1
|
Xu G, Ma J, Fang Q, Peng Q, Jiao X, Hu W, Zhao Q, Kong Y, Liu F, Shi X, Tang DJ, Tang JL, Ming Z. Structural insights into Xanthomonas campestris pv. campestris NAD + biosynthesis via the NAM salvage pathway. Commun Biol 2024; 7:255. [PMID: 38429435 PMCID: PMC10907753 DOI: 10.1038/s42003-024-05921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays an important role in the biosynthesis of nicotinamide adenine dinucleotide (NAD+) via the nicotinamide (NAM) salvage pathway. While the structural biochemistry of eukaryote NAMPT has been well studied, the catalysis mechanism of prokaryote NAMPT at the molecular level remains largely unclear. Here, we demonstrated the NAMPT-mediated salvage pathway is functional in the Gram-negative phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) for the synthesis of NAD+, and the enzyme activity of NAMPT in this bacterium is significantly higher than that of human NAMPT in vitro. Our structural analyses of Xcc NAMPT, both in isolation and in complex with either the substrate NAM or the product nicotinamide mononucleotide (NMN), uncovered significant details of substrate recognition. Specifically, we revealed the presence of a NAM binding tunnel that connects the active site, and this tunnel is essential for both catalysis and inhibitor binding. We further demonstrated that NAM binding in the tunnel has a positive cooperative effect with NAM binding in the catalytic site. Additionally, we discovered that phosphorylation of the His residue at position 229 enhances the substrate binding affinity of Xcc NAMPT and is important for its catalytic activity. This work reveals the importance of NAMPT in bacterial NAD+ synthesis and provides insights into the substrate recognition and the catalytic mechanism of bacterial type II phosphoribosyltransferases.
Collapse
Affiliation(s)
- Guolyu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Jinxue Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Qi Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Qiong Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Xi Jiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Wei Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Qiaoqiao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Yanqiong Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Fenmei Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Xueqi Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Dong-Jie Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China.
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, 530004, P. R. China.
| |
Collapse
|
2
|
Zhou Z, Yang X, Huang T, Zheng J, Deng Z, Dai S, Lin S. Bifunctional NadC Homologue PyrZ Catalyzes Nicotinic Acid Formation in Pyridomycin Biosynthesis. ACS Chem Biol 2023; 18:141-150. [PMID: 36517246 DOI: 10.1021/acschembio.2c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pyridomycin is a potent antimycobacterial natural product by specifically inhibiting InhA, a clinically validated antituberculosis drug discovery target. Pyridyl moieties of pyridomycin play an essential role in inhibiting InhA by occupying the reduced form of the nicotinamide adenine dinucleotide (NADH) cofactor binding site. Herein, we biochemically characterize PyrZ that is a multifunctional NadC homologue and catalyzes the successive formation, dephosphorylation, and ribose hydrolysis of nicotinic acid mononucleotide (NAMN) to generate nicotinic acid (NA), a biosynthetic precursor for the pyridyl moiety of pyridomycin. Crystal structures of PyrZ in complex with substrate quinolinic acid (QA) and the final product NA revealed a specific salt bridge formed between K184 and the C3-carboxyl group of QA. This interaction positions QA for accepting the phosphoribosyl group to generate NAMN, retains NAMN within the active site, and mediates its translocation to nucleophile D296 for dephosphorylation. Combining kinetic and thermodynamic analysis with site-directed mutagenesis, the catalytic mechanism of PyrZ dephosphorylation was proposed. Our study discovered an alternative and concise NA biosynthetic pathway involving a unique multifunctional enzyme.
Collapse
Affiliation(s)
- Zihua Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Youn HS, Kim TG, Kim MK, Kang GB, Kang JY, Lee JG, An JY, Park KR, Lee Y, Im YJ, Lee JH, Eom SH. Structural Insights into the Quaternary Catalytic Mechanism of Hexameric Human Quinolinate Phosphoribosyltransferase, a Key Enzyme in de novo NAD Biosynthesis. Sci Rep 2016; 6:19681. [PMID: 26805589 PMCID: PMC4726147 DOI: 10.1038/srep19681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/14/2015] [Indexed: 11/09/2022] Open
Abstract
Quinolinate phosphoribosyltransferase (QPRT) catalyses the production of nicotinic
acid mononucleotide, a precursor of de novo biosynthesis of the ubiquitous
coenzyme nicotinamide adenine dinucleotide. QPRT is also essential for maintaining
the homeostasis of quinolinic acid in the brain, a possible neurotoxin causing
various neurodegenerative diseases. Although QPRT has been extensively analysed, the
molecular basis of the reaction catalysed by human QPRT remains unclear. Here, we
present the crystal structures of hexameric human QPRT in the apo form and its
complexes with reactant or product. We found that the interaction between dimeric
subunits was dramatically altered during the reaction process by conformational
changes of two flexible loops in the active site at the dimer-dimer interface. In
addition, the N-terminal short helix α1 was identified as a critical
hexamer stabilizer. The structural features, size distribution, heat aggregation and
ITC studies of the full-length enzyme and the enzyme lacking helix α1
strongly suggest that human QPRT acts as a hexamer for cooperative reactant binding
via three dimeric subunits and maintaining stability. Based on our comparison of
human QPRT structures in the apo and complex forms, we propose a drug design
strategy targeting malignant glioma.
Collapse
Affiliation(s)
- Hyung-Seop Youn
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Tae Gyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Mun-Kyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Gil Bu Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Jung Youn Kang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Jung-Gyu Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Jun Yop An
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Kyoung Ryoung Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Youngjin Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | - Young Jun Im
- College of Pharmacy, Chonnam National University, Gwangju 500-757, South Korea
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, South Korea.,Department of Polar Sciences, Korea University of Science and Technology, Incheon 406-840, South Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.,Steitz Center for Structural Biology, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea.,Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| |
Collapse
|