1
|
Kotowska M, Wenecki M, Bednarz B, Ciekot J, Pasławski W, Buhl T, Pawlik KJ. Coelimycin inside out - negative feedback regulation by its intracellular precursors. Appl Microbiol Biotechnol 2024; 108:531. [PMID: 39656307 PMCID: PMC11632069 DOI: 10.1007/s00253-024-13366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
Coelimycin (CPK) producer Streptomyces coelicolor A3(2) is a well-established model for the genetic studies of bacteria from the genus Streptomyces, renowned for their ability to produce a plethora of antibiotics and other secondary metabolites. Expression regulation of natural product biosynthetic gene clusters (BGCs) is highly complex, involving not only regulatory proteins, like transcription factors, but also the products of the biosynthetic pathway that may act as ligands for some regulators and modulate their activity. Here, we present the evidence that intracellular CPK precursor(s) (preCPK) is involved in a negative feedback loop repressing the CPK BGC. Moreover, we provide a characterization of the cluster-encoded efflux pump CpkF. We show that CpkF is essential for the extracellular CPK production. In order to track down which CPK compounds - intra- or extracellular - are the ones responsible for the feedback signal, a luciferase-based reporter system was applied to compare the activity of 13 CPK gene promoters in the wild-type (WT) and two mutated strains. The first strain, lacking the CPK-specific exporter CpkF (ΔcpkF), was unable to produce the extracellular CPK. The second one did not produce any CPK at all, due to the disruption of the CpkC polyketide synthase subunit (ΔcpkC). All tested promoters were strongly upregulated in ΔcpkC strain, while in the ΔcpkF strain, promoter activity resembled the one of WT. These results lead to the conclusion that the CPK polyketide acts as a silencer of its own production. Supposedly this function is exerted via binding of the preCPK by an unidentified regulatory protein. KEY POINTS: •Intracellular coelimycin precursor takes part in a negative cpk cluster regulation •CpkF exporter is essential for the extracellular coelimycin production •Simple method for the analysis of coelimycin P2 production in agar medium.
Collapse
Affiliation(s)
- Magdalena Kotowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Mateusz Wenecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Bartosz Bednarz
- Faculty of Biotechnology, Laboratory of Biological Chemistry, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Wojciech Pasławski
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomasz Buhl
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Krzysztof J Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland.
| |
Collapse
|
2
|
Fernández-García G, García-Cancela P, Corte-Rodríguez M, González-Quiñónez N, Yagüe P, Alonso-Fernández S, Montes-Bayón M, Manteca A. The DeoR-like pleiotropic regulator SCO1897 controls specialised metabolism, sporulation, spore germination, and phosphorus accumulation in Streptomyces coelicolor. Commun Biol 2024; 7:1457. [PMID: 39511385 PMCID: PMC11543844 DOI: 10.1038/s42003-024-07164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Streptomycetes are bacteria of significant biotechnological interest due to their production of bioactive specialised metabolites used in medicine and agriculture. In these bacteria, specialised metabolism and morphological differentiation are linked and typically repressed under high phosphate conditions. This study characterises a DeoR-like transcriptional regulator, SCO1897, in Streptomyces coelicolor, whose expression increases during sporulation. Disruption of sco1897 results in reduced biosynthesis of specialised metabolites, delayed sporulation, higher spore phosphate content, and impaired germination. Transcriptomic analysis revealed 1420 genes differentially expressed in the sco1897 mutant compared to the S. coelicolor wild-type strain. The sco1897 gene is located upstream and transcribed in the same direction as six genes, including sco1898-1900 encoding sub-units of an ABC transporter annotated as involved in carbohydrate transport. SCO1897 negatively regulates its own expression, that of the sco1898-1900 ABC transporter, and sco4142, encoding the PstS phosphate-binding protein. The overexpression of sco1898-1900 in the S. coelicolor wild-type strain leads to a significant increase in intracellular spore phosphate levels, similar to those observed in the sco1897 mutant. These findings suggest a complex regulatory network involving the sco1897-sco1900 region. Hypotheses are proposed to explain the various phenotypes of the sco1897 mutant and the complex regulation of the genes of the sco1897-sco1900 region.
Collapse
Affiliation(s)
- Gemma Fernández-García
- Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Paula García-Cancela
- Department of Physical and Analytical Chemistry, Faculty of Chemistry and ISPA, Universidad de Oviedo, Oviedo, Spain
| | - Mario Corte-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry and ISPA, Universidad de Oviedo, Oviedo, Spain
| | - Nathaly González-Quiñónez
- Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Paula Yagüe
- Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Sergio Alonso-Fernández
- Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - María Montes-Bayón
- Department of Physical and Analytical Chemistry, Faculty of Chemistry and ISPA, Universidad de Oviedo, Oviedo, Spain
| | - Angel Manteca
- Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
3
|
Strzałka A, Mikołajczyk J, Kowalska K, Skurczyński M, Holmes NA, Jakimowicz D. The role of two major nucleoid-associated proteins in Streptomyces, HupA and HupS, in stress survival and gene expression regulation. Microb Cell Fact 2024; 23:275. [PMID: 39402545 PMCID: PMC11472566 DOI: 10.1186/s12934-024-02549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Streptomyces are sporulating soil bacteria with enormous potential for secondary metabolites biosynthesis. Regulatory networks governing Streptomyces coelicolor differentiation and secondary metabolites production are complex and composed of numerous regulatory proteins ranging from specific transcriptional regulators to sigma factors. Nucleoid-associated proteins (NAPs) are also believed to contribute to regulation of gene expression. Upon DNA binding, these proteins impact DNA accessibility. Among NAPs, HU proteins are the most widespread and abundant. Unlike other bacteria, the Streptomyces genomes encode two HU homologs: HupA and HupS, which differ in structure and expression profile. However, it remained unclear whether the functions of both homologs overlap. Additionally, although both proteins have been shown to bind the chromosome, their rolesin transcriptional regulation have not been studied so far. RESULTS In this study, we explore whether HupA and HupS affect S. coelicolor growth under optimal and stressful conditions and how they control global gene expression. By testing both single and double mutants, we address the question of the complementarity of both HU homologs. We show that the lack of both hup genes led to growth and sporulation inhibition, as well as increased spore fragility. We also demonstrate that both HU homologs can be considered global transcriptional regulators, influencing expression of between 2% and 6% genes encoding among others proteins linked to global regulatory networks and secondary metabolite production. CONCLUSIONS We identify the independent HupA and HupS regulons, as well as genes under the control of both HupA and HupS proteins. Our data indicate a partial overlap between the functions of HupA and HupS during S. coelicolor growth. HupA and HupS play important roles in Streptomyces regulatory network and impact secondary metabolite clusters.
Collapse
Affiliation(s)
- Agnieszka Strzałka
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Jakub Mikołajczyk
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Klaudia Kowalska
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Michał Skurczyński
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Neil A Holmes
- The John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Dagmara Jakimowicz
- Molecular Microbiology Department, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
4
|
García-Martín J, García-Abad L, Santamaría RI, Díaz M. Functional connexion of bacterioferritin in antibiotic production and morphological differentiation in Streptomyces coelicolor. Microb Cell Fact 2024; 23:234. [PMID: 39182107 PMCID: PMC11344345 DOI: 10.1186/s12934-024-02510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Several two-component systems of Streptomyces coelicolor, a model organism used for studying antibiotic production in Streptomyces, affect the expression of the bfr (SCO2113) gene that encodes a bacterioferritin, a protein involved in iron storage. In this work, we have studied the effect of the deletion mutant ∆bfr in S. coelicolor. RESULTS The ∆bfr mutant exhibits a delay in morphological differentiation and produces a lesser amount of the two pigmented antibiotics (actinorhodin and undecylprodigiosin) compared to the wild type on complex media. The effect of iron in minimal medium was tested in the wild type and ∆bfr mutant. Consequently, we also observed different levels of production of the two pigmented antibiotics between the two strains, depending on the iron concentration and the medium (solid or liquid) used. Contrary to expectations, no differences in intracellular iron concentration were detected between the wild type and ∆bfr mutant. However, a higher level of reactive oxygen species in the ∆bfr mutant and a higher tolerance to oxidative stress were observed. Proteomic analysis showed no variation in iron response proteins, but there was a lower abundance of proteins related to actinorhodin and ribosomal proteins, as well as others related to secondary metabolite production and differentiation. Additionally, a higher abundance of proteins related to various types of stress, such as respiration and hypoxia among others, was also revealed. Data are available via ProteomeXchange with identifier PXD050869. CONCLUSION This bacterioferritin in S. coelicolor (Bfr) is a new element in the complex regulation of secondary metabolism in S. coelicolor and, additionally, iron acts as a signal to modulate the biosynthesis of active molecules. Our model proposes an interaction between Bfr and iron-containing regulatory proteins. Thus, identifying these interactions would provide new information for improving antibiotic production in Streptomyces.
Collapse
Affiliation(s)
- Javier García-Martín
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain
| | - Laura García-Abad
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain
| | - Ramón I Santamaría
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain.
| | - Margarita Díaz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), C/ Zacarías González, nº 2, Salamanca, 37007, Spain.
| |
Collapse
|
5
|
Votvik AK, Røhr ÅK, Bissaro B, Stepnov AA, Sørlie M, Eijsink VGH, Forsberg Z. Structural and functional characterization of the catalytic domain of a cell-wall anchored bacterial lytic polysaccharide monooxygenase from Streptomyces coelicolor. Sci Rep 2023; 13:5345. [PMID: 37005446 PMCID: PMC10067821 DOI: 10.1038/s41598-023-32263-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Bacterial lytic polysaccharide monooxygenases (LPMOs) are known to oxidize the most abundant and recalcitrant polymers in Nature, namely cellulose and chitin. The genome of the model actinomycete Streptomyces coelicolor A3(2) encodes seven putative LPMOs, of which, upon phylogenetic analysis, four group with typical chitin-oxidizing LPMOs, two with typical cellulose-active LPMOs, and one which stands out by being part of a subclade of non-characterized enzymes. The latter enzyme, called ScLPMO10D, and most of the enzymes found in this subclade are unique, not only because of variation in the catalytic domain, but also as their C-terminus contains a cell wall sorting signal (CWSS), which flags the LPMO for covalent anchoring to the cell wall. Here, we have produced a truncated version of ScLPMO10D without the CWSS and determined its crystal structure, EPR spectrum, and various functional properties. While showing several structural and functional features typical for bacterial cellulose active LPMOs, ScLPMO10D is only active on chitin. Comparison with two known chitin-oxidizing LPMOs of different taxa revealed interesting functional differences related to copper reactivity. This study contributes to our understanding of the biological roles of LPMOs and provides a foundation for structural and functional comparison of phylogenetically distant LPMOs with similar substrate specificities.
Collapse
Affiliation(s)
- Amanda K Votvik
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Bastien Bissaro
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
- INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Anton A Stepnov
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Morten Sørlie
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
| |
Collapse
|
6
|
Michael, Waturangi DE. Antibiofilm activity from endophyte bacteria, Vibrio cholerae strains, and actinomycetes isolates in liquid and solid culture. BMC Microbiol 2023; 23:83. [PMID: 36991312 PMCID: PMC10053847 DOI: 10.1186/s12866-023-02829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Biofilm-associated infections are a global threat to our economy and human health; as such, development of antibiofilm compounds is an urgent need. Our previous study identified eleven environmental isolates of endophyte bacteria, actinomycetes, and two strains of Vibrio cholerae as having strong antibiofilm activity, but only tested crude extracts from liquid culture. Here we grew the same bacteria in solid culture to induce the formation of colony biofilms and the expression of genes that may ultimately produce antibiofilm compounds. This research aimed to compare antibiofilm inhibition and destruction activities between liquid and solid cultures of these eleven environmental isolates against the biofilms of representative pathogenic bacteria.
Results
We measured antibiofilm activity using the static antibiofilm assay and crystal violet staining. The majority of our isolates exhibited higher inhibitory antibiofilm activity in liquid media, including all endophyte bacteria, V. cholerae V15a, and actinomycetes strains (CW01, SW03, CW17). However, for V. cholerae strain B32 and two actinomycetes bacteria (TB12 and SW12), the solid crude extracts showed higher inhibitory activity. Regarding destructive antibiofilm activity, many endophyte isolates and V. cholerae strains showed no significant difference between culture methods; the exceptions were endophyte bacteria isolate JerF4 and V. cholerae B32. The liquid extract of isolate JerF4 showed higher destructive activity relative to the corresponding solid culture extract, while for V. cholerae strain B32 the solid extract showed higher activity against some biofilms of pathogenic bacteria.
Conclusions
Culture conditions, namely solid or liquid culture, can influence the activity of culture extracts against biofilms of pathogenic bacteria. We compared the antibiofilm activity and presented the data that majority of isolates showed a higher antibiofilm activity in liquid culture. Interestingly, solid extracts from three isolates (B32, TB12, and SW12) have a better inhibition or/and destruction antibiofilm activity compared to their liquid culture. Further research is needed to characterize the activities of specific metabolites in solid and liquid culture extracts and to determine the mechanisms of their antibiofilm actions.
Collapse
|
7
|
Alonso-Fernández S, Arribas-Díez I, Fernández-García G, González-Quiñónez N, Jensen ON, Manteca A. Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs. J Proteomics 2022; 269:104719. [PMID: 36089190 DOI: 10.1016/j.jprot.2022.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/12/2022]
Abstract
Streptomycetes are multicellular gram-positive bacteria that produce many bioactive compounds, including antibiotics, antitumorals and immunosuppressors. The Streptomyces phosphoproteome remains largely uncharted even though protein phosphorylation at Ser/Thr/Tyr is known to modulate morphological differentiation and specialized metabolic processes. We here expand the S. coelicolor phosphoproteome by optimised immobilized zirconium (IV) affinity chromatography and mass spectrometry to identify phosphoproteins at the vegetative and sporulating stages. We mapped 361 phosphorylation sites (41% pSer, 56.2% pThr, 2.8% pTyr) and discovered four novel Thr phosphorylation motifs ("Kxxxx(pT)xxxxK", "DxE(pT)", "D(pT)" and "Exxxxx(pT)") in 351 phosphopeptides derived from 187 phosphoproteins. We identified 154 novel phosphoproteins, thereby almost doubling the number of experimentally verified Streptomyces phosphoproteins. Novel phosphoproteins included cell division proteins (FtsK, CrgA) and specialized metabolism regulators (ArgR, AfsR, CutR and HrcA) that were differentially phosphorylated in the vegetative and in the antibiotic producing sporulating stages. Phosphoproteins involved in primary metabolism included 27 novel ribosomal proteins that were phosphorylated during the vegetative stage. Phosphorylation of these proteins likely participate in the intricate and incompletely understood regulation of Streptomyces development and secondary metabolism. We conclude that Zr(IV)-IMAC is an efficient and sensitive method to study protein phosphorylation and regulation in bacteria and enhance our understanding of bacterial signalling. SIGNIFICANCE: Two thirds of the secondary metabolites used in clinic, especially antibiotics, were discovered in Streptomyces strains. Antibiotic resistance became one of the major challenges in clinic, and new antibiotics are urgently required in clinic. Next-generation sequencing analyses revealed that streptomycetes harbour many cryptic secondary metabolite pathways, i.e. pathways not expressed in the laboratory. Secondary metabolism is tightly connected with hypha differentiation and sporulation, and understanding Streptomyces differentiation is one of the main challenges in industrial microbiology, in order to activate the expression of cryptic pathways in the laboratory. Protein phosphorylation at Ser/Thr/Tyr modulates development and secondary metabolism, but the Streptomyces phosphoproteome is still largely uncharted. Previous S. coelicolor phosphoproteomic studies used TiO2 affinity enrichment and LC-MS/MS identifying a total of 184 Streptomyces phosphoproteins. Here, we used by first time zirconium (IV) affinity chromatography and mass spectrometry, identifying 186 S. coelicolor phosphoproteins. Most of these phosphoproteins (154) were not identified in previous phosphoproteomic studies using TiO2 affinity enrichment. Thereby we almost doubling the number of experimentally verified Streptomyces phosphoproteins. Zr(IV)-IMAC affinity chromatography also worked in E. coli, allowing the identification of phosphoproteins that were not identified by TiO2 affinity chromatography. We conclude that Zr(IV)-IMAC is an efficient and sensitive method for studies of protein phosphorylation and regulation in bacteria to enhance our understanding of bacterial signalling networks. Moreover, the new Streptomyces phosphoproteins identified will contribute to design further works to understand and modulate Streptomyces secondary metabolism activation.
Collapse
Affiliation(s)
- Sergio Alonso-Fernández
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ignacio Arribas-Díez
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Gemma Fernández-García
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Nathaly González-Quiñónez
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
8
|
Abd El-Hack ME, El-Saadony MT, Elbestawy AR, Ellakany HF, Abaza SS, Geneedy AM, Salem HM, Taha AE, Swelum AA, Omer FA, AbuQamar SF, El-Tarabily KA. Undesirable odour substances (geosmin and 2-methylisoborneol) in water environment: Sources, impacts and removal strategies. MARINE POLLUTION BULLETIN 2022; 178:113579. [PMID: 35398689 DOI: 10.1016/j.marpolbul.2022.113579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Off-flavours in fish products generated from recirculating aquaculture systems (RAS) are a major problem in the fish farming industry affecting the market demand and prices. A particular concern is the muddy or musty odour and taste in fish due to the presence of secondary metabolites geosmin and 2-methylisoborneol (2-MIB), produced by actinobacteria (mainly Streptomyces), myxobacteria and cyanobacteria. Off-flavours have deteriorated the quality of fish, rendering their products unfit for human consumption. The process of odour removal requires purification for several days to weeks in clean water; thus this leads to additional production costs. Geosmin and 2-MIB, detected at extremely low odour thresholds, are the most widespread off-flavour metabolites in aquaculture, entering through fish gills and accumulating in the fish adipose tissues. In this review, we aimed to determine the diversity and identity of geosmin- and 2-MIB-producing bacteria in aquaculture and provide possible strategies for their elimination.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed R Elbestawy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hany F Ellakany
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Samar S Abaza
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Amr M Geneedy
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Fatima A Omer
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| |
Collapse
|
9
|
Avalos M, Garbeva P, Vader L, van Wezel GP, Dickschat JS, Ulanova D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 2021; 39:249-272. [PMID: 34612321 DOI: 10.1039/d1np00047k] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but during the past years significant insights have been obtained for the role of terpenoids in microbial chemical ecology. Their functions include stress alleviation, maintenance of cell membrane integrity, photoprotection, attraction or repulsion of organisms, host growth promotion and defense. In this review we discuss the current knowledge of the biosynthesis and evolution of microbial terpenoids, and their ecological and biological roles in aquatic and terrestrial environments. Perspectives on their biotechnological applications, knowledge gaps and questions for future studies are discussed.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Lisa Vader
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
10
|
Huang K, Zhang B, Chen Y, Wu ZM, Liu ZQ, Zheng YG. Analysis of the effects of different nitrogen sources and calcium on the production of amphotericin by Streptomyces nodosus based on comparative transcriptome. Biotechnol Appl Biochem 2021; 69:1489-1501. [PMID: 34252982 DOI: 10.1002/bab.2221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/04/2021] [Indexed: 11/05/2022]
Abstract
Streptomyces nodosus is known as the main manufacturer of amphotericin B (AmB), which is an effective antifungal drug. It is verified that the optimization of fermentation conditions and key growth factors have a great impact on the yield of AmB. The AmB production of S. nodosus in cotton-seed meal (CM) medium was 1.6 times than that of beef-paste medium. The transcriptome analysis was used to analyze the effects of different nitrogen media and calcium on S. nodosus. Related genes of the EMP and TCA pathways, such as phosphofructokinase, pyruvate dehydrogenase, and citrate synthase, were upregulated in CM medium. The expression level of the PKS modules of the amphotericin synthesis gene cluster in beef-paste medium was higher. Other functional genes, such as amphGH and amphRIV, have the advantage of expressing in CM medium. Ca2+ promoted the upregulation of genes in metabolic pathways such as EMP pathway (pyruvate dehydrogenase), TCA pathway (citrate synthase), and amphotericin synthesis genes (PKS modules). The expression of WhiB family genes SNOD_RS 13310 and SNOD_RS 17625 was positively correlated with Ca2+ concentration. In addition, in the presence of calcium, the expression level of Sec transport system genes of S. nodosus was lower.
Collapse
Affiliation(s)
- Kai Huang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhe-Ming Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Zhejiang Tiantai Pharmaceutical Co., Ltd. Taizhou, Zhejiang, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
11
|
Bednarz B, Millan-Oropeza A, Kotowska M, Świat M, Quispe Haro JJ, Henry C, Pawlik K. Coelimycin Synthesis Activatory Proteins Are Key Regulators of Specialized Metabolism and Precursor Flux in Streptomyces coelicolor A3(2). Front Microbiol 2021; 12:616050. [PMID: 33897632 PMCID: PMC8062868 DOI: 10.3389/fmicb.2021.616050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/17/2021] [Indexed: 11/24/2022] Open
Abstract
Many microbial specialized metabolites are industrially relevant agents but also serve as signaling molecules in intra-species and even inter-kingdom interactions. In the antibiotic-producing Streptomyces, members of the SARP (Streptomyces antibiotic regulatory proteins) family of regulators are often encoded within biosynthetic gene clusters and serve as their direct activators. Coelimycin is the earliest, colored specialized metabolite synthesized in the life cycle of the model organism Streptomyces coelicolor A3(2). Deletion of its two SARP activators cpkO and cpkN abolished coelimycin synthesis and resulted in dramatic changes in the production of the later, stationary-phase antibiotics. The underlying mechanisms of these phenotypes were deregulation of precursor flux and quorum sensing, as shown by label-free, bottom-up shotgun proteomics. Detailed profiling of promoter activities demonstrated that CpkO is the upper-level cluster activator that induces CpkN, while CpkN activates type II thioesterase ScoT, necessary for coelimycin synthesis. What is more, we show that cpkN is regulated by quorum sensing gamma-butyrolactone receptor ScbR.
Collapse
Affiliation(s)
- Bartosz Bednarz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Aaron Millan-Oropeza
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Magdalena Kotowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Michał Świat
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Juan J Quispe Haro
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Céline Henry
- PAPPSO, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Krzysztof Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
12
|
Morphological Differentiation of Streptomyces clavuligerus Exposed to Diverse Environmental Conditions and Its Relationship with Clavulanic Acid Biosynthesis. Processes (Basel) 2020. [DOI: 10.3390/pr8091038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Clavulanic acid (CA) is a potent inhibitor of class A β-lactamase enzymes produced by Streptomyces clavuligerus (S. clavuligerus) as a defense mechanism. Due to its industrial interest, the process optimization is under continuous investigation. This work aimed at identifying the potential relationship that might exist between S. clavuligerus ATCC 27064 morphology and CA biosynthesis. For this, modified culture conditions such as source, size, and age of inoculum, culture media, and geometry of fermentation flasks were tested. We observed that high density spore suspensions (1 × 107 spores/mL) represent the best inoculum source for S. clavuligerus cell suspension culture. Further, we studied the life cycle of S. clavuligerus in liquid medium, using optic, confocal, and electron microscopy; results allowed us to observe a potential relationship that might exist between the accumulation of CA and the morphology of disperse hyphae. Reactor geometries that increase shear stress promote smaller pellets and a quick disintegration of these in dispersed secondary mycelia, which begins the pseudosporulation process, thus easing CA accumulation. These outcomes greatly contribute to improving the understanding of antibiotic biosynthesis in the Streptomyces genus.
Collapse
|
13
|
Li P, Zhang H, Zhao GP, Zhao W. Deacetylation enhances ParB-DNA interactions affecting chromosome segregation in Streptomyces coelicolor. Nucleic Acids Res 2020; 48:4902-4914. [PMID: 32313947 PMCID: PMC7229854 DOI: 10.1093/nar/gkaa245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 12/29/2022] Open
Abstract
Reversible lysine acetylation plays regulatory roles in diverse biological processes, including cell metabolism, gene transcription, cell apoptosis and ageing. Here, we show that lysine acetylation is involved in the regulation of chromosome segregation, a pivotal step during cell division in Streptomyces coelicolor. Specifically, deacetylation increases the DNA-binding affinity of the chromosome segregation protein ParB to the centromere-like sequence parS. Both biochemical and genetic experiments suggest that the deacetylation process is mainly modulated by a sirtuin-like deacetylase ScCobB1. The Lys-183 residue in the helix-turn-helix region of ParB is the major deacetylation site responsible for the regulation of ParB-parS binding. In-frame deletion of SccobB1 represses formation of ParB segregation complexes and leads to generation of abnormal spores. Taken together, these observations provide direct evidence that deacetylation participates in the regulation of chromosome segregation by targeting ParB in S. coelicolor.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Hong Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,State Key Lab of Genetic Engineering & Institutes of Biomedical Sciences, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.,Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.,Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Wei Zhao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,College of Life Sciences, Shanghai Normal University, Shanghai 200232, China
| |
Collapse
|
14
|
Muñoz-Dorado J, Moraleda-Muñoz A, Marcos-Torres FJ, Contreras-Moreno FJ, Martin-Cuadrado AB, Schrader JM, Higgs PI, Pérez J. Transcriptome dynamics of the Myxococcus xanthus multicellular developmental program. eLife 2019; 8:e50374. [PMID: 31609203 PMCID: PMC6791715 DOI: 10.7554/elife.50374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023] Open
Abstract
The bacterium Myxococcus xanthus exhibits a complex multicellular life cycle. In the presence of nutrients, cells prey cooperatively. Upon starvation, they enter a developmental cycle wherein cells aggregate to produce macroscopic fruiting bodies filled with resistant myxospores. We used RNA-Seq technology to examine the transcriptome of the 96 hr developmental program. These data revealed that 1415 genes were sequentially expressed in 10 discrete modules, with expression peaking during aggregation, in the transition from aggregation to sporulation, or during sporulation. Analysis of genes expressed at each specific time point provided insights as to how starving cells obtain energy and precursors necessary for assembly of fruiting bodies and into developmental production of secondary metabolites. This study offers the first global view of developmental transcriptional profiles and provides important tools and resources for future studies.
Collapse
Affiliation(s)
- José Muñoz-Dorado
- Departamento de Microbiología, Facultad de CienciasUniversidad de GranadaGranadaSpain
| | | | | | | | | | - Jared M Schrader
- Department of Biological SciencesWayne State UniversityDetroitUnited States
| | - Penelope I Higgs
- Department of Biological SciencesWayne State UniversityDetroitUnited States
| | - Juana Pérez
- Departamento de Microbiología, Facultad de CienciasUniversidad de GranadaGranadaSpain
| |
Collapse
|
15
|
Vickman O, Erives A. Episodic evolution of a eukaryotic NADK repertoire of ancient provenance. PLoS One 2019; 14:e0220447. [PMID: 31369599 PMCID: PMC6675116 DOI: 10.1371/journal.pone.0220447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/16/2019] [Indexed: 12/02/2022] Open
Abstract
NAD kinase (NADK) is the sole enzyme that phosphorylates nicotinamide adenine dinucleotide (NAD+/NADH) into NADP+/NADPH, which provides the chemical reducing power in anabolic (biosynthetic) pathways. While prokaryotes typically encode a single NADK, eukaryotes encode multiple NADKs. How these different NADK genes are all related to each other and those of prokaryotes is not known. Here we conduct phylogenetic analysis of NADK genes and identify major clade-defining patterns of NADK evolution. First, almost all eukaryotic NADK genes belong to one of two ancient eukaryotic sister clades corresponding to cytosolic (“cyto”) and mitochondrial (“mito”) clades. Secondly, we find that the cyto-clade NADK gene is duplicated in connection with loss of the mito-clade NADK gene in several eukaryotic clades or with acquisition of plastids in Archaeplastida. Thirdly, we find that horizontal gene transfers from proteobacteria have replaced mitochondrial NADK genes in only a few rare cases. Last, we find that the eukaryotic cyto and mito paralogs are unrelated to independent duplications that occurred in sporulating bacteria, once in mycelial Actinobacteria and once in aerobic endospore-forming Firmicutes. Altogether these findings show that the eukaryotic NADK gene repertoire is ancient and evolves episodically with major evolutionary transitions.
Collapse
Affiliation(s)
- Oliver Vickman
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
| | - Albert Erives
- Department of Biology, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Comparative Transcriptome Analysis of Streptomyces Clavuligerus in Response to Favorable and Restrictive Nutritional Conditions. Antibiotics (Basel) 2019; 8:antibiotics8030096. [PMID: 31330947 PMCID: PMC6784218 DOI: 10.3390/antibiotics8030096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Clavulanic acid (CA), a β-lactamase inhibitor, is industrially produced by the fermentation of Streptomyces clavuligerus. The efficiency of CA production is associated with media composition, culture conditions and physiological and genetic strain characteristics. However, the molecular pathways that govern CA regulation in S. clavuligerus remain unknown. Methods and Results: Here we used RNA-seq to perform a comparative transcriptome analysis of S. clavuligerus ATCC 27064 wild-type strain grown in both a favorable soybean-based medium and in limited media conditions to further contribute to the understanding of S. clavuligerus metabolism and its regulation. A total of 350 genes were found to be differentially expressed between conditions; 245 genes were up-regulated in favorable conditions compared to unfavorable. Conclusion: The up-regulated expression of many regulatory and biosynthetic CA genes was positively associated with the favorable complex media condition along with pleiotropic regulators, including proteases and some genes whose biological function have not been previously reported. Knowledge from differences between transcriptomes from complex/defined media represents an advance in the understanding of regulatory paths involved in S. clavuligerus’ metabolic response, enabling the rational design of future experiments.
Collapse
|
17
|
The SCO1731 methyltransferase modulates actinorhodin production and morphological differentiation of Streptomyces coelicolor A3(2). Sci Rep 2018; 8:13686. [PMID: 30209340 PMCID: PMC6135851 DOI: 10.1038/s41598-018-32027-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
Streptomyces coelicolor is a Gram-positive microorganism often used as a model of physiological and morphological differentiation in streptomycetes, prolific producers of secondary metabolites with important biological activities. In the present study, we analysed Streptomyces coelicolor growth and differentiation in the presence of the hypo-methylating agent 5′-aza-2′-deoxycytidine (5-aza-dC) in order to investigate whether cytosine methylation has a role in differentiation. We found that cytosine demethylation caused a delay in spore germination, aerial mycelium development, sporulation, as well as a massive impairment of actinorhodin production. Thus, we searched for putative DNA methyltransferase genes in the genome and constructed a mutant of the SCO1731 gene. The analysis of the SCO1731::Tn5062 mutant strain demonstrated that inactivation of SCO1731 leads to a strong decrease of cytosine methylation and almost to the same phenotype obtained after 5-aza-dC treatment. Altogether, our data demonstrate that cytosine methylation influences morphological differentiation and actinorhodin production in S. coelicolor and expand our knowledge on this model bacterial system.
Collapse
|
18
|
Rioseras B, Shliaha PV, Gorshkov V, Yagüe P, López-García MT, Gonzalez-Quiñonez N, Kovalchuk S, Rogowska-Wrzesinska A, Jensen ON, Manteca A. Quantitative Proteome and Phosphoproteome Analyses of Streptomyces coelicolor Reveal Proteins and Phosphoproteins Modulating Differentiation and Secondary Metabolism. Mol Cell Proteomics 2018; 17:1591-1611. [PMID: 29784711 PMCID: PMC6072539 DOI: 10.1074/mcp.ra117.000515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/15/2018] [Indexed: 02/03/2023] Open
Abstract
Streptomycetes are multicellular bacteria with complex developmental cycles. They are of biotechnological importance as they produce most bioactive compounds used in biomedicine, e.g. antibiotic, antitumoral and immunosupressor compounds. Streptomyces genomes encode many Ser/Thr/Tyr kinases, making this genus an outstanding model for the study of bacterial protein phosphorylation events. We used mass spectrometry based quantitative proteomics and phosphoproteomics to characterize bacterial differentiation and activation of secondary metabolism of Streptomyces coelicolor We identified and quantified 3461 proteins corresponding to 44.3% of the S. coelicolor proteome across three developmental stages: vegetative hypha (first mycelium); secondary metabolite producing hyphae (second mycelium); and sporulating hyphae. A total of 1350 proteins exhibited more than 2-fold expression changes during the bacterial differentiation process. These proteins include 136 regulators (transcriptional regulators, transducers, Ser/Thr/Tyr kinases, signaling proteins), as well as 542 putative proteins with no clear homology to known proteins which are likely to play a role in differentiation and secondary metabolism. Phosphoproteomics revealed 85 unique protein phosphorylation sites, 58 of them differentially phosphorylated during differentiation. Computational analysis suggested that these regulated protein phosphorylation events are implicated in important cellular processes, including cell division, differentiation, regulation of secondary metabolism, transcription, protein synthesis, protein folding and stress responses. We discovered a novel regulated phosphorylation site in the key bacterial cell division protein FtsZ (pSer319) that modulates sporulation and regulates actinorhodin antibiotic production. We conclude that manipulation of distinct protein phosphorylation events may improve secondary metabolite production in industrial streptomycetes, including the activation of cryptic pathways during the screening for new secondary metabolites from streptomycetes.
Collapse
Affiliation(s)
- Beatriz Rioseras
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pavel V Shliaha
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Vladimir Gorshkov
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Paula Yagüe
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - María T López-García
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Nathaly Gonzalez-Quiñonez
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sergey Kovalchuk
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Adelina Rogowska-Wrzesinska
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Ole N Jensen
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Angel Manteca
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain;
| |
Collapse
|
19
|
Lu T, Zhu Y, Zhang P, Sheng D, Cao G, Pang X. SCO5351 is a pleiotropic factor that impacts secondary metabolism and morphological development in Streptomyces coelicolor. FEMS Microbiol Lett 2018; 365:5040222. [DOI: 10.1093/femsle/fny150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/16/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Ting Lu
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Yanping Zhu
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Peipei Zhang
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Duohong Sheng
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Guangxiang Cao
- Shandong Medicinal Biotechnology Center, Shandong Academy of Medical Sciences, Jinan, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| |
Collapse
|
20
|
López-García MT, Yagüe P, González-Quiñónez N, Rioseras B, Manteca A. The SCO4117 ECF Sigma Factor Pleiotropically Controls Secondary Metabolism and Morphogenesis in Streptomyces coelicolor. Front Microbiol 2018. [PMID: 29515563 PMCID: PMC5826349 DOI: 10.3389/fmicb.2018.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors are a major type of bacterial signal-transducers whose biological functions remain poorly characterized in streptomycetes. In this work we studied SCO4117, a conserved ECF sigma factor from the ECF52 family overexpressed during substrate and aerial mycelium stages. The ECF52 sigma factors harbor, in addition to the ECF sigma factor domain, a zinc finger domain, a transmembrane region, a proline-rich C-terminal extension, and a carbohydrate-binding domain. This class of ECF sigma factors is exclusive to Actinobacteria. We demonstrate that SCO4117 is an activator of secondary metabolism, aerial mycelium differentiation, and sporulation, in all the culture media (sucrose-free R5A, GYM, MM, and SFM) analyzed. Aerial mycelium formation and sporulation are delayed in a SCO4117 knockout strain. Actinorhodin production is delayed and calcium-dependent antibiotic production is diminished, in the ΔSCO4117 mutant. By contast, undecylprodigiosin production do not show significant variations. The expression of genes encoding secondary metabolism pathways (deoxysugar synthases, actinorhodin biosynthetic genes) and genes involved in differentiation (rdl, chp, nepA, ssgB) was dramatically reduced (up to 300-fold) in the SCO4117 knockout. A putative motif bound, with the consensus “CSGYN-17bps-SRHA” sequence, was identified in the promoter region of 29 genes showing affected transcription in the SCO4117 mutant, including one of the SCO4117 promoters. SCO4117 is a conserved gene with complex regulation at the transcriptional and post-translational levels and the first member of the ECF52 family characterized.
Collapse
Affiliation(s)
- María T López-García
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Nathaly González-Quiñónez
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Beatriz Rioseras
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
21
|
Menendez-Bravo S, Paganini J, Avignone-Rossa C, Gramajo H, Arabolaza A. Identification of FadAB Complexes Involved in Fatty Acid β-Oxidation in Streptomyces coelicolor and Construction of a Triacylglycerol Overproducing strain. Front Microbiol 2017; 8:1428. [PMID: 28824562 PMCID: PMC5539140 DOI: 10.3389/fmicb.2017.01428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022] Open
Abstract
Oleaginous microorganisms represent possible platforms for the sustainable production of oleochemicals and biofuels due to their metabolic robustness and the possibility to be engineered. Streptomyces coelicolor is among the narrow group of prokaryotes capable of accumulating triacylglycerol (TAG) as carbon and energy reserve. Although the pathways for TAG biosynthesis in this organism have been widely addressed, the set of genes required for their breakdown have remained elusive so far. Here, we identified and characterized three gene clusters involved in the β-oxidation of fatty acids (FA). The role of each of the three different S. coelicolor FadAB proteins in FA catabolism was confirmed by complementation of an Escherichia coliΔfadBA mutant strain deficient in β-oxidation. In S. coelicolor, the expression profile of the three gene clusters showed variation related with the stage of growth and the presence of FA in media. Flux balance analyses using a corrected version of the current S. coelicolor metabolic model containing detailed TAG biosynthesis reactions suggested the relevance of the identified fadAB genes in the accumulation of TAG. Thus, through the construction and analysis of fadAB knockout mutant strains, we obtained an S. coelicolor mutant that showed a 4.3-fold increase in the TAG content compared to the wild type strain grown under the same culture conditions.
Collapse
Affiliation(s)
- Simón Menendez-Bravo
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Julián Paganini
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Claudio Avignone-Rossa
- Department of Microbial Sciences, School of Biosciences and Medicine, University of SurreyGuildford, United Kingdom
| | - Hugo Gramajo
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| | - Ana Arabolaza
- Microbiology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de RosarioRosario, Argentina
| |
Collapse
|
22
|
Filippova SN, Vinogradova KA. Programmed cell death as one of the stages of streptomycete differentiation. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717040075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Polydiglycosylphosphate Transferase PdtA (SCO2578) of Streptomyces coelicolor A3(2) Is Crucial for Proper Sporulation and Apical Tip Extension under Stress Conditions. Appl Environ Microbiol 2016; 82:5661-72. [PMID: 27422828 DOI: 10.1128/aem.01425-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Although anionic glycopolymers are crucial components of the Gram-positive cell envelope, the relevance of anionic glycopolymers for vegetative growth and morphological differentiation of Streptomyces coelicolor A3(2) is unknown. Here, we show that the LytR-CpsA-Psr (LCP) protein PdtA (SCO2578), a TagV-like glycopolymer transferase, has a dual function in the S. coelicolor A3(2) life cycle. Despite the presence of 10 additional LCP homologs, PdtA is crucial for proper sporulation. The integrity of the spore envelope was severely affected in a pdtA deletion mutant, resulting in 34% nonviable spores. pdtA deletion caused a significant reduction in the polydiglycosylphosphate content of the spore envelope. Beyond that, apical tip extension and normal branching of vegetative mycelium were severely impaired on high-salt medium. This growth defect coincided with the mislocalization of peptidoglycan synthesis. Thus, PdtA itself or the polydiglycosylphosphate attached to the peptidoglycan by the glycopolymer transferase PdtA also has a crucial function in apical tip extension of vegetative hyphae under stress conditions. IMPORTANCE Anionic glycopolymers are underappreciated components of the Gram-positive cell envelope. They provide rigidity to the cell wall and position extracellular enzymes involved in peptidoglycan remodeling. Although Streptomyces coelicolor A3(2), the model organism for bacterial antibiotic production, is known to produce two distinct cell wall-linked glycopolymers, teichulosonic acid and polydiglycosylphosphate, the role of these glycopolymers in the S. coelicolor A3(2) life cycle has not been addressed so far. This study reveals a crucial function of the anionic glycopolymer polydiglycosylphosphate for the growth and morphological differentiation of S. coelicolor A3(2). Polydiglycosylphosphate is attached to the spore wall by the LytR-CpsA-Psr protein PdtA (SCO2578), a component of the Streptomyces spore wall-synthesizing complex (SSSC), to ensure the integrity of the spore envelope. Surprisingly, PdtA also has a crucial role in vegetative growth under stress conditions and is required for proper peptidoglycan incorporation during apical tip extension.
Collapse
|
24
|
López-García MT, Rioseras B, Yagüe P, Álvarez JR, Manteca Á. Cell immobilization of Streptomyces coelicolor : effect on differentiation and actinorhodin production. Int Microbiol 2016; 17:75-80. [PMID: 26418851 DOI: 10.2436/20.1501.01.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/24/2014] [Indexed: 12/22/2022]
Abstract
Streptomycetes are mycelium-forming bacteria that produce two thirds of the clinically relevant secondary metabolites. Despite the fact that secondary metabolite production is activated at specific developmental stages of the Streptomyces spp. life cycle, different streptomycetes show different behaviors, and fermentation conditions need to be optimized for each specific strain and secondary metabolite. Cell-encapsulation constitutes an interesting alternative to classical fermentations, which was demonstrated to be useful in Streptomyces, but development under these conditions remained unexplored. In this work, the influence of cell-encapsulation in hyphae differentiation and actinorhodin production was explored in the model Streptomyces coelicolor strain. Encapsulation led to a delay in growth and to a reduction of mycelium density and cell death. The high proportion of viable hyphae duplicated extracellular actinorhodin production in the encapsulated cultures with respect to the non-encapsulated ones.
Collapse
Affiliation(s)
- María Teresa López-García
- Microbiology Section, Department of Functional Biology and IUOPA, School of Medicine, University of Oviedo, Spain
| | - Beatriz Rioseras
- Microbiology Section, Department of Functional Biology and IUOPA, School of Medicine, University of Oviedo, Spain
| | - Paula Yagüe
- Microbiology Section, Department of Functional Biology and IUOPA, School of Medicine, University of Oviedo, Spain
| | - José Ramón Álvarez
- Department of Chemical Engineering and Environmental Technology, University of Oviedo, Spain
| | - Ángel Manteca
- Microbiology Section, Department of Functional Biology and IUOPA, School of Medicine, University of Oviedo, Spain
| |
Collapse
|
25
|
Ordóñez-Robles M, Rodríguez-García A, Martín JF. Target genes of the Streptomyces tsukubaensis FkbN regulator include most of the tacrolimus biosynthesis genes, a phosphopantetheinyl transferase and other PKS genes. Appl Microbiol Biotechnol 2016; 100:8091-103. [PMID: 27357227 DOI: 10.1007/s00253-016-7696-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 01/01/2023]
Abstract
Tacrolimus (FK506) is a 23-membered macrolide immunosuppressant used in current clinics. Understanding how the tacrolimus biosynthetic gene cluster is regulated is important to increase its industrial production. Here, we analysed the effect of the disruption of fkbN (encoding a LAL-type positive transcriptional regulator) on the whole transcriptome of the tacrolimus producer Streptomyces tsukubaensis using microarray technology. Transcription of fkbN in the wild type strain increases from 70 h of cultivation reaching a maximum at 89 h, prior to the onset of tacrolimus biosynthesis. Disruption of fkbN in S. tsukubaensis does not affect growth but prevents tacrolimus biosynthesis. Inactivation of fkbN reduces the transcription of most of the fkb cluster genes, including some all (for allylmalonyl-CoA biosynthesis) genes but does not affect expression of allMNPOS or fkbR (encoding a LysR-type regulator). Disruption of fkbN does not suppress transcription of the cistron tcs6-fkbQ-fkbN; thus, FkbN self-regulates only weakly its own expression. Interestingly, inactivation of FkbN downregulates the transcription of a 4'-phosphopantetheinyl transferase coding gene, which product is involved in tacrolimus biosynthesis, and upregulates the transcription of a gene cluster containing a cpkA orthologous gene, which encodes a PKS involved in coelimycin P1 biosynthesis in Streptomyces coelicolor. We propose an information theory-based model for FkbN binding sequences. The consensus FkbN binding sequence consists of 14 nucleotides with dyad symmetry containing two conserved inverted repeats of 7 nt each. This FkbN target sequence is present in the promoters of FkbN-regulated genes.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, 24071, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León, 24006, Spain
| | - Antonio Rodríguez-García
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, 24071, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León, 24006, Spain
| | - Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, 24071, Spain.
| |
Collapse
|
26
|
Rioseras B, Yagüe P, López-García MT, Gonzalez-Quiñonez N, Binda E, Marinelli F, Manteca A. Characterization of SCO4439, a D-alanyl-D-alanine carboxypeptidase involved in spore cell wall maturation, resistance, and germination in Streptomyces coelicolor. Sci Rep 2016; 6:21659. [PMID: 26867711 PMCID: PMC4751497 DOI: 10.1038/srep21659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/28/2016] [Indexed: 11/24/2022] Open
Abstract
This work contributes to the understanding of cell wall modifications during sporulation and germination in Streptomyces by assessing the biological function and biochemical properties of SCO4439, a D-alanyl-D-alanine carboxypeptidase (DD-CPase) constitutively expressed during development. SCO4439 harbors a DD-CPase domain and a putative transcriptional regulator domain, separated by a putative transmembrane region. The recombinant protein shows that DD-CPase activity is inhibited by penicillin G. The spores of the SCO4439::Tn5062 mutant are affected in their resistance to heat and acid and showed a dramatic increase in swelling during germination. The mycelium of the SCO4439::Tn5062 mutant is more sensitive to glycopeptide antibiotics (vancomycin and teicoplanin). The DD-CPase domain and the hydrophobic transmembrane region are highly conserved in Streptomyces, and both are essential for complementing the wild type phenotypes in the mutant. A model for the biological mechanism behind the observed phenotypes is proposed, in which SCO4439 DD-CPase releases D-Ala from peptidoglycan (PG) precursors, thereby reducing the substrate pool for PG crosslinking (transpeptidation). PG crosslinking regulates spore physical resistance and germination, and modulates mycelium resistance to glycopeptides. This study is the first demonstration of the role of a DD-CPase in the maturation of the spore cell wall.
Collapse
Affiliation(s)
- Beatriz Rioseras
- Área de Microbiología, Departamento de Biología Funcional and IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional and IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - María Teresa López-García
- Área de Microbiología, Departamento de Biología Funcional and IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Nathaly Gonzalez-Quiñonez
- Área de Microbiología, Departamento de Biología Funcional and IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy.,"The Protein Factory" Research Center, Politecnico of Milano, ICRM CNR Milano and University of Insubria, 21100 Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy.,"The Protein Factory" Research Center, Politecnico of Milano, ICRM CNR Milano and University of Insubria, 21100 Varese, Italy
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional and IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
27
|
Licona-Cassani C, Cruz-Morales P, Manteca A, Barona-Gomez F, Nielsen LK, Marcellin E. Systems Biology Approaches to Understand Natural Products Biosynthesis. Front Bioeng Biotechnol 2015; 3:199. [PMID: 26697425 PMCID: PMC4673338 DOI: 10.3389/fbioe.2015.00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022] Open
Abstract
Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed toward a shift in the exploitation of actinomycete’s biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation, and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets.
Collapse
Affiliation(s)
- Cuauhtemoc Licona-Cassani
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, QLD , Australia ; National Laboratory of Genomics for Biodiversity (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN) , Irapuato , México
| | - Pablo Cruz-Morales
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN) , Irapuato , México
| | - Angel Manteca
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Facultad de Medicina, Universidad de Oviedo , Oviedo , Spain
| | - Francisco Barona-Gomez
- National Laboratory of Genomics for Biodiversity (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN) , Irapuato , México
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, QLD , Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
28
|
Beites T, Oliveira P, Rioseras B, Pires SDS, Oliveira R, Tamagnini P, Moradas-Ferreira P, Manteca Á, Mendes MV. Streptomyces natalensis programmed cell death and morphological differentiation are dependent on oxidative stress. Sci Rep 2015; 5:12887. [PMID: 26256439 PMCID: PMC4530454 DOI: 10.1038/srep12887] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/14/2015] [Indexed: 12/03/2022] Open
Abstract
Streptomyces are aerobic Gram-positive bacteria characterized by a complex life cycle that includes hyphae differentiation and spore formation. Morphological differentiation is triggered by stressful conditions and takes place in a pro-oxidant environment, which sets the basis for an involvement of the oxidative stress response in this cellular process. Characterization of the phenotypic traits of Streptomyces natalensis ΔkatA1 (mono-functional catalase) and ΔcatR (Fur-like repressor of katA1 expression) strains in solid medium revealed that both mutants had an impaired morphological development process. The sub-lethal oxidative stress caused by the absence of KatA1 resulted in the formation of a highly proliferative and undifferentiated vegetative mycelium, whereas de-repression of CatR regulon, from which KatA1 is the only known representative, resulted in the formation of scarce aerial mycelium. Both mutant strains had the transcription of genes associated with aerial mycelium formation and biosynthesis of the hyphae hydrophobic layer down-regulated. The first round of the programmed cell death (PCD) was inhibited in both strains which caused the prevalence of the transient primary mycelium (MI) over secondary mycelium (MII). Our data shows that the first round of PCD and morphological differentiation in S. natalensis is dependent on oxidative stress in the right amount at the right time.
Collapse
Affiliation(s)
- Tiago Beites
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paulo Oliveira
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Beatriz Rioseras
- rea de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Sílvia D S Pires
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal [3] ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rute Oliveira
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paula Tamagnini
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal [3] Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
| | - Pedro Moradas-Ferreira
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal [3] ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ángel Manteca
- rea de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Marta V Mendes
- 1] i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal [2] IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
29
|
Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Appl Environ Microbiol 2015; 80:4692-701. [PMID: 24837391 DOI: 10.1128/aem.01133-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Actinobacteria in the genus Streptomyces are critical players in microbial communities that decompose complex carbohydrates in the soil, and these bacteria have recently been implicated in the deconstruction of plant polysaccharides for some herbivorous insects. Despite the importance of Streptomyces to carbon cycling, the extent of their plant biomass-degrading ability remains largely unknown. In this study, we compared four strains of Streptomyces isolated from insect herbivores that attack pine trees: DpondAA-B6 (SDPB6) from the mountain pine beetle, SPB74 from the southern pine beetle, and SirexAA-E (SACTE) and SirexAA-G from the woodwasp, Sirex noctilio. Biochemical analysis of secreted enzymes demonstrated that only two of these strains, SACTE and SDPB6, were efficient at degrading plant biomass. Genomic analyses indicated that SACTE and SDPB6 are closely related and that they share similar compositions of carbohydrate-active enzymes. Genome-wide proteomic and transcriptomic analyses revealed that the major exocellulases (GH6 and GH48), lytic polysaccharide monooxygenases (AA10), and mannanases (GH5) were conserved and secreted by both organisms, while the secreted endocellulases (GH5 and GH9 versus GH9 and GH12) were from diverged enzyme families. Together, these data identify two phylogenetically related insect-associated Streptomyces strains with high biomass-degrading activity and characterize key enzymatic similarities and differences used by these organisms to deconstruct plant biomass.
Collapse
|
30
|
Ladwig N, Franz-Wachtel M, Hezel F, Soufi B, Macek B, Wohlleben W, Muth G. Control of Morphological Differentiation of Streptomyces coelicolor A3(2) by Phosphorylation of MreC and PBP2. PLoS One 2015; 10:e0125425. [PMID: 25927987 PMCID: PMC4416010 DOI: 10.1371/journal.pone.0125425] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022] Open
Abstract
During morphological differentiation of Streptomyces coelicolor A3(2), the sporogenic aerial hyphae are transformed into a chain of more than fifty spores in a highly coordinated manner. Synthesis of the thickened spore envelope is directed by the Streptomyces spore wall synthesizing complex SSSC which resembles the elongasome of rod-shaped bacteria. The SSSC includes the eukaryotic type serine/threonine protein kinase (eSTPK) PkaI, encoded within a cluster of five independently transcribed eSTPK genes (SCO4775-4779). To understand the role of PkaI in spore wall synthesis, we screened a S. coelicolor genomic library for PkaI interaction partners by bacterial two-hybrid analyses and identified several proteins with a documented role in sporulation. We inactivated pkaI and deleted the complete SCO4775-4779 cluster. Deletion of pkaI alone delayed sporulation and produced some aberrant spores. The five-fold mutant NLΔ4775-4779 had a more severe defect and produced 18% aberrant spores affected in the integrity of the spore envelope. Moreover, overbalancing phosphorylation activity by expressing a second copy of any of these kinases caused a similar defect. Following co-expression of pkaI with either mreC or pbp2 in E. coli, phosphorylation of MreC and PBP2 was demonstrated and multiple phosphosites were identified by LC-MS/MS. Our data suggest that elaborate protein phosphorylation controls activity of the SSSC to ensure proper sporulation by suppressing premature cross-wall synthesis.
Collapse
Affiliation(s)
- Nils Ladwig
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15,72076 Tübingen, Germany
| | - Felix Hezel
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Boumediene Soufi
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15,72076 Tübingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interfakultaeres Institut für Zellbiologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 15,72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Günther Muth
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| |
Collapse
|
31
|
Santos-Beneit F, Fernández-Martínez LT, Rodríguez-García A, Martín-Martín S, Ordóñez-Robles M, Yagüe P, Manteca A, Martín JF. Transcriptional response to vancomycin in a highly vancomycin-resistant Streptomyces coelicolor mutant. Future Microbiol 2014; 9:603-22. [DOI: 10.2217/fmb.14.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT: Aim: The main objective of this study is to understand the mechanism of vancomycin resistance in a Streptomyces coelicolor disrupted mutant highly resistant to vancomycin. Materials & methods: Different techniques have been performed in the study including gene disruption, primer extension, antibiotic susceptibility tests, electron microscopy, confocal microscopy, cell wall analysis and microarrays. Results: During the phenotypical characterization of mutant strains affected in phosphate-regulated genes of unknown function, we found that the S. coelicolor SCO2594 disrupted mutant was highly resistant to vancomycin and had other phenotypic alterations such as antibiotic overproduction, impaired growth and reduction of phosphate cell wall content. Transcriptomic studies with this mutant indicated a relationship between vancomycin resistance and cell wall stress. Conclusion: We identified a S. coelicolor mutant highly resistant to vancomycin in both high and low phosphate media. In addition to Van proteins, others such as WhiB or SigE appear to be involved in this regulatory mechanism.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Instituto de Biotecnología de León (INBIOTEC), Avda. Real 1, 24006 León, Spain
- Departamento de Biología Molecular & IBBTEC, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | - Lorena T Fernández-Martínez
- Instituto de Biotecnología de León (INBIOTEC), Avda. Real 1, 24006 León, Spain
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Antonio Rodríguez-García
- Instituto de Biotecnología de León (INBIOTEC), Avda. Real 1, 24006 León, Spain
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | | | - María Ordóñez-Robles
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional & IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional & IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
32
|
Abstract
Streptomycetes are Gram-positive, GC-rich, soil dwelling bacteria, occurring ubiquitary throughout nature. They undergo extensive morphological changes from spores to filamentous mycelia and produce a plethora of secondary metabolites. Owing to their complex life cycle, streptomycetes require efficient regulatory machinery for the control of gene expression. Therefore, they possess a large diversity of regulators. Within this review we summarize the current knowledge about the importance of small non-coding RNA for the control of gene expression in these organisms.
Collapse
Affiliation(s)
- Nona Heueis
- Department of Biology; Technical University Darmstadt; Darmstadt, Germany
| | | | - Beatrix Suess
- Department of Biology; Technical University Darmstadt; Darmstadt, Germany
| |
Collapse
|
33
|
Yagüe P, Rodríguez-García A, López-García MT, Rioseras B, Martín JF, Sánchez J, Manteca A. Transcriptomic analysis of liquid non-sporulating Streptomyces coelicolor cultures demonstrates the existence of a complex differentiation comparable to that occurring in solid sporulating cultures. PLoS One 2014; 9:e86296. [PMID: 24466012 PMCID: PMC3897704 DOI: 10.1371/journal.pone.0086296] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022] Open
Abstract
Streptomyces species produce many clinically relevant secondary metabolites and exhibit a complex development that includes hyphal differentiation and sporulation in solid cultures. Industrial fermentations are usually performed in liquid cultures, conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that no differentiation took place. The aim of this work was to compare the transcriptomes of S. coelicolor growing in liquid and solid cultures, deepening the knowledge of Streptomyces differentiation. Microarrays demonstrated that gene expression in liquid and solid cultures were comparable and data indicated that physiological differentiation was similar for both conditions. Eighty-six percent of all transcripts showed similar abundances in liquid and solid cultures, such as those involved in the biosynthesis of actinorhodin (actVA, actII-4) and undecylprodigiosin (redF); activation of secondary metabolism (absR1, ndsA); genes regulating hydrophobic cover formation (aerial mycelium) (bldB, bldC, bldM, bldN, sapA, chpC, chpD, chpE, chpH, ramA, ramC, ramS); and even some genes regulating early stages of sporulation (wblA, whiG, whiH, whiJ). The two most important differences between transcriptomes from liquid and solid cultures were: first, genes related to secondary metabolite biosynthesis (CDA, CPK, coelichelin, desferrioxamine clusters) were highly up-regulated in liquid but not in solid cultures; and second, genes involved in the final stages of hydrophobic cover/spore maturation (chpF, rdlA, whiE, sfr) were up-regulated in solid but not in liquid cultures. New information was also provided for several non-characterized genes differentially expressed in liquid and solid cultures which might be regulating, at least in part, the metabolic and developmental differences observed between liquid and solid cultures.
Collapse
Affiliation(s)
- Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional and IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | - María Teresa López-García
- Área de Microbiología, Departamento de Biología Funcional and IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Beatriz Rioseras
- Área de Microbiología, Departamento de Biología Funcional and IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Juan Francisco Martín
- Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, León, Spain
| | - Jesús Sánchez
- Área de Microbiología, Departamento de Biología Funcional and IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional and IUOPA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
- * E-mail:
| |
Collapse
|
34
|
Genome-wide analysis of the regulation of pimaricin production in Streptomyces natalensis by reactive oxygen species. Appl Microbiol Biotechnol 2014; 98:2231-41. [PMID: 24413916 DOI: 10.1007/s00253-013-5455-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
Abstract
To investigate the molecular mechanisms that interplay between oxygen metabolism and secondary metabolism in Streptomyces natalensis, we compared the transcriptomes of the strains CAM.02 (ΔsodF), pimaricin under-producer phenotype, and CAM.04 (ΔahpCD), pimaricin over-producer phenotype, with that of the wild type at late exponential and stationary growth phases. Microarray data interpretation was supported by characterization of the mutant strains regarding enzymatic activities, phosphate uptake, oxygen consumption and pimaricin production.Both mutant strains presented a delay in the transcription activation of the PhoRP system and pimaricin biosynthetic gene cluster that correlated with the delayed inorganic phosphate (Pi) depletion in the medium and late onset of pimaricin production, respectively. The carbon flux of both mutants was also altered: a re-direction from glycolysis to the pentose phosphate pathway (PPP) in early exponential phase followed by a transcriptional activation of both pathways in subsequent growth phases was observed. Mutant behavior diverged at the respiratory chain/tricarboxylic acid cycle (TCA) and the branched chain amino acid (BCAA) metabolism. CAM.02 (ΔsodF) presented an impaired TCA cycle and an inhibition of the BCAA biosynthesis and degradation pathways. Conversely, CAM.04 (ΔahpCD) presented a global activation of BCAA metabolism.The results highlight the cellular NADPH/NADH ratio and the availability of biosynthetic precursors via the BCAA metabolism as the main pimaricin biosynthetic bottlenecks under oxidative stress conditions. Furthermore, new evidences are provided regarding a crosstalk between phosphate metabolism and oxidative stress in Streptomyces.
Collapse
|
35
|
Hwang KS, Kim HU, Charusanti P, Palsson BØ, Lee SY. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 2013; 32:255-68. [PMID: 24189093 DOI: 10.1016/j.biotechadv.2013.10.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/20/2013] [Accepted: 10/25/2013] [Indexed: 11/29/2022]
Abstract
Streptomyces species continue to attract attention as a source of novel medicinal compounds. Despite a long history of studies on these microorganisms, they still have many biochemical mysteries to be elucidated. Investigations of novel secondary metabolites and their biosynthetic gene clusters have been more systematized with high-throughput techniques through inspections of correlations among components of the primary and secondary metabolisms at the genome scale. Moreover, up-to-date information on the genome of Streptomyces species with emphasis on their secondary metabolism has been collected in the form of databases and knowledgebases, providing predictive information and enabling one to explore experimentally unrecognized biological spaces of secondary metabolism. Herein, we review recent trends in the systems biology and biotechnology of Streptomyces species.
Collapse
Affiliation(s)
- Kyu-Sang Hwang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Hyun Uk Kim
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Pep Charusanti
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Bernhard Ø Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Sang Yup Lee
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 program), and Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
36
|
Rebets Y, Brötz E, Tokovenko B, Luzhetskyy A. Actinomycetes biosynthetic potential: how to bridge in silico and in vivo? J Ind Microbiol Biotechnol 2013; 41:387-402. [PMID: 24127068 DOI: 10.1007/s10295-013-1352-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Actinomycetes genome sequencing and bioinformatic analyses revealed a large number of "cryptic" gene clusters coding for secondary metabolism. These gene clusters have the potential to increase the chemical diversity of natural products. Indeed, reexamination of well-characterized actinomycetes strains revealed a variety of hidden treasures. Growing information about this metabolic diversity has promoted further development of strategies to discover novel biologically active compounds produced by actinomycetes. This new task for actinomycetes genetics requires the development and use of new approaches and tools. Application of synthetic biology approaches led to the development of a set of strategies and tools to satisfy these new requirements. In this review, we discuss strategies and methods to discover small molecules produced by these fascinating bacteria and also discuss a variety of genetic instruments and regulatory elements used to activate secondary metabolism cryptic genes for the overproduction of these metabolites.
Collapse
Affiliation(s)
- Yuriy Rebets
- Helmholtz-Institute for Pharmaceutical Research Saarland, Campus, Building C2.3, Saarbrücken, 66123, Germany
| | | | | | | |
Collapse
|
37
|
Yagüe P, López-García MT, Rioseras B, Sánchez J, Manteca A. Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives. FEMS Microbiol Lett 2013; 342:79-88. [PMID: 23496097 DOI: 10.1111/1574-6968.12128] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
Abstract
Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation.
Collapse
Affiliation(s)
- Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional, and IUBA, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | |
Collapse
|