1
|
Kulkarni NS, Gupta V. Repurposing therapeutics for malignant pleural mesothelioma (MPM) - Updates on clinical translations and future outlook. Life Sci 2022; 304:120716. [PMID: 35709894 DOI: 10.1016/j.lfs.2022.120716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is a rare malignancy affecting the mesothelial cells in the pleural lining surrounding the lungs. First approved chemotherapy against MPM was a platinum/antifolate (cisplatin/pemetrexed) (2003). Since then, no USFDA approvals have gone through for small molecules as these molecules have not been proven to be therapeutically able in later stages of clinical studies. An alternative to conventional chemotherapy can be utilization of monoclonal antibodies, which are proven to improve patient survival significantly as compared to conventional chemotherapy (Nivolumab + Ipilimumab, 2020). AREA COVERED Drug repurposing has been instrumental in drug discovery for rare diseases such as MPM and multiple repositioned small molecule therapies and immunotherapies are currently being tested for its applicability in MPM management. This article summarizes essential breakthroughs along the pre-clinical and clinical developmental stages of small molecules and monoclonal antibodies for MPM management. EXPERT OPINION For rare diseases such as malignant pleural mesothelioma, a drug repurposing strategy can be adapted as it eases the financial burden on pharmaceutical companies along with fast-tracking development. With the rise of multiple small molecule repurposed therapies and innovations in localized treatment, MPM therapeutics are bound to be more effective in this decade.
Collapse
Affiliation(s)
- Nishant S Kulkarni
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vivek Gupta
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
2
|
Jiang Y, Zhong B, Kawamura K, Morinaga T, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Combination of a third generation bisphosphonate and replication-competent adenoviruses augments the cytotoxicity on mesothelioma. BMC Cancer 2016; 16:455. [PMID: 27405588 PMCID: PMC4942884 DOI: 10.1186/s12885-016-2483-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/04/2016] [Indexed: 02/07/2023] Open
Abstract
Background Approximately 80 % of mesothelioma specimens have the wild-type p53 gene, whereas they contain homozygous deletions in the INK4A/ARF locus that encodes p14ARF and the 16INK4A genes. Consequently, the majority of mesothelioma is defective of the p53 pathways. We examined whether zoledronic acid (ZOL), a third generation bisphosphonate, and adenoviruses with a deletion of the E1B-55kD gene (Ad-delE1B55), which augments p53 levels in the infected tumors, could produce combinatory anti-tumor effects on human mesothelioma cells bearing the wild-type p53 gene. Methods Cytotoxicity of ZOL and Ad-delE1B55 was assessed with a WST assay. Cell cycle changes were tested with flow cytometry. Expression levels of relevant molecules were examined with western blot analysis to investigate a possible mechanism of cytotoxicity. Furthermore, the expressions of Ad receptors on target cells and infectivity were estimated with flow cytometry. Viral replication was assayed with the tissue culture infection dose method. Results A combinatory use of ZOL and Ad-delE1B55 suppressed cell growth and increased sub-G1 or S-phase populations compared with a single agent, depending on cells tested. The combinatory treatment up-regulated p53 levels and subsequently enhanced the cleavage of caspase-3, 8, 9 and poly (ADP-ribose) polymerase, but expression of molecules involved in autophagy pathways were inconsistent. ZOL-treated cells also increased Ad infectivity with a dose-dependent manner and augmented Ad replication although the expression levels of integrin molecules, one of the Ad receptors, were down-regulated. Conclusions These findings indicated that ZOL and Ad-delE1B55 achieved combinatory anti-tumor effects through augmented apoptotic pathways or increased viral replication. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2483-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
3
|
Tada Y, Hiroshima K, Shimada H, Shingyoji M, Suzuki T, Umezawa H, Sekine I, Takiguchi Y, Tatsumi K, Tagawa M. An intrapleural administration of zoledronic acid for inoperable malignant mesothelioma patients: a phase I clinical study protocol. SPRINGERPLUS 2016; 5:195. [PMID: 27026891 PMCID: PMC4769234 DOI: 10.1186/s40064-016-1893-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
Abstract
Background The third generation of bisphosphonates is clinically in use for patients of osteoporosis or malignancy-linked hypercalcemia. The agents can also produce anti-tumor effects on bone metastasis of several types of tumors. We recently found that one of the agents achieved cytotoxicity to mesothelioma in vitro and in an orthotopic animal model. Mesothelioma is resistant to a number of chemotherapeutic agents, and suppression of local tumor growth is beneficial to the patients since metastasis to extra-thoracic organs is relatively infrequent until a late stage. Methods/design We demonstrated in an orthotopic mouse model that an intrapleural but not intravenous injection of zoledronic acid, one of the third generation bisphosphonates, at a clinically equivalent dose suppressed the tumor growth. Nevertheless, a high concentration of zoledronic acid administrated in the pleural cavity produced pleural adhesion. We also showed that zoledronic acid produced synergistic cytotoxic effects with cisplatin, the first-line chemotherapeutic agent for mesothelioma. We then planned to conduct a phase I clinical study to investigate any adverse effects and a possible clinical benefits produced by an intrapleural administration of zoledronic acid to mesothelioma patients who became resistant to the first-line chemotherapeutic agents. The clinical trial is a dose escalation study starting with 0.4, 1, 4, 8 and 16 mg per person since safety of administration of zoledronic acid into the pleural cavity remains unknown. Each dose group consists of three persons and the protocol allows to repeat administration of the same dose into the pleural cavity at a 4-weeks interval. Discussion We will conduct a possible combinatory study of intrapleural administration of zoledronic acid and systemic administration of the first-line agent to a chemotherapy-naïve patient based on the maximum tolerance dose of zoledronic acid determined by the present clinical trial. We propose that administration of bisphosphonates in a closed cavity is a treatment strategy for tumors developed in the cavity probably through the direct cytotoxic activity. Trial registration: UMIN clinical trials registry, Japan. Register ID: UMIN8093.
Collapse
Affiliation(s)
- Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | | | - Toshio Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroki Umezawa
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717 Japan ; Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Salaroglio IC, Campia I, Kopecka J, Gazzano E, Orecchia S, Ghigo D, Riganti C. Zoledronic acid overcomes chemoresistance and immunosuppression of malignant mesothelioma. Oncotarget 2015; 6:1128-42. [PMID: 25544757 PMCID: PMC4359222 DOI: 10.18632/oncotarget.2731] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/11/2014] [Indexed: 11/25/2022] Open
Abstract
The human malignant mesothelioma (HMM) is characterized by a chemoresistant and immunosuppressive phenotype. An effective strategy to restore chemosensitivity and immune reactivity against HMM is lacking. We investigated whether the use of zoledronic acid is an effective chemo-immunosensitizing strategy. We compared primary HMM samples with non-transformed mesothelial cells. HMM cells had higher rate of cholesterol and isoprenoid synthesis, constitutive activation of Ras/extracellular signal-regulated kinase1/2 (ERK1/2)/hypoxia inducible factor-1α (HIF-1α) pathway and up-regulation of the drug efflux transporter P-glycoprotein (Pgp). By decreasing the isoprenoid supply, zoledronic acid down-regulated the Ras/ERK1/2/HIF-1α/Pgp axis and chemosensitized the HMM cells to Pgp substrates. The HMM cells also produced higher amounts of kynurenine, decreased the proliferation of T-lymphocytes and expanded the number of T-regulatory (Treg) cells. Kynurenine synthesis was due to the transcription of the indoleamine 1,2 dioxygenase (IDO) enzyme, consequent to the activation of the signal transducer and activator of transcription-3 (STAT3). By reducing the activity of the Ras/ERK1/2/STAT3/IDO axis, zoledronic acid lowered the kyurenine synthesis and the expansion of Treg cells, and increased the proliferation of T-lymphocytes. Thanks to its ability to decrease Ras/ERK1/2 activity, which is responsible for both Pgp-mediated chemoresistance and IDO-mediated immunosuppression, zoledronic acid is an effective chemo-immunosensitizing agent in HMM cells.
Collapse
Affiliation(s)
| | - Ivana Campia
- Department of Oncology, University of Torino, Italy
| | | | | | - Sara Orecchia
- S.C. Anatomia Patologica, Azienda Ospedaliera S.S. Antonio e Biagio, Alessandria, Italy
| | - Dario Ghigo
- Department of Oncology, University of Torino, Italy
| | | |
Collapse
|
5
|
Ito Y, Narita N, Nomi N, Sugimoto C, Takabayashi T, Yamada T, Karaya K, Matsumoto H, Fujieda S. Suppression of Poly(rC)-Binding Protein 4 (PCBP4) reduced cisplatin resistance in human maxillary cancer cells. Sci Rep 2015. [PMID: 26196957 PMCID: PMC4508830 DOI: 10.1038/srep12360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cisplatin plays an important role in the therapy for human head and neck cancers. However, cancer cells develop cisplatin resistance, leading to difficulty in treatment and poor prognosis. To analyze cisplatin-resistant mechanisms, a cisplatin-resistant cell line, IMC-3CR, was established from the IMC-3 human maxillary cancer cell line. Flow cytometry revealed that, compared with IMC-3 cells, cisplatin more dominantly induced cell cycle G2/M arrest rather than apoptosis in IMC-3CR cells. That fact suggests that IMC-3CR cells avoid cisplatin-induced apoptosis through induction of G2/M arrest, which allows cancer cells to repair damaged DNA and survive. In the present study, we specifically examined Poly(rC)-Binding Protein 4 (PCBP4), which reportedly induces G2/M arrest. Results showed that suppression of PCBP4 by RNAi reduced cisplatin-induced G2/M arrest and enhanced apoptosis in IMC-3CR cells, resulting in the reduction of cisplatin resistance. In contrast, overexpression of PCBP4 in IMC-3 cells induced G2/M arrest after cisplatin treatment and enhanced cisplatin resistance. We revealed that PCBP4 combined with Cdc25A and suppressed the expression of Cdc25A, resulting in G2/M arrest. PCBP4 plays important roles in the induction of cisplatin resistance in human maxillary cancers. PCBP4 is a novel molecular target for the therapy of head and neck cancers, especially cisplatin-resistant cancers.
Collapse
Affiliation(s)
- Yumi Ito
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Norihiko Narita
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Nozomi Nomi
- Department of Otorhinolaryngology, Faculty of Medical Sciences, University of Oita
| | - Chizuru Sugimoto
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Tetsuji Takabayashi
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Kazuhiro Karaya
- Division of Bioresearch, Life Science Research Laboratory, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Hideki Matsumoto
- Division of Oncology, Biomedical Imaging Research Center, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medical Sciences, University of Fukui, 23 Shimoaizuki, Matsuoka, Eiheiji, Fukui, 910-1193, Japan
| |
Collapse
|
6
|
Luo KW, Ko CH, Yue GGL, Gao S, Lee JKM, Li G, Fung KP, Leung PC, Evdokiou A, Lau CBS. The combined use of Camellia sinensis and metronomic zoledronic acid in a breast cancer-induced osteolysis mouse model. J Cancer Res Clin Oncol 2015; 141:1025-36. [PMID: 25431338 DOI: 10.1007/s00432-014-1882-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE In previous studies, we demonstrated that green tea (Camellia sinensis, CS) water extract had potent anti-tumor and anti-metastasis effects in the 4T1 mouse breast cancer xenograft model, and the metronomic regimen (0.0125 mg/kg twice a week for 4 weeks) of zoledronic acid (ZOL) was also effective in decreasing tumor burden and metastasis when compared with the conventional regimen. This study aimed to investigate the combined use of CS water extract and metronomic ZOL against tumor metastasis and bone destruction in MDA-MB-231-TXSA human breast cancer. METHODS Female nude mice were injected with MDA-MB-231-TXSA cells into the marrow space of tibia and were treated with CS water extract and/or metronomic ZOL for 4 weeks. Tumor growth and metastasis to lungs and livers were assessed by in vivo bioluminescence imaging. Abilities of migration and invasion of MDA-MB-231-TXSA cells were also evaluated in vitro. RESULTS Our results demonstrated that combination of CS and ZOL had the most potent effects on tumor burden and metastasis to bone, lung and liver, while treatment with CS or ZOL alone significantly protected the bone from cancer-induced osteolysis. In vitro, the combined use of CS + ZOL significantly inhibited MDA-MB-231-TXSA cell migration and invasion. Mechanistic zymography studies showed that the enzyme activities of MMP-9 and MMP-2 were significantly suppressed by CS and CS + ZOL. CONCLUSIONS The combination of CS plus metronomic ZOL demonstrated potent anti-tumor, anti-metastasis and anti-osteolysis effects against breast cancer, suggesting the potential clinical application against breast cancer patients.
Collapse
Affiliation(s)
- Ke-Wang Luo
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
A randomised controlled trial of intravenous zoledronic acid in malignant pleural disease: a proof of principle pilot study. PLoS One 2015; 10:e0118569. [PMID: 25781025 PMCID: PMC4364455 DOI: 10.1371/journal.pone.0118569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/20/2015] [Indexed: 12/29/2022] Open
Abstract
Introduction Animal studies have shown Zoledronic Acid (ZA) may diminish pleural fluid accumulation and tumour bulk in malignant pleural disease (MPD). We performed a pilot study to evaluate its effects in humans. Methods We undertook a single centre, double-blind, placebo-controlled trial in adults with MPD. Patients were randomised (1:1) to receive 2 doses of intravenous ZA or placebo, 3 weeks apart and were followed-up for 6 weeks. The co-primary outcomes were change in Visual Analogue Scale (VAS) score measured breathlessness during trial follow-up and change in the initial area under the curve (iAUC) on thoracic Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) from randomisation to week 5. Multiple secondary endpoints were also evaluated. Results Between January 2010 and May 2013, 30 patients were enrolled, 24 randomised and 4 withdrew after randomisation (1 withdrew consent; 3 had a clinical decline). At baseline, the ZA group were more breathless, had more advanced disease on radiology and worse quality of life than the placebo group. There was no significant difference between the groups with regards change in breathlessness (Adjusted mean difference (AMD) 4.16 (95%CI −4.7 to 13.0)) or change in DCE-MRI iAUC (AMD −15.4 (95%CI −58.1 to 27.3). Two of nine (22%) in the ZA arm had a >10% improvement by modified RECIST (vs 0/11 who received placebo). There was no significant difference in quality of life measured by the QLQ-C30 score (global QOL: AMD -4.1 (-13.0 to 4.9)), side effects or serious adverse event rates. Conclusions This is the first human study to evaluate ZA in MPD. The study is limited by small numbers and imbalanced baseline characteristics. Although no convincing treatment effect was identified, potential benefits for specific subgroups of patients cannot be excluded. This study provides important information regarding the feasibility of future trials to evaluate the effects of ZA further. Trial Registration UK Clinical Research Network ID 8877 ISRCTN17030426www.isrctn.com
Collapse
|