1
|
Zhang L, Dai W, Rong S, Schwaneberg U, Xu G, Ni Y. Engineering diaryl alcohol dehydrogenase KpADH reveals importance of retaining hydration shell in organic solvent tolerance. Protein Sci 2024; 33:e4933. [PMID: 38501647 PMCID: PMC10949390 DOI: 10.1002/pro.4933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 03/20/2024]
Abstract
Alcohol dehydrogenases (ADHs) are synthetically important biocatalysts for the asymmetric synthesis of chiral alcohols. The catalytic performance of ADHs in the presence of organic solvents is often important since most prochiral ketones are highly hydrophobic. Here, the organic solvent tolerance of KpADH from Kluyveromyces polyspora was semi-rationally evolved. Using tolerant variants obtained, meticulous experiments and computational studies were conducted to explore properties including stability, activity and kinetics in the presence of various organic solvents. Compared with WT, variant V231D exhibited 1.9-fold improvement in ethanol tolerance, while S237G showed a 6-fold increase in catalytic efficiency, a higherT 50 15 $$ {\mathrm{T}}_{50}^{15} $$ , as well as 15% higher tolerance in 7.5% (v/v) ethanol. Based on 3 × 100 ns MD simulations, the increased tolerance of V231D and S237G against ethanol may be ascribed to their enhanced ability in retaining water molecules and repelling ethanol molecules. Moreover, 6.3-fold decreased KM value of V231D toward hydrophilic ketone substrate confirmed its capability of retaining hydration shell. Our results suggest that retaining hydration shell surrounding KpADH is critical for its tolerance to organic solvents, as well as catalytic performance. This study provides useful guidance for engineering organic solvent tolerance of KpADH and other ADHs.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
| | - Wei Dai
- Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
| | - Shuo Rong
- Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
| | | | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of EducationSchool of Biotechnology, Jiangnan UniversityWuxiChina
| |
Collapse
|
2
|
Hill TD, Basnet S, Lepird HH, Rightnowar BW, Moran SD. Anisotropic dynamics of an interfacial enzyme active site observed using tethered substrate analogs and ultrafast 2D IR spectroscopy. J Chem Phys 2023; 159:165101. [PMID: 37870142 PMCID: PMC10597647 DOI: 10.1063/5.0167991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Enzymes accelerate the rates of biomolecular reactions by many orders of magnitude compared to bulk solution, and it is widely understood that this catalytic effect arises from a combination of polar pre-organization and electrostatic transition state stabilization. A number of recent reports have also implicated ultrafast (femtosecond-picosecond) timescale motions in enzymatic activity. However, complications arising from spatially-distributed disorder, the occurrence of multiple substrate binding modes, and the influence of hydration dynamics on solvent-exposed active sites still confound many experimental studies. Here we use ultrafast two-dimensional infrared (2D IR) spectroscopy and covalently-tethered substrate analogs to examine dynamical properties of the promiscuous Pyrococcus horikoshii ene-reductase (PhENR) active site in two binding configurations mimicking proposed "inactive" and "reactive" Michaelis complexes. Spectral diffusion measurements of aryl-nitrile substrate analogs reveal an end-to-end tradeoff between fast (sub-ps) and slow (>5 ps) motions. Fermi resonant aryl-azide analogs that sense interactions of coupled oscillators are described. Lineshape and quantum beat analyses of these probes reveal characteristics that correlate with aryl-nitrile frequency fluctuation correlation functions parameters, demonstrating that this anisotropy is an intrinsic property of the water-exposed active site, where countervailing gradients of fast dynamics and disorder in the reactant ground state are maintained near the hydration interface. Our results suggest several plausible factors leading to state-selective rate enhancement and promiscuity in PhENR. This study also highlights a strategy to detect perturbations to vibrational modes outside the transparent window of the mid-IR spectrum, which may be extended to other macromolecular systems.
Collapse
Affiliation(s)
| | - Sunil Basnet
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Hannah H. Lepird
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Blaze W. Rightnowar
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| | - Sean D. Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, Illinois 62901, USA
| |
Collapse
|
3
|
Päslack C, Schäfer LV, Heyden M. Protein flexibility reduces solvent-mediated friction barriers of ligand binding to a hydrophobic surface patch. Phys Chem Chem Phys 2021; 23:5665-5672. [PMID: 33656505 DOI: 10.1039/d1cp00181g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Solvent fluctuations have been explored in detail for idealized and rigid hydrophobic model systems, but so far it has remained unclear how internal protein motions and their coupling to the surrounding solvent affect the dynamics of ligand binding to biomolecular surfaces. Here, molecular dynamics simulations were used to elucidate the solvent-mediated binding of a model ligand to the hydrophobic surface patch of ubiquitin. The ligand's friction profiles reveal pronounced long-time correlations and enhanced friction in the vicinity of the protein, similar to idealized hydrophobic surfaces. Interestingly, these effects are shaped by internal protein motions. Protein flexibility modulates water density fluctuations near the hydrophobic surface patch and smooths out the friction profile of ligand binding.
Collapse
Affiliation(s)
- Christopher Päslack
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Lars V Schäfer
- Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, D-44780 Bochum, Germany.
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
4
|
Singh P, Mukherjee D, Singha S, Das R, Pal SK. Modulation of Kinetic Pathways of Enzyme–Substrate Interaction in a Microfluidic Channel: Nanoscopic Water Dynamics as a Switch. Chemistry 2019; 25:9728-9736. [DOI: 10.1002/chem.201901751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/04/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Priya Singh
- Department of Chemical, Biological & Macromolecular SciencesS. N. Bose National Centre for Basic Sciences Block JD, Sector III Salt Lake Kolkata 700106 India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological & Macromolecular SciencesS. N. Bose National Centre for Basic Sciences Block JD, Sector III Salt Lake Kolkata 700106 India
| | - Subhankar Singha
- Department of ChemistryPohang University of Science and Technology (POSTECH) 77 Cheongam-Ro Nam-Gu Pohang, Gyungbuk 790784 Republic of Korea
| | - Ranjan Das
- Department of ChemistryWest Bengal State University, Barasat Kolkata 700126
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular SciencesS. N. Bose National Centre for Basic Sciences Block JD, Sector III Salt Lake Kolkata 700106 India
| |
Collapse
|
5
|
Long S, Wang J, Tian P. Significance of triple torsional correlations in proteins. RSC Adv 2019; 9:13949-13958. [PMID: 35519605 PMCID: PMC9064167 DOI: 10.1039/c9ra02191d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/21/2019] [Indexed: 11/21/2022] Open
Abstract
The free energy landscape (FEL) of a given complex molecular system is fundamentally the joint probability density of its many comprising degrees of freedom (DOFs). Computation of a complete FEL at atomistic scale is unfortunately intractable for a typical biomolecular system. The challenge of entropy calculation comes from various correlations among different DOFs. The common strategy to treat such complexity is expansion of the full correlation into various orders of local correlations. In reality, expansion is usually cut off at the second order (i.e. pairwise interactions) for protein torsional correlations without reliable estimation of the resulting error. Here, we estimated the mutual information of different torsion sets and found that triple correlations were significant for both local/distant residue pairs and consecutive backbone torsional segments. As expected, the third order approximations were found to be consistently better than the second order approximations. These findings were true for all analyzed proteins with different folds, were independent of the two different force fields utilized to generate trajectory sets, and were therefore likely to be of general importance for proteins. Additionally, binning strategies are of universal importance for numerical computation of correlations, we here provided a detailed comparison between equal-width and equal-sample binning for different bin numbers and demonstrated the impact of binning strategies on variances and biases of calculated mutual information. Our observation suggested that caution should be taken when quantitative comparison of correlations were intended between different studies with different binning strategies. Torsional mutual information for 10 typical residue pairs calculated with full joint distributions (MI), second order expansion (MI2), third order expansions (MI3), and their linear recombinations (MILR).![]()
Collapse
Affiliation(s)
| | | | - Pu Tian
- School of Life Science
- School Artificial Intelligence
- Jilin University
- Changchun
- China 130012
| |
Collapse
|
6
|
Jong K, Hassanali AA. A Data Science Approach to Understanding Water Networks Around Biomolecules: The Case of Tri-Alanine in Liquid Water. J Phys Chem B 2018; 122:7895-7906. [DOI: 10.1021/acs.jpcb.8b03644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- KwangHyok Jong
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- SISSA—Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136 Trieste, Italy
- Department of Physics, Kim Il Sung University, Ryongnam Dong, Taesong District, Pyongyang, D. P. R. Korea
| | - Ali A. Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
7
|
Dahanayake JN, Mitchell-Koch KR. How Does Solvation Layer Mobility Affect Protein Structural Dynamics? Front Mol Biosci 2018; 5:65. [PMID: 30057902 PMCID: PMC6053501 DOI: 10.3389/fmolb.2018.00065] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
Solvation is critical for protein structural dynamics. Spectroscopic studies have indicated relationships between protein and solvent dynamics, and rates of gas binding to heme proteins in aqueous solution were previously observed to depend inversely on solution viscosity. In this work, the solvent-compatible enzyme Candida antarctica lipase B, which functions in aqueous and organic solvents, was modeled using molecular dynamics simulations. Data was obtained for the enzyme in acetonitrile, cyclohexane, n-butanol, and tert-butanol, in addition to water. Protein dynamics and solvation shell dynamics are characterized regionally: for each α-helix, β-sheet, and loop or connector region. Correlations are seen between solvent mobility and protein flexibility. So, does local viscosity explain the relationship between protein structural dynamics and solvation layer dynamics? Halle and Davidovic presented a cogent analysis of data describing the global hydrodynamics of a protein (tumbling in solution) that fits a model in which the protein's interfacial viscosity is higher than that of bulk water's, due to retarded water dynamics in the hydration layer (measured in NMR τ2 reorientation times). Numerous experiments have shown coupling between protein and solvation layer dynamics in site-specific measurements. Our data provides spatially-resolved characterization of solvent shell dynamics, showing correlations between regional solvation layer dynamics and protein dynamics in both aqueous and organic solvents. Correlations between protein flexibility and inverse solvent viscosity (1/η) are considered across several protein regions and for a rather disparate collection of solvents. It is seen that the correlation is consistently higher when local solvent shell dynamics are considered, rather than bulk viscosity. Protein flexibility is seen to correlate best with either the local interfacial viscosity or the ratio of the mobility of an organic solvent in a regional solvation layer relative to hydration dynamics around the same region. Results provide insight into the function of aqueous proteins, while also suggesting a framework for interpreting and predicting enzyme structural dynamics in non-aqueous solvents, based on the mobility of solvents within the solvation layer. We suggest that Kramers' theory may be used in future work to model protein conformational transitions in different solvents by incorporating local viscosity effects.
Collapse
|
8
|
Ion-induced alterations of the local hydration environment elucidate Hofmeister effect in a simple classical model of Trp-cage miniprotein. J Mol Model 2017; 23:298. [PMID: 28956172 DOI: 10.1007/s00894-017-3471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
Protein stability is known to be influenced by the presence of Hofmeister active ions in the solution. In addition to direct ion-protein interactions, this influence manifests through the local alterations of the interfacial water structure induced by the anions and cations present in this region. In our earlier works it was pointed out that the effects of Hofmeister active salts on the stability of Trp-cage miniprotein can be modeled qualitatively using non-polarizable force fields. These simulations reproduced the structure-stabilization and structure-destabilization effects of selected kosmotropic and chaotropic salts, respectively. In the present study we use the same model system to elucidate atomic processes behind the chaotropic destabilization and kosmotropic stabilization of the miniprotein. We focus on changes of the local hydration environment of the miniprotein upon addition of NaClO4 and NaF salts to the solution. The process is separated into two parts. In the first, 'promotion' phase, the protein structure is fixed, and the local hydration properties induced by the simultaneous presence of protein and ions are investigated, with a special focus on the interaction of Hofmeister active anions with the charged and polar sites. In the second, 'rearrangement' phase we follow changes of the hydration of ions and the protein, accompanying the conformational relaxation of the protein. We identify significant factors of an enthalpic and entropic nature behind the ion-induced free energy changes of the protein-water system, and also propose a possible atomic mechanism consistent with the Collins's rule, for the chaotropic destabilization and kosmotropic stabilization of protein conformation.
Collapse
|
9
|
Verma R, Mitchell-Koch K. In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts 2017; 7:212. [PMID: 30464857 PMCID: PMC6241538 DOI: 10.3390/catal7070212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small molecules, such as solvent, substrate, and cofactor molecules, are key players in enzyme catalysis. Computational methods are powerful tools for exploring the dynamics and thermodynamics of these small molecules as they participate in or contribute to enzymatic processes. In-depth knowledge of how small molecule interactions and dynamics influence protein conformational dynamics and function is critical for progress in the field of enzyme catalysis. Although numerous computational studies have focused on enzyme-substrate complexes to gain insight into catalytic mechanisms, transition states and reaction rates, the dynamics of solvents, substrates, and cofactors are generally less well studied. Also, solvent dynamics within the biomolecular solvation layer play an important part in enzyme catalysis, but a full understanding of its role is hampered by its complexity. Moreover, passive substrate transport has been identified in certain enzymes, and the underlying principles of molecular recognition are an area of active investigation. Enzymes are highly dynamic entities that undergo different conformational changes, which range from side chain rearrangement of a residue to larger-scale conformational dynamics involving domains. These events may happen nearby or far away from the catalytic site, and may occur on different time scales, yet many are related to biological and catalytic function. Computational studies, primarily molecular dynamics (MD) simulations, provide atomistic-level insight and site-specific information on small molecule interactions, and their role in conformational pre-reorganization and dynamics in enzyme catalysis. The review is focused on MD simulation studies of small molecule interactions and dynamics to characterize and comprehend protein dynamics and function in catalyzed reactions. Experimental and theoretical methods available to complement and expand insight from MD simulations are discussed briefly.
Collapse
Affiliation(s)
- Rajni Verma
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| | - Katie Mitchell-Koch
- Department of Chemistry, McKinley Hall, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, USA
| |
Collapse
|
10
|
Long S, Tian P. Nonlinear backbone torsional pair correlations in proteins. Sci Rep 2016; 6:34481. [PMID: 27708342 PMCID: PMC5052647 DOI: 10.1038/srep34481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022] Open
Abstract
Protein allostery requires dynamical structural correlations. Physical origin of which, however, remain elusive despite intensive studies during last two and half decades. Based on analysis of molecular dynamics (MD) simulation trajectories for ten proteins with different sizes and folds, we found that nonlinear backbone torsional pair (BTP) correlations, which are mainly spatially long-ranged and are dominantly executed by loop residues, exist extensively in most analyzed proteins. Examination of torsional motion for correlated BTPs suggested that such nonlinear correlations are mainly associated aharmonic torsional state transitions and in some cases strongly anisotropic local torsional motion of participating torsions, and occur on widely different and relatively longer time scales. In contrast, correlations between backbone torsions in stable α helices and β strands are mainly linear and spatially short-ranged, and are more likely to associate with harmonic local torsional motion. Further analysis revealed that the direct cause of nonlinear contributions are heterogeneous linear correlations. These findings implicate a general search strategy for novel allosteric modulation sites of protein activities.
Collapse
Affiliation(s)
- Shiyang Long
- School of Life Sciences, Jilin University, Changchun, 130012 China
| | - Pu Tian
- School of Life Sciences, Jilin University, Changchun, 130012 China.,MOE Key Laboratory of Molecular Enzymology and Engineering, Jilin University, Changchun, 130012 China
| |
Collapse
|
11
|
Sfera A, Cummings M, Osorio C. Dehydration and Cognition in Geriatrics: A Hydromolecular Hypothesis. Front Mol Biosci 2016; 3:18. [PMID: 27252943 PMCID: PMC4860410 DOI: 10.3389/fmolb.2016.00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/25/2016] [Indexed: 12/11/2022] Open
Abstract
Dehydration is one of the ten most frequent diagnoses responsible for the hospital admission of elderly in the United States. It is associated with increased mortality, morbidity and an estimated cost of 1.14 billion per year (Xiao et al., 2004; Schlanger et al., 2010; Pretorius et al., 2013; Frangeskou et al., 2015). Older individuals are predisposed to dehydration encephalopathy as a result of decreased total body water (TBW) and diminished sensation of thirst. We hypothesize that thirst blunting in older individuals is the result of a defective microRNA-6842-3p failing to silence the expression of the vesicular GABA transporters (VGAT) and alpha 7 cholinergic nicotinic receptors in the subfornical organ (SFO) of the hypothalamus. We hypothesize further that resultant dehydration facilitates protein misfolding and aggregation, predisposing to neurocognitive disorders. We completed a search of predicted microRNA targets, utilizing the public domain tool miRDB and found that microRNA-6842-3p modulates the SLC6A1 and CHRNA7 genes both of which were previously hypothesized to inhibit the thirst sensation by their action on SFO. The primary aim of this article is to answer two questions: Can prevention and correction of dehydration in elderly lower age-related cognitive deterioration? Can exosomal miR-6842 in the peripheral blood predict dehydration encephalopathy in elderly?
Collapse
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Loma Linda UniversityLoma Linda, USA; Patton State HospitalPatton, USA
| | | | - Carolina Osorio
- Department of Psychiatry, Loma Linda University Loma Linda, USA
| |
Collapse
|
12
|
Communication routes in ARID domains between distal residues in helix 5 and the DNA-binding loops. PLoS Comput Biol 2014; 10:e1003744. [PMID: 25187961 PMCID: PMC4154638 DOI: 10.1371/journal.pcbi.1003744] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
ARID is a DNA-binding domain involved in several transcriptional regulatory processes, including cell-cycle regulation and embryonic development. ARID domains are also targets of the Human Cancer Protein Interaction Network. Little is known about the molecular mechanisms related to conformational changes in the family of ARID domains. Thus, we have examined their structural dynamics to enrich the knowledge on this important family of regulatory proteins. In particular, we used an approach that integrates atomistic simulations and methods inspired by graph theory. To relate these properties to protein function we studied both the free and DNA-bound forms. The interaction with DNA not only stabilizes the conformations of the DNA-binding loops, but also strengthens pre-existing paths in the native ARID ensemble for long-range communication to those loops. Residues in helix 5 are identified as critical mediators for intramolecular communication to the DNA-binding regions. In particular, we identified a distal tyrosine that plays a key role in long-range communication to the DNA-binding loops and that is experimentally known to impair DNA-binding. Mutations at this tyrosine and in other residues of helix 5 are also demonstrated, by our approach, to affect the paths of communication to the DNA-binding loops and alter their native dynamics. Overall, our results are in agreement with a scenario in which ARID domains exist as an ensemble of substates, which are shifted by external perturbation, such as the interaction with DNA. Conformational changes at the DNA-binding loops are transmitted long-range by intramolecular paths, which have their heart in helix 5.
Collapse
|