Iijima K, Iwasaki M, Miyazaki T, Asano E. Sevoflurane-induced high-frequency oscillations, effective connectivity and intraoperative classification of epileptic brain areas. Clin Neurophysiol 2023; 150:17-30. [PMID: 36989866 PMCID: PMC10192072 DOI: 10.1016/j.clinph.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE To determine how sevoflurane anesthesia modulates intraoperative epilepsy biomarkers on electrocorticography, including high-frequency oscillation (HFO) effective connectivity (EC), and to investigate their relation to epileptogenicity and anatomical white matter. METHODS We studied eight pediatric drug-resistant focal epilepsy patients who achieved seizure control after invasive monitoring and resective surgery. We visualized spatial distributions of the electrocorticography biomarkers at an oxygen baseline, three time-points while sevoflurane was increasing, and at a plateau of 2 minimum alveolar concentration (MAC) sevoflurane. HFO EC was combined with diffusion-weighted imaging, in dynamic tractography. RESULTS Intraoperative HFO EC diffusely increased as a function of sevoflurane concentration, although most in epileptogenic sites (defined as those included in the resection); their ability to classify epileptogenicity was optimized at sevoflurane 2 MAC. HFO EC could be visualized on major white matter tracts, as a function of sevoflurane level. CONCLUSIONS The results strengthened the hypothesis that sevoflurane-activated HFO biomarkers may help intraoperatively localize the epileptogenic zone. SIGNIFICANCE Our results help characterize how HFOs at non-epileptogenic and epileptogenic networks respond to sevoflurane. It may be warranted to establish a normative HFO atlas incorporating the modifying effects of sevoflurane and major white matter pathways, as critical reference in epilepsy presurgical evaluation.
Collapse
Affiliation(s)
- Ethan Firestone
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Naoto Kuroda
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 9808575, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan
| | - Jeong-Won Jeong
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA
| | - Min-Hee Lee
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA
| | - Keiko Wada
- Department of Anesthesiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan; Department of Anesthesiology and Critical Care, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan; Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Keiya Iijima
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan
| | - Tomoyuki Miyazaki
- Department of Anesthesiology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan; Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama 2360004, Japan
| | - Eishi Asano
- Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center,Wayne State University, Detroit, MI 48201, USA; Department of Neurology, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
3
|
Xu W, Wang L, Yuan XS, Wang TX, Li WX, Qu WM, Hong ZY, Huang ZL. Sevoflurane depresses neurons in the medial parabrachial nucleus by potentiating postsynaptic GABA A receptors and background potassium channels. Neuropharmacology 2020; 181:108249. [PMID: 32931816 DOI: 10.1016/j.neuropharm.2020.108249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022]
Abstract
Despite persistent clinical use for over 170 years, the neuronal mechanisms by which general anesthetics produce hypnosis remain unclear. Previous studies suggest that anesthetics exert hypnotic effects by acting on endogenous arousal circuits. Recently, it has been shown that the medial parabrachial nucleus (MPB) is a novel wake-promoting component in the dorsolateral pons. However, it is not known whether and how the MPB contributes to anesthetic-induced hypnosis. Here, we investigated the action of sevoflurane, a widely used volatile anesthetic agent that best represents the drug class of halogenated ethers, on MPB neurons in mice. Using in vivo fiber photometry, we found that the population activities of MPB neurons were inhibited during sevoflurane-induced loss of consciousness. Using in vitro whole-cell patch-clamp recordings, we revealed that sevoflurane suppressed the firing rate of MPB neurons in concentration-dependent and reversible manners. At a concentration equal to MAC of hypnosis, sevoflurane potentiated synaptic GABAA receptors (GABAA-Rs), and the inhibitory effect of sevoflurane on the firing rate of MPB neurons was completely abolished by picrotoxin, which is a selective GABAA-R antagonist. At a concentration equivalent to MAC of immobility, sevoflurane directly hyperpolarized MPB neurons and induced a significant decrease in membrane input resistance by increasing a basal potassium conductance. Moreover, pharmacological blockade of GABAA-Rs in the MPB prolongs induction and shortens emergence under sevoflurane inhalation at MAC of hypnosis. These results indicate that sevoflurane inhibits MPB neurons through postsynaptic GABAA-Rs and background potassium channels, which contributes to sevoflurane-induced hypnosis.
Collapse
Affiliation(s)
- Wei Xu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lu Wang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiang-Shan Yuan
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tian-Xiao Wang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wen-Xian Li
- Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital of Fudan University, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zong-Yuan Hong
- Laboratory of Quantitative Pharmacology, Department of Pharmacology, Wannan Medical College, Wuhu, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Aldana E, Álvarez López-Herrero N, Benito H, Colomina MJ, Fernández-Candil J, García-Orellana M, Guzmán B, Ingelmo I, Iturri F, Martín Huerta B, León A, Pérez-Lorensu PJ, Valencia L, Valverde JL. Consensus document for multimodal intraoperatory neurophisiological monitoring in neurosurgical procedures. Basic fundamentals. ACTA ACUST UNITED AC 2020; 68:82-98. [PMID: 32624233 DOI: 10.1016/j.redar.2020.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 01/27/2023]
Abstract
The present work aims to establish a guide to action, agreed by anaesthesiologists and neurophysiologists alike, to perform effective intraoperative neurophysiological monitoring for procedures presenting a risk of functional neurological injury, and neurosurgical procedures. The first section discusses the main techniques currently used for intraoperative neurophysiological monitoring. The second exposes the anaesthetic and non-anaesthetic factors that are likely to affect the electrical records of the nervous system structures. This section is followed by an analysis detailing the adverse effects associated with the most common techniques and their use. Finally, the last section describes a series of guidelines to be followed upon the various intraoperative clinical events.
Collapse
Affiliation(s)
- E Aldana
- Anestesiología y Reanimación, Hospital Vithas Xanit Internacional, Benalmádena, Málaga, España
| | - N Álvarez López-Herrero
- Neurofisiología, Servicio de Neurocirugía, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - H Benito
- Anestesiología y Reanimación, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - M J Colomina
- Anestesiología y Reanimación, Hospital Universitari Bellvitge, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, España
| | | | - M García-Orellana
- Anestesiología y Reanimación, Hospital Clínic de Barcelona, Barcelona, España
| | - B Guzmán
- Neurofisiología clínica, Hospital Clínico Universitario Lozano de Blesa, Zaragoza, España
| | - I Ingelmo
- Anestesiología y Reanimación, Hospital Universitario Ramón y Cajal, Madrid, España
| | - F Iturri
- Anestesiología y Reanimación, Hospital Universitario de Cruces, Baracaldo, Vizcaya, España
| | - B Martín Huerta
- Anestesiología y Reanimación, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - A León
- Neurofisiología, Servicio de Neurología, Parc de Salut Mar, Barcelona, España
| | - P J Pérez-Lorensu
- Neurofisiología Clínica, Unidad de Monitorización Neurofisiológica Intraoperatoria, Hospital Universitario de Canarias, Tenerife, España
| | - L Valencia
- Anestesiología y Reanimación, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, España
| | - J L Valverde
- Anestesiología y Reanimación, Hospital Vithas Xanit Internacional, Benalmádena, Málaga, España
| |
Collapse
|
5
|
Nakamura M, Jang IS, Yamaga T, Kotani N, Akaike N. Effects of nitrous oxide on glycinergic transmission in rat spinal neurons. Brain Res Bull 2020; 162:191-198. [PMID: 32599127 DOI: 10.1016/j.brainresbull.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
We investigated the effects of nitrous oxide (N2O) on glycinergic inhibitory whole-cell and synaptic responses using a "synapse bouton preparation," dissociated mechanically from rat spinal sacral dorsal commissural nucleus (SDCN) neurons. This technique can evaluate pure single- or multi-synaptic responses from native functional nerve endings and enable us to accurately quantify how N2O influences pre- and postsynaptic transmission. We found that 70 % N2O enhanced exogenous glycine-induced whole-cell currents (IGly) at glycine concentrations lower than 3 × 10-5 M, but did not affect IGly at glycine concentrations higher than 10-4 M. N2O did not affect the amplitude and 1/e decay-time of both spontaneous and miniature glycinergic inhibitory postsynaptic currents recorded in the absence and presence of tetrodotoxin (sIPSCs and mIPSCs, respectively). The decrease in frequency induced by N2O was observed in sIPSCs but not in mIPSCs, which was recorded in the presence of both tetrodotoxin and Cd2+, which block voltage-gated Na+ and Ca2+ channels, respectively. N2O also decreased the amplitude and increased the failure rate and paired-pulse ratio of action potential-evoked glycinergic inhibitory postsynaptic currents. N2O slightly decreased the Ba2+ currents mediated by voltage-gated Ca2+ channels in SDCN neurons. We found that N2O suppresses glycinergic responses at synaptic levels with presynaptic effect having much more predominant role. The difference between glycinergic whole-cell and synaptic responses suggests that extrasynaptic responses seriously modulate whole-cell currents. Our results strongly suggest that these responses may thus in part explain analgesic effects of N2O via marked glutamatergic inhibition by glycinergic responses in the spinal cord.
Collapse
Affiliation(s)
- Michiko Nakamura
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol-daero, Jung-gu, Daegu, 700-412, Republic of Korea
| | - Toshitaka Yamaga
- Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kita-ku, Kumamoto 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan
| | - Norio Akaike
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya, Saitama 343-0821, Japan; Research Division for Clinical Pharmacology, Medical Corporation, Juryo Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto 860-8518, Japan.
| |
Collapse
|
6
|
Wakita M, Kotani N, Akaike N. Effects of propofol on glycinergic neurotransmission in a single spinal nerve synapse preparation. Brain Res 2015; 1631:147-56. [PMID: 26616339 DOI: 10.1016/j.brainres.2015.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
The effects of the intravenous anesthetic, propofol, on glycinergic transmission and on glycine receptor-mediated whole-cell currents (IGly) were examined in the substantia gelatinosa (SG) neuronal cell body, mechanically dissociated from the rat spinal cord. This "synaptic bouton" preparation, which retains functional native nerve endings, allowed us to evaluate glycinergic inhibitory postsynaptic currents (IPSCs) and whole-cell currents in a preparation in which experimental solution could rapidly access synaptic terminals. Synaptic IPSCs were measured as spontaneous (s) and evoked (e) IPSCs. The eIPSCs were elicited by applying paired-pulse focal electrical stimulation, while IGly was evoked by a bath application of glycine. A concentration-dependent enhancement of IGly was observed for ≥10µM propofol. Propofol (≥3µM) significantly increased the frequency of sIPSCs and prolonged the decay time without altering the current amplitude. However, propofol (≥3µM) also significantly increased the mean amplitude of eIPSCs and decreased the failure rate (Rf). A decrease in the paired-pulse ratio (PPR) was noted at higher concentrations (≥10µM). The decay time of eIPSCs was prolonged only at the maximum concentration tested (30µM). Propofol thus acts at both presynaptic glycine release machinery and postsynaptic glycine receptors. At clinically relevant concentrations (<1μM) there was no effect on IGly, sIPSCs or eIPSCs suggesting that at anesthetic doses propofol does not affect inhibitory glycinergic synapses in the spinal cord.
Collapse
Affiliation(s)
- Masahito Wakita
- Research Division for Clinical Pharmacology, Medical Corporation, JyuryoGroup, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kitaku, Kumamoto 860-8518, Japan; Research Division for Life Science, Kumamoto Health Science University, 325 Izumi-machi, Kitaku, Kumamoto 861-5598, Japan
| | - Naoki Kotani
- Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya 343-0821, Japan
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, JyuryoGroup, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kitaku, Kumamoto 860-8518, Japan; Research Division of Neurophysiology, Kitamoto Hospital, 3-7-6 Kawarasone, Koshigaya 343-0821, Japan; Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
7
|
Malcharek M, Loeffler S, Schiefer D, Manceur M, Sablotzki A, Gille J, Pilge S, Schneider G. Transcranial motor evoked potentials during anesthesia with desflurane versus propofol – A prospective randomized trial. Clin Neurophysiol 2015; 126:1825-32. [DOI: 10.1016/j.clinph.2014.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 11/16/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022]
|
8
|
Eckle VS, Grasshoff C, Mirakaj V, O'Neill PM, Berry NG, Leuwer M, Antkowiak B. 4-bromopropofol decreases action potential generation in spinal neurons by inducing a glycine receptor-mediated tonic conductance. Br J Pharmacol 2015; 171:5790-801. [PMID: 25131750 DOI: 10.1111/bph.12880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/29/2014] [Accepted: 08/11/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Impaired function of spinal strychnine-sensitive glycine receptors gives rise to chronic pain states and movement disorders. Therefore, increased activity of glycine receptors should help to treat such disorders. Although compounds targeting glycine receptors with a high selectivity are lacking, halogenated analogues of propofol have recently been considered as potential candidates. Therefore we asked whether 4-bromopropofol attenuated the excitability of spinal neurons by promoting glycine receptor-dependent inhibition. EXPERIMENTAL APPROACH The actions of sub-anaesthetic concentrations of propofol and 4-bromopropofol were investigated in spinal tissue cultures prepared from mice. Drug-induced alterations in action potential firing were monitored by extracellular multi-unit recordings. The effects on GABAA and glycine receptor-mediated inhibition were quantified by whole-cell voltage-clamp recordings. KEY RESULTS Low concentrations of 4-bromopropofol (50 nM) reduced action potential activity of ventral horn neurons by about 30%, compared with sham-treated slices. This effect was completely abolished by strychnine (1 μM). In voltage-clamped neurons, 4-bromopropofol activated glycine receptors, generating a tonic current of 65 ± 10 pA, while GABAA - and glycine receptor-mediated synaptic transmission remained unaffected. CONCLUSIONS AND IMPLICATIONS The highest glycine levels in the CNS are found in the ventral horn of the spinal cord, a region mediating pain-induced motor reflexes and participating in the control of muscle tone. 4-Bromopropofol may serve as a starting point for the development of non-sedative, non-addictive, muscle relaxants and analgesics to be used to treat low back pain.
Collapse
Affiliation(s)
- V S Eckle
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Burgos CF, Muñoz B, Guzman L, Aguayo LG. Ethanol effects on glycinergic transmission: From molecular pharmacology to behavior responses. Pharmacol Res 2015; 101:18-29. [PMID: 26158502 DOI: 10.1016/j.phrs.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
It is well accepted that ethanol is able to produce major health and economic problems associated to its abuse. Because of its intoxicating and addictive properties, it is necessary to analyze its effect in the central nervous system. However, we are only now learning about the mechanisms controlling the modification of important membrane proteins such as ligand-activated ion channels by ethanol. Furthermore, only recently are these effects being correlated to behavioral changes. Current studies show that the glycine receptor (GlyR) is a susceptible target for low concentrations of ethanol (5-40mM). GlyRs are relevant for the effects of ethanol because they are found in the spinal cord and brain stem where they primarily express the α1 subunit. More recently, the presence of GlyRs was described in higher regions, such as the hippocampus and nucleus accumbens, with a prevalence of α2/α3 subunits. Here, we review data on the following aspects of ethanol effects on GlyRs: (1) direct interaction of ethanol with amino acids in the extracellular or transmembrane domains, and indirect mechanisms through the activation of signal transduction pathways; (2) analysis of α2 and α3 subunits having different sensitivities to ethanol which allows the identification of structural requirements for ethanol modulation present in the intracellular domain and C-terminal region; (3) Genetically modified knock-in mice for α1 GlyRs that have an impaired interaction with G protein and demonstrate reduced ethanol sensitivity without changes in glycinergic transmission; and (4) GlyRs as potential therapeutic targets.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Leonardo Guzman
- Laboratory of Molecular Neurobiology, Department of Physiology, University of Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile.
| |
Collapse
|
10
|
Antkowiak B. Closing the gap between the molecular and systemic actions of anesthetic agents. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 72:229-62. [PMID: 25600373 DOI: 10.1016/bs.apha.2014.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic approaches have been successfully used to relate the diverse molecular actions of anesthetic agents to their amnestic, sedative, hypnotic, and immobilizing properties. The hypnotic effect of etomidate, quantified as the duration of the loss of righting reflex in mice, is equally mediated by GABAA receptors containing β2- and β3-protein subunits. However, only β3-containing receptors are involved in producing electroencephalogram (EEG)-patterns typical of general anesthesia. The sedative action of diazepam is produced by α1-subunit-containing receptors, but these receptors do not contribute to the drug's characteristic EEG-"fingerprint." Thus, GABAA receptors with α1- and β2-subunits take a central role in causing benzodiazepine-induced sedation and etomidate-induced hypnosis, but the corresponding EEG-signature is difficult to resolve. Contrastingly, actions of etomidate and benzodiazepines mediated via α2- and β3-subunits modify rhythmic brain activity in vitro and in vivo at least in part by enhancing neuronal synchrony. The immobilizing action of GABAergic anesthetics predominantly involves β3-subunit-containing GABAA receptors in the spinal cord. Interestingly, this action is self-limiting as GABA-release is attenuated via the same receptors. Anesthetic-induced amnesia is in part mediated by GABAA receptors harboring α5-subunits that are highly enriched in the hippocampus and, in addition, by α1-containing receptors in the forebrain. Because there is accumulating evidence that in patients the expression pattern of GABAA receptor subtypes varies with age, is altered by the long-term use of drugs, and is affected by pathological conditions like inflammation and sepsis, further research is recommended to adapt the use of anesthetic agents to the specific requirements of individual patients.
Collapse
Affiliation(s)
- Bernd Antkowiak
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology Section, Eberhard-Karls-University, Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, Eberhard-Karls-University, Tübingen, Germany.
| |
Collapse
|
11
|
Eckle VS, Rudolph U, Antkowiak B, Grasshoff C. Propofol modulates phasic and tonic GABAergic currents in spinal ventral horn interneurones. Br J Anaesth 2014; 114:491-8. [PMID: 25150989 DOI: 10.1093/bja/aeu269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Surgical interventions like skin incisions trigger withdrawal reflexes which require motor neurones and local circuit interneurones in the spinal ventral horn. This region plays a key role in mediating immobilizing properties of the GABAergic anaesthetic propofol. However, it is unclear how propofol modulates GABA(A) receptors in the spinal ventral horn and whether tonic or phasic inhibition is involved. METHODS Organotypic spinal cord tissue slices were prepared from mice. Whole-cell recordings were performed for quantifying effects of propofol on GABA(A) receptor-mediated phasic transmission and tonic conductance. RESULTS Propofol increased GABAergic phasic transmission by a prolongation of the decay time constant in a concentration-dependent manner. The amount of the charge transferred per inhibitory post-synaptic current, described by the area under the curve, was significantly augmented by 1 µM propofol (P<0.01). A GABA(A) receptor-mediated tonic current was not induced by 1 µM propofol but at a concentration of 5 µM (P<0.05). CONCLUSIONS Propofol depresses ventral horn interneurones predominantly by phasic rather than by tonic GABA(A) receptor-mediated inhibition. However, the present results suggest that the involvement of a tonic inhibition might contribute to the efficacy of propofol to depress nociceptive reflexes at high concentrations of the anaesthetic.
Collapse
Affiliation(s)
- V S Eckle
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| | - U Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital and Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - B Antkowiak
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| | - C Grasshoff
- Experimental Anaesthesiology Section, Department of Anaesthesiology and Intensive Care, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
12
|
ALX 1393 inhibits spontaneous network activity by inducing glycinergic tonic currents in the spinal ventral horn. Neuroscience 2013; 253:165-71. [DOI: 10.1016/j.neuroscience.2013.08.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022]
|