1
|
Tatte VS, Gopalkrishna V. Detection of different enteric viruses in children with diarrheal disease: evidence of the high frequency of mixed infections. Access Microbiol 2019; 1:e000010. [PMID: 32974508 PMCID: PMC7470349 DOI: 10.1099/acmi.0.000010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/08/2019] [Indexed: 01/19/2023] Open
Abstract
Enteric viruses play a major role in causing diarrhea in children. Early identification of the causative pathogen is still a challenge in the clinical laboratory. A multiplex PCR assay is a useful tool to screen a large number of clinical samples especially in an outbreak situation. In this study, a multiplex reverse transcription (RT)-PCR assay was developed to detect nine enteric viruses such as group A rotavirus, norovirus GGII, sapovirus, adenovirus, astrovirus, aichivirus, parechovirus, bocavirus and enterovirus in clinical samples of diarrheal cases. Stool samples (n=185) collected from infants and children with acute gastroenteritis cases in Pune, western India were analysed for nine different enteric viruses by currently developed multiplex RT- PCR. Predominance of group A rotavirus (76%) followed by enterovirus (11.5%), astrovirus (4.5%), adenovirus (2.7%) and norovirus GII (1.6%) was observed. A total of 44.8 % (82/185) samples analysed by this method showed high frequency of mixed infections. These results highlighted high prevalence and diversity of different enteric viruses in children. The multiplex PCR showed good concordance with monoplex RT-PCR for detection of these enteric viruses in clinical samples. This is the first report on the development of a multiplex RT-PCR assay for detection of multiple enteric viruses in diarrheal diseases from India.
Collapse
Affiliation(s)
- Vaishali S Tatte
- Enteric Viruses Group, National Institute of Virology, Pune, India
| | | |
Collapse
|
2
|
Butz H, Patócs A. Brief Summary of the Most Important Molecular Genetic Methods (PCR, qPCR, Microarray, Next-Generation Sequencing, etc.). EXPERIENTIA SUPPLEMENTUM (2012) 2019; 111:33-52. [PMID: 31588527 DOI: 10.1007/978-3-030-25905-1_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecular genetic methods have become an organic part of everyday clinical practice. In the past, molecular diagnostic tests were carried out for genetic diagnosis of a particular monogenic disease. In these situations the tests itself were used for identification of one particular genetic alteration (e.g., point mutation or deletion) of the gene of interest. Later, parallel with the development of the technology, the focus has shifted by allowing investigating at once targeted gene panels and even the whole exome/genome behind a suspected genetic disorder. Historically for these purposes, array-based methods (oligonucleotide arrays) and then next-generation sequencing-based methods have been used. High-throughput methods have been fundamentally transforming the everyday, routine genetic diagnostics, but older molecular techniques still have a role in clinical genetics. Here, we summarize the most important molecular genetic methods and shed light to the advantages and disadvantages of their application in routine diagnostics. We mainly focus on methods used for detection of germline alterations.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- "Lendület" Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
- "Lendület" Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
3
|
Sgardioli IC, de Mello Copelli M, Monteiro FP, Dos Santos AP, Lustosa Mendes E, Paiva Vieira T, Gil-da-Silva-Lopes VL. Diagnostic Approach to Microdeletion Syndromes Based on 22q11.2 Investigation: Challenges in Four Cases. Mol Syndromol 2017; 8:244-252. [PMID: 28878608 DOI: 10.1159/000477598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 01/18/2023] Open
Abstract
In the last few decades, different methods for the detection of genomic imbalances, such as the microdeletion syndromes, were developed. The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion syndrome and presents wide clinical heterogeneity. The aim of this study was to describe 4 unusual cases of genomic imbalances found in individuals with suspected microdeletion syndromes. Different methods were necessary to complete the diagnosis and to obtain information for genetic counseling. The study was retrospective and descriptive. From August 2014 to December 2015, 39 individuals were assessed using FISH and/or MLPA; in 15 cases, chromosomal microarray (CMA) analysis was carried out. Of 39 registered individuals, we found deletions in the 22q11.2 region in 10 individuals (8 individuals with 22q11.2DS and 2 individuals presenting with atypical deletions in the 22q11.2 region: 1 distal deletion and 1 central deletion). In one case with a typical 22q11.2 deletion, a familial balanced translocation was detected. In another case without a 22q11.2 deletion, a 6p duplication concomitant with a 9p deletion was detected by CMA. Clinical data are reported and diagnostic investigations are discussed. Essential aspects for the understanding of different diagnostic techniques of genomic imbalances are considered, and the 4 cases described underline the complexity and the difficulties involved in the diagnostic process. The approach is informative for clinical practice and may be applied in other contexts of genomic imbalance investigation in microdeletion syndromes.
Collapse
Affiliation(s)
- Ilária C Sgardioli
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Matheus de Mello Copelli
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Fabíola P Monteiro
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Ana P Dos Santos
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Elaine Lustosa Mendes
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Társis Paiva Vieira
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Vera L Gil-da-Silva-Lopes
- Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Zhou L, Palais RA, Paxton CN, Geiersbach KB, Wittwer CT. Copy Number Assessment by Competitive PCR with Limiting Deoxynucleotide Triphosphates and High-Resolution Melting. Clin Chem 2015; 61:724-33. [DOI: 10.1373/clinchem.2014.236208] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/02/2015] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
DNA copy number variation is associated with genetic disorders and cancer. Available methods to discern variation in copy number are typically costly, slow, require specialized equipment, and/or lack precision.
METHODS
Multiplex PCR with different primer pairs and limiting deoxynucleotide triphosphates (dNTPs) (3–12 μmol/L) were used for relative quantification and copy number assessment. Small PCR products (50–121 bp) were designed with 1 melting domain, well-separated Tms, minimal internal sequence variation, and no common homologs. PCR products were displayed as melting curves on derivative plots and normalized to the reference peak. Different copy numbers of each target clustered together and were grouped by unbiased hierarchical clustering.
RESULTS
Duplex PCR of a reference gene and a target gene was used to detect copy number variation in chromosomes X, Y, 13, 18, 21, epidermal growth factor receptor (EGFR), survival of motor neuron 1, telomeric (SMN1), and survival of motor neuron 2, centromeric (SMN2). Triplex PCR was used for X and Y and CFTR exons 2 and 3. Blinded studies of 50 potential trisomic samples (13, 18, 21, or normal) and 50 samples with potential sex chromosome abnormalities were concordant to karyotyping, except for 2 samples that were originally mosaics that displayed a single karyotype after growth. Large cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7) (CFTR) deletions, EGFR amplifications, and SMN1 and SMN2 copy number assessments were also demonstrated. Under ideal conditions, copy number changes of 1.11-fold or lower could be discerned with CVs of about 1%.
CONCLUSIONS
Relative quantification by restricting the dNTP concentration with melting curve display is a simple and precise way to assess targeted copy number variation.
Collapse
Affiliation(s)
- Luming Zhou
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | | | - Christian N Paxton
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT
| | - Katherine B Geiersbach
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT
| | - Carl T Wittwer
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT
| |
Collapse
|
5
|
Campos CMR, Zanardo EA, Dutra RL, Kulikowski LD, Kim CA. Investigation of copy number variation in children with conotruncal heart defects. Arq Bras Cardiol 2014; 104:24-31. [PMID: 25387403 PMCID: PMC4387608 DOI: 10.5935/abc.20140169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 09/04/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Congenital heart defects (CHD) are the most prevalent group of structural abnormalities at birth and one of the main causes of infant morbidity and mortality. Studies have shown a contribution of the copy number variation in the genesis of cardiac malformations. OBJECTIVES Investigate gene copy number variation (CNV) in children with conotruncal heart defect. METHODS Multiplex ligation-dependent probe amplification (MLPA) was performed in 39 patients with conotruncal heart defect. Clinical and laboratory assessments were conducted in all patients. The parents of the probands who presented abnormal findings were also investigated. RESULTS Gene copy number variation was detected in 7/39 patients: 22q11.2 deletion, 22q11.2 duplication, 15q11.2 duplication, 20p12.2 duplication, 19p deletion, 15q and 8p23.2 duplication with 10p12.31 duplication. The clinical characteristics were consistent with those reported in the literature associated with the encountered microdeletion/microduplication. None of these changes was inherited from the parents. CONCLUSIONS Our results demonstrate that the technique of MLPA is useful in the investigation of microdeletions and microduplications in conotruncal congenital heart defects. Early diagnosis of the copy number variation in patients with congenital heart defect assists in the prevention of morbidity and decreased mortality in these patients.
Collapse
Affiliation(s)
| | - Evelin Aline Zanardo
- Laboratório de Citogenômica - LIM 03, Departamento de Patologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roberta Lelis Dutra
- Laboratório de Citogenômica - LIM 03, Departamento de Patologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Chong Ae Kim
- Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Viana MM, Frasson M, Galvão H, Leão LL, Stofanko M, Gonçalves-Dornelas H, da Silva Cunha P, Burle de Aguiar MJ. Ocular Features in 16 Brazilian Patients with Williams-Beuren Syndrome. Ophthalmic Genet 2014; 36:234-8. [DOI: 10.3109/13816810.2013.873941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Rapid and inexpensive screening of genomic copy number variations using a novel quantitative fluorescent PCR method. DISEASE MARKERS 2013; 35:589-94. [PMID: 24288428 PMCID: PMC3830787 DOI: 10.1155/2013/704917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/14/2013] [Accepted: 09/15/2013] [Indexed: 11/22/2022]
Abstract
Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR) was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations.
Collapse
|