1
|
Yamagishi Y, Nakayama N, Doke A, Iwame S, Nishida Y, Arakawa Y, Mikamo H. Rapid screening of positive blood cultures for extended-spectrum β-lactamases and metallo-β-lactamases using a drug susceptibility testing microfluidic method. J Infect Chemother 2024; 30:1128-1133. [PMID: 38697390 DOI: 10.1016/j.jiac.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVES An increasing number of drug-resistant bacteria have been identified recently. In particular, drug-resistant bacteria have been linked to unfavorable prognoses in patients with bacteremia, highlighting the need for rapid testing. Our previous studies have focused on the utility of a drug susceptibility testing microfluidic (DSTM) method using microfluidic channels. A system with this DSTM method for screening for β-lactamases can rapidly detect extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs). In this study, we have evaluated the clinical utility of pre-treatment for screening positive blood cultures using the DSTM method. METHODS A total of 178 positive blood cultures and five simulated samples of MBL-producing bacteria were prepared at Kochi University Hospital, Japan. The pretreatment consisted of a two-step centrifugation. The obtained sediments were screened with the DSTM method for the production of β-lactamase based on morphological changes in the bacteria after 3 h of incubation. RESULTS The pretreatment functioned properly for all samples. Of the 25 ESBL samples, 21 were positive for ESBLs. Four false-negative samples, all obtained from the same patient, contained CTX-M-2 enzyme-producing Proteus mirabilis and showed insusceptibility to an ESBL inhibitor. The simulated samples prepared for MBL screening were positive for MBLs. CONCLUSIONS When combined with a method for rapidly identifying bacterial species, DSTM may enable patients with bloodstream infections to start receiving appropriate treatment within 4 h after positive blood cultures are screened.
Collapse
Affiliation(s)
- Yuka Yamagishi
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Kochi, Japan.
| | | | - Akito Doke
- Division of Clinical Laboratory, Kochi Medical School Hospital, Kochi University, Kochi, Japan
| | - Saya Iwame
- Division of Clinical Laboratory, Kochi Medical School Hospital, Kochi University, Kochi, Japan
| | - Yoshie Nishida
- Division of Clinical Laboratory, Kochi Medical School Hospital, Kochi University, Kochi, Japan
| | - Yu Arakawa
- Department of Clinical Infectious Diseases, Kochi Medical School, Kochi University, Kochi, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Aichi, Japan
| |
Collapse
|
2
|
Lee MS, Hyun H, Park I, Kim S, Jang DH, Kim S, Im JK, Kim H, Lee JH, Kwon T, Kang JH. Quantitative Fluorescence In Situ Hybridization (FISH) of Magnetically Confined Bacteria Enables Early Detection of Human Bacteremia. SMALL METHODS 2022; 6:e2101239. [PMID: 35112812 DOI: 10.1002/smtd.202101239] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/02/2022] [Indexed: 06/14/2023]
Abstract
The current diagnosis of bacteremia mainly relies on blood culture, which is inadequate for the rapid and quantitative determination of most bacteria in blood. Here, a quantitative, multiplex, microfluidic fluorescence in situ hybridization method (μFISH) is developed, which enables early and rapid (3-h) diagnosis of bacteremia without the need for prior blood culture. This novel technology employs mannose-binding lectin-coated magnetic nanoparticles, which effectively opsonize a broad range of pathogens, magnetically sequestering them in a microfluidic device. Therein, μFISH probes, based on unique 16S rRNA sequences, enable the identification and quantification of sequestered pathogens both in saline and whole blood, which is more sensitive than conventional polymerase chain reaction. Using μFISH, Escherichia coli (E. coli) is detected in whole blood collected from a porcine disease model and from E. coli-infected patients. Moreover, the proportion of E. coli, relative to other bacterial levels in the blood, is accurately and rapidly determined, which is not possible using conventional diagnostic methods. Blood from E. coli-infected patients is differentiated from healthy donors' blood using cutoff values with a 0.05 significance level. Thus, μFISH is a versatile method that can be used to rapidly identify pathogens and determine their levels relative to other culturable and nonculturable bacteria in biological samples.
Collapse
Affiliation(s)
- Min Seok Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hwi Hyun
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Inwon Park
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), Gyeonggi-do, 13620, Republic of Korea
| | - Sungho Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong-Hyun Jang
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), Gyeonggi-do, 13620, Republic of Korea
| | - Seonghye Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), Gyeonggi-do, 13620, Republic of Korea
| | - Jae-Kyeong Im
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hajin Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital (SNUBH), Gyeonggi-do, 13620, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
3
|
Oliva A, Miele MC, Al Ismail D, Di Timoteo F, De Angelis M, Rosa L, Cutone A, Venditti M, Mascellino MT, Valenti P, Mastroianni CM. Challenges in the Microbiological Diagnosis of Implant-Associated Infections: A Summary of the Current Knowledge. Front Microbiol 2021; 12:750460. [PMID: 34777301 PMCID: PMC8586543 DOI: 10.3389/fmicb.2021.750460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Implant-associated infections are characterized by microbial biofilm formation on implant surface, which renders the microbiological diagnosis challenging and requires, in the majority of cases, a complete device removal along with a prolonged antimicrobial therapy. Traditional cultures have shown unsatisfactory sensitivity and a significant advance in the field has been represented by both the application of the sonication technique for the detachment of live bacteria from biofilm and the implementation of metabolic and molecular assays. However, despite the recent progresses in the microbiological diagnosis have considerably reduced the rate of culture-negative infections, still their reported incidence is not negligible. Overall, several culture- and non-culture based methods have been developed for diagnosis optimization, which mostly relies on pre-operative and intra-operative (i.e., removed implants and surrounding tissues) samples. This review outlines the principal culture- and non-culture based methods for the diagnosis of the causative agents of implant-associated infections and gives an overview on their application in the clinical practice. Furthermore, advantages and disadvantages of each method are described.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Claudia Miele
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Dania Al Ismail
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Di Timoteo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimiliano De Angelis
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Mascellino
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
4
|
Jyoti A, Kumar S, Kumar Srivastava V, Kaushik S, Govind Singh S. Neonatal sepsis at point of care. Clin Chim Acta 2021; 521:45-58. [PMID: 34153274 DOI: 10.1016/j.cca.2021.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/03/2023]
Abstract
Sepsis, which includes infection followed by inflammation, is one of the leading causes of death among neonates worldwide. The major attribute of this disease process is dysregulated host response to infection leading to organ dysfunction and potentially death. A comprehensive understanding of the host response as well as the pathogen itself are important factors contributing to outcome. Early diagnosis is paramount, as it leads to accurate assessment and improved clinical management. Accordingly, a number of diagnostic platforms have been introduced to assess the presence of blood stream pathogens in septic neonates. Unfortunately, current point-of-care (POC) methods rely on a single parameter/biomarker and thus lack a comprehensive evaluation. The emerging field of biosensing has, however, resulted in the development of a wide range of analytical devices that may be useful at POC. This review discusses currently available methods to screen the inflammatory process in neonatal sepsis. We describe POC sensor-based methods for single platform multi-analyte detection and highlight the latest advances in this evolving technology. Finally, we critically evaluate the applicability of these POC devices clinically for early diagnosis of sepsis in neonates.
Collapse
Affiliation(s)
- Anupam Jyoti
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan 303002, India; Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh, 173229, India.
| | - Sanni Kumar
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| | | | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan 303002, India.
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| |
Collapse
|
5
|
Maheshwarappa HM, Guru P, Mundre RS, Lawrence N, Majumder S, Sigamani A, Anupama CN, Adak S. Validation of an Isothermal Amplification Platform for Microbial Identification and Antimicrobial Resistance Detection in Blood: A Prospective Study. Indian J Crit Care Med 2021; 25:299-304. [PMID: 33790511 PMCID: PMC7991769 DOI: 10.5005/jp-journals-10071-23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Recent advances in nucleic acid amplification technique (NAAT)-based identification of pathogens in blood stream infections (BSI) have revolutionized molecular diagnostics in comparison to traditional clinical microbiology practice of blood culture. Rapid pathogen detection with point-of-care diagnostic-applicable platform is prerequisite for efficient patient management. The aim of the study is to evaluate an in-house developed, lyophilized OmiX-AMP pathogen test for the detection of top six BSI-causing bacteria along with two major antimicrobial resistance (AMR) markers of carbapenem and compare it to the traditional blood culture-based detection. Materials and methods: One hundred forty-three patients admitted to the Medical Intensive Care Unit, Narayana Hrudayalaya, Bangalore, with either suspected or proven sepsis, of either gender, of age ≥18 years were enrolled for the study. Pathogen DNA extracted from blood culture sample using OmiX pReP method was amplified at isothermal conditions and analyzed in real time using OmiX Analysis software. Results: Among the processed 143 samples, 54 were true negative, 83 were true positive, 3 were false negative, and 2 were false positive as analyzed by OmiX READ software. Gram-negative bacteria (91.3%) and gram-positive bacteria (75%) were detected with 100% specificity and 95.6% sensitivity along with the AMR marker pattern with a turnaround time of 4 hours from sample collection to results. Conclusion: OmiX-AMP pathogen test detected pathogens with 96.5% concordance in comparison to traditional blood culture. Henceforth, OmiX-AMP pathogen test could be used as a readily deployable diagnostic kit even in low-resource settings. How to cite this article: Maheshwarappa HM, Guru P, Mundre RS, Lawrence N, Majumder S, Sigamani A, et al. Validation of an Isothermal Amplification Platform for Microbial Identification and Antimicrobial Resistance Detection in Blood: A Prospective Study. Indian J Crit Care Med 2021;25(3):299–304.
Collapse
Affiliation(s)
- Harish M Maheshwarappa
- Department of Intensive Care Medicine, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | - Prasadini Guru
- Department of Laboratory Medicine, Microbiology and Serology, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | | | - Nima Lawrence
- OmiX Research and Diagnostics Laboratories, Bangalore, Karnataka, India
| | - Snehali Majumder
- Department of Clinical Research, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | - Alben Sigamani
- Department of Clinical Research, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | - C N Anupama
- OmiX Research and Diagnostics Laboratories, Bangalore, Karnataka, India
| | - Sudeshna Adak
- OmiX Research and Diagnostics Laboratories, Bangalore, Karnataka, India
| |
Collapse
|
6
|
Rub DM, Dhudasia MB, Healy T, Mukhopadhyay S. Role of microbiological tests and biomarkers in antibiotic stewardship. Semin Perinatol 2020; 44:151328. [PMID: 33158600 DOI: 10.1016/j.semperi.2020.151328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Laboratory tests are critical in the detection and timely treatment of infection. Two categories of tests are commonly used in neonatal sepsis management: those that identify the pathogen and those that detect host response to a potential pathogen. Decision-making around antibiotic choice is related to the performance of tests that directly identify pathogens. Advances in these tests hold the key to progress in antibiotic stewardship. Tests measuring host response, on the other hand, are an indirect marker of potential infection. While an important measure of the patient's clinical state, in the absence of pathogen detection these tests cannot confirm the appropriateness of antibiotic selection. The overall impact these tests then have on antibiotic utilization depends the test's specificity for bacterial infection, clinical scenario where it is being used and the decision-rule it is being integrated into for use. In this review we discuss common and emerging laboratory tests available for assisting management of neonatal infection and specifically focus on the role they play in optimizing antibiotic utilization.
Collapse
Affiliation(s)
- David M Rub
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miren B Dhudasia
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tracy Healy
- Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, USA
| | - Sagori Mukhopadhyay
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Gabaldón T. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev 2019; 43:517-547. [PMID: 31158289 PMCID: PMC8038933 DOI: 10.1093/femsre/fuz015] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
The incidence of opportunistic yeast infections in humans has been increasing over recent years. These infections are difficult to treat and diagnose, in part due to the large number and broad diversity of species that can underlie the infection. In addition, resistance to one or several antifungal drugs in infecting strains is increasingly being reported, severely limiting therapeutic options and showcasing the need for rapid detection of the infecting agent and its drug susceptibility profile. Current methods for species and resistance identification lack satisfactory sensitivity and specificity, and often require prior culturing of the infecting agent, which delays diagnosis. Recently developed high-throughput technologies such as next generation sequencing or proteomics are opening completely new avenues for more sensitive, accurate and fast diagnosis of yeast pathogens. These approaches are the focus of intensive research, but translation into the clinics requires overcoming important challenges. In this review, we provide an overview of existing and recently emerged approaches that can be used in the identification of yeast pathogens and their drug resistance profiles. Throughout the text we highlight the advantages and disadvantages of each methodology and discuss the most promising developments in their path from bench to bedside.
Collapse
Affiliation(s)
- Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
8
|
Fuchs BB, Eatemadpour S, Martel-Foley JM, Stott S, Toner M, Mylonakis E. Rapid Isolation and Concentration of Pathogenic Fungi Using Inertial Focusing on a Chip-Based Platform. Front Cell Infect Microbiol 2019; 9:27. [PMID: 30809512 PMCID: PMC6379272 DOI: 10.3389/fcimb.2019.00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Systemic Candida infections remain a leading cause of nosocomial infections in the United States and worldwide. Many challenges remain in achieving rapid, direct diagnosis of fungal bloodstream infections due to limitations of conventional diagnostic methods that continue to demonstrate poor sensitivity, prolonged culture times that lead to delayed treatment, and detection variability between tests that compromises result reproducibility. Despite advancements in technology, mortality, and cost of care presented by blood stream infection with Candida spp. (candidemia) continues to rise and there is an urgent need for the development of novel methods to accurately detect Candida species present within the blood. This is especially true when patients are infected with drug resistant strains of Candida where accurate and immediate therapeutic treatment is of the importance. This study presents a method of separating fungal cells from lysed blood using inertial forces applied through microfluidics in order to abbreviate the time required to achieve a diagnosis by mitigating the need to grow blood cultures. We found that C. albicans can segregate into a focused stream distinct from white blood cells isolated within the Inertial Fungal Focuser (IFF) after red blood cell lysis. As a result of the focusing process, the collected cells are also concentrated 2.86 times. The same IFF device is applicable to non-albicans species: Candida parapsilosis, Candida glabrata, and Candida tropicalis, providing both isolation from lysed blood and a reduction in solution volume. Thus, the devised platform provides a means to isolate medically significant fungal cells from blood and concentrate the cells for further interrogation.
Collapse
Affiliation(s)
- Beth Burgwyn Fuchs
- Rhode Island Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Soraya Eatemadpour
- Rhode Island Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| | - Joseph M. Martel-Foley
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shannon Stott
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mehmet Toner
- The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Eleftherios Mylonakis
- Rhode Island Hospital, Alpert Medical School and Brown University, Providence, RI, United States
| |
Collapse
|
9
|
Dubourg G, Raoult D, Fenollar F. Emerging methodologies for pathogen identification in bloodstream infections: an update. Expert Rev Mol Diagn 2019; 19:161-173. [DOI: 10.1080/14737159.2019.1568241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | | |
Collapse
|
10
|
Florio W, Morici P, Ghelardi E, Barnini S, Lupetti A. Recent advances in the microbiological diagnosis of bloodstream infections. Crit Rev Microbiol 2017; 44:351-370. [PMID: 29185372 DOI: 10.1080/1040841x.2017.1407745] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rapid identification (ID) and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections (BSIs) are essential for the prompt administration of an effective antimicrobial therapy, which can result in clinical and financial benefits. Immediately after blood sampling, empirical antimicrobial therapy, chosen on clinical and epidemiological data, is administered. When ID and AST results are available, the clinician decides whether to continue or streamline the antimicrobial therapy, based on the results of the in vitro antimicrobial susceptibility profile of the pathogen. The aim of the present study is to review and discuss the experimental data, advantages, and drawbacks of recently developed technological advances of culture-based and molecular methods for the diagnosis of BSI (including mass spectrometry, magnetic resonance, PCR-based methods, direct inoculation methods, and peptide nucleic acid fluorescence in situ hybridization), the understanding of which could provide new perspectives to improve and fasten the diagnosis and treatment of septic patients. Although blood culture remains the gold standard to diagnose BSIs, newly developed methods can significantly shorten the turnaround time of reliable microbial ID and AST, thus substantially improving the diagnostic yield.
Collapse
Affiliation(s)
- Walter Florio
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Paola Morici
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Emilia Ghelardi
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Simona Barnini
- b U.O. Microbiologia Universitaria Azienda Ospedaliero-Universitaria Pisana , Pisa , Italy
| | - Antonella Lupetti
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| |
Collapse
|
11
|
Iroh Tam PY, Bendel CM. Diagnostics for neonatal sepsis: current approaches and future directions. Pediatr Res 2017; 82:574-583. [PMID: 28574980 DOI: 10.1038/pr.2017.134] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022]
Abstract
Progress has been made in the reduction of morbidity and mortality from neonatal sepsis. However, diagnosis continues to rely primarily on conventional microbiologic techniques, which can be inaccurate. The objective of this review is to provide the clinician with an overview of the current information available on diagnosing this condition. We review currently available diagnostic approaches for documenting neonatal sepsis and also describe novel approaches for diagnosing infection in neonates who are under development and investigation. Substantial progress has been made with molecular approaches and further development of non-culture-based methods offer promise. The potential ability to incorporate antimicrobial resistance gene testing in addition to pathogen identification may provide a venue to incorporate a predominantly molecular platform into a larger program of neonatal care.
Collapse
|
12
|
Koch C, Amati AL, Hecker A, Höxter M, Hirschburger M, Matejec R, Padberg W, Weigand MA, Lichtenstern C, Domann E. Microbiomic Analysis of Intra-Abdominal Infections by Using Denaturing High-Performance Liquid Chromatography: A Prospective Observational Study. Surg Infect (Larchmt) 2017; 18:596-602. [PMID: 28375806 DOI: 10.1089/sur.2017.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Intra-abdominal infections represent a subgroup of septic syndromes with high death rates and the need for prompt and appropriate antimicrobial therapy. Conventional culture-based microbial identification has notable shortcomings in the diagnostics of polymicrobial infections. Modern culture-independent molecular methods may represent a new diagnostic approach. The current study aimed to compare the results obtained from the denaturing high-performance liquid chromatography WAVE® system as a culture-independent diagnostic tool with those obtained from standard culture-based microbiologic testing in the clinical setting of severe intra-abdominal sepsis. PATIENTS AND METHODS The study included 42 samples of pathologic intra-abdominal fluids, collected from 37 patients with intra-abdominal sepsis. Micro-organisms grown in culture and detected by the WAVE system were compared. Further, we recorded clinical data including baseline characteristics and the use of antibiotic agents. RESULTS In 38.1% of the analyzed samples, the classic, culture-based methods showed no bacterial growth on agar plates, in comparison with the microbiomic analysis in which the proportion of samples with negative signal was 31%. In about 40% of the patients, both methods detected one microbiologic agent, whereas in approximately one quarter of the samples, two or more agents were identified. The detection rate of certain bacteria such as Enterobacteriacae or Enterococcus faecium was significantly higher using the microbiomic analysis. Bacteria such as Haemophilus, Lactobacillus, Clostridium, Methylobacterium, Collinsella aerofaciens, and Solobacterium moorei were detected exclusively using microbiomic analysis. CONCLUSION The culture independent molecular WAVE system provided additional information, especially concerning unusual, fastidious bacteria in patients with intra-abdominal infections. Further, it has a higher detection rate for polymicrobial infection and delivers results much sooner than conventional microbiologic methods.
Collapse
Affiliation(s)
- Christian Koch
- 1 Department of Anesthesiology and Intensive Care Medicine, University Hospital of Giessen and Marburg , Giessen, Germany
| | - Anca L Amati
- 2 Department of General Surgery, University Hospital of Giessen and Marburg , Giessen, Germany
| | - Andreas Hecker
- 2 Department of General Surgery, University Hospital of Giessen and Marburg , Giessen, Germany
| | - Marcel Höxter
- 1 Department of Anesthesiology and Intensive Care Medicine, University Hospital of Giessen and Marburg , Giessen, Germany
| | | | - Reginald Matejec
- 1 Department of Anesthesiology and Intensive Care Medicine, University Hospital of Giessen and Marburg , Giessen, Germany
| | - Winfried Padberg
- 2 Department of General Surgery, University Hospital of Giessen and Marburg , Giessen, Germany
| | - Marcus A Weigand
- 1 Department of Anesthesiology and Intensive Care Medicine, University Hospital of Giessen and Marburg , Giessen, Germany .,3 Department of Anesthesiology, Heidelberg University Hospital , Heidelberg, Germany
| | - Christoph Lichtenstern
- 1 Department of Anesthesiology and Intensive Care Medicine, University Hospital of Giessen and Marburg , Giessen, Germany .,3 Department of Anesthesiology, Heidelberg University Hospital , Heidelberg, Germany
| | - Eugen Domann
- 5 Institute of Medical Microbiology, German Centre for Infection Research (DZIF Partner Site Giessen-Marburg-Langen), Justus-Liebig-University , Giessen, Germany
| |
Collapse
|
13
|
Dubourg G, Fournier PE. Advances in Diagnostic Microbiology. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Wang HY, Uh Y, Kim S, Lee H. Quantamatrix Multiplexed Assay Platform system for direct detection of bacteria and antibiotic resistance determinants in positive blood culture bottles. Clin Microbiol Infect 2016; 23:333.e1-333.e7. [PMID: 27998819 DOI: 10.1016/j.cmi.2016.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Rapid and accurate identification of the causative pathogens of bloodstream infections (BSIs) is crucial for initiating appropriate antimicrobial therapy, which decreases the related morbidity and mortality rates. The aim of this study was to evaluate the usefulness of a newly developed multiplexed, bead-based bioassay system, the Quantamatrix Multiplexed Assay Platform (QMAP) system, obtained directly from blood culture bottles, to simultaneously detect the presence of bacteria and identify the genes for antibiotic resistance. METHODS The QMAP system was used to evaluate 619 blood culture bottles from patients with BSIs and to compare the results of conventional culture methods. RESULTS Using conventional bacterial cultures as the reference standard, the sensitivity, specificity, positive predictive value, and negative predictive value of the QMAP system for detection of bacterial pathogens in positive blood culture (PBC) samples were 99.8% (n=592, 95% CI 0.9852-1.000, p <0.001), 100% (95% CI 0.983-1.000, p <0.001), 100% (95% CI 0.9922-1.000, p <0.001), and 99.5% (95% CI 0.9695-1.000, p <0.001), respectively. In addition, sensitivity and specificity of the QMAP system for identification of the genes for antibiotic resistance were 99.4% (n=158, 95% CI 0.9617-0.9999, p <0.009) and 99.6% (95% CI 0.9763-0.9999, p <0.0001), respectively. CONCLUSIONS Obtaining results using the QMAP system takes about 3 hr, while culture methods can take 48-72 hr. Therefore, analysis using the QMAP system is rapid and reliable for characterizing causative pathogens in BSIs.
Collapse
Affiliation(s)
- H Y Wang
- Optipharm, Inc., Wonju Eco Environmental Technology Center, Gangwon, Republic of Korea
| | - Y Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Gangwon, Republic of Korea
| | - S Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Gangwon, Republic of Korea
| | - H Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Gangwon, Republic of Korea.
| |
Collapse
|
15
|
Shi X, Zhang X, Yao Q, He F. A novel method for the rapid detection of microbes in blood using pleurocidin antimicrobial peptide functionalized piezoelectric sensor. J Microbiol Methods 2016; 133:69-75. [PMID: 27932084 DOI: 10.1016/j.mimet.2016.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/04/2016] [Accepted: 12/04/2016] [Indexed: 01/26/2023]
Abstract
The rapid detection of microbes is critical in clinical diagnosis and food safety. Culture-dependent assays are the most widely used microbial detection methods, but these assays are time-consuming. In this study, a rapid microbial detection method was proposed using a pleurocidin/single-walled carbon nanotubes/interdigital electrode-multichannel series piezoelectric quartz crystal (pleurocidin/SWCNT/IDE-MSPQC) sensor. The selected pleurocidin antimicrobial peptide served as a recognition probe that exhibits broad-spectrum antimicrobial activity and the SWCNT acted as the electronic transducer and cross-linker for the immobilization of pleurocidin on the IDE. The response mechanism of the sensor was based on the specific interaction between pleurocidin and the microbe causing pleurocidin to detach from the SWCNT modified IDE, resulting in a sensitive frequency shift response of the MSPQC. Microbes that may be clinically present in the bloodstream during an infection were successfully detected by the proposed method within 15min. The developed strategy provides a new universal platform for the rapid detection of microbes.
Collapse
Affiliation(s)
- Xiaohong Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Department of Chemistry, Taiyuan Normal University, Taiyuan 030000, China.
| | - Xiaoqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiongqiong Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
16
|
Jordana-Lluch E, Rivaya B, Marcó C, Giménez M, Quesada MD, Escobedo A, Batlle M, Martró E, Ausina V. Molecular diagnosis of bloodstream infections in onco-haematology patients with PCR/ESI-MS technology. J Infect 2016; 74:187-194. [PMID: 27889413 DOI: 10.1016/j.jinf.2016.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/05/2016] [Accepted: 11/17/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Onco-haematological patients are prone to develop infections, and antibiotic prophylaxis may lead to negative blood cultures. Thus, the microbiological diagnosis and subsequent administration of a targeted antimicrobial therapy is often difficult. The goal of this study was to evaluate the usefulness of IRIDICA (PCR/ESI-MS technology) for the molecular diagnosis of bloodstream infections in this patient group. METHODS A total of 463 whole blood specimens from different sepsis episodes in 429 patients were analysed using the PCR/ESI-MS platform, comparing the results with those of blood culture and other clinically relevant information. RESULTS The sensitivity of PCR/ESI-MS by specimen (excluding polymicrobial infections, n = 25) in comparison with blood culture was 64.3% overall, 69.0% in oncological patients, and 59.3% in haematological patients. When comparing with a clinical infection criterion, overall sensitivity rose to 74.7%, being higher in oncological patients (80.0%) than in haematological patients (67.7%). Thirty-one microorganisms isolated by culture were not detected by IRIDICA, whereas 42 clinically relevant pathogens not isolated by culture were detected moleculary. CONCLUSIONS PCR/ESI-MS offers a reliable identification of pathogens directly from whole blood. While additional studies are needed to confirm our findings, the system showed a lower sensitivity in onco-haematological patients in comparison with previously reported results in patients from the Intensive Care Unit.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain; CIBER in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Rivaya
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | - Clara Marcó
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | - Montserrat Giménez
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain; CIBER in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mª Dolores Quesada
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | - Agustín Escobedo
- Oncology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Montserrat Batlle
- Haematology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Elisa Martró
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Vicente Ausina
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain; CIBER in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Comparison of PCR-Electrospray Ionization Mass Spectrometry with 16S rRNA PCR and Amplicon Sequencing for Detection of Bacteria in Excised Heart Valves. J Clin Microbiol 2016; 54:2825-2831. [PMID: 27629895 DOI: 10.1128/jcm.01240-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022] Open
Abstract
Identification of the causative pathogen of infective endocarditis (IE) is crucial for adequate management and therapy. A broad-range PCR-electrospray ionization mass spectrometry (PCR-ESI-MS) technique was compared with broad-spectrum 16S rRNA PCR and amplicon sequencing (16S rRNA PCR) for the detection of bacterial pathogens in 40 heart valves obtained from 34 definite infective endocarditis patients according to the modified Duke criteria and six nonendocarditis patients. Concordance between the two molecular techniques was 98% for being positive or negative, 97% for concordant identification up to the genus level, and 77% for concordant identification up to the species level. Sensitivity for detecting the causative pathogen (up to the genus level) in excised heart valves was 88% for 16S rRNA PCR and 85% for PCR-ESI-MS; the specificity was 83% for both methods. The two molecular techniques were significantly more sensitive than valve culture (18%) and accurately identified bacteria in excised heart valves. In eight patients with culture-negative IE, the following results were obtained: concordant detection of Coxiella burnetii (n = 2), Streptococcus gallolyticus (n = 1), Propionibacterium acnes (n = 1), and viridans group streptococci (n = 1) by both molecular tests, detection of P. acnes by PCR-ESI-MS whereas the 16S rRNA PCR was negative (n = 1), and a false-negative result by both molecular techniques (n = 2). In one case of IE caused by viridans streptococci, PCR-ESI-MS was positive for Enterococcus spp. The advantages of PCR-ESI-MS compared to 16S rRNA PCR are its automated workflow and shorter turnaround times.
Collapse
|
18
|
Tudela P, Giménez M, Mòdol JM, Prat C. Hemocultivos en los servicios de urgencias, ¿hacia un nuevo enfoque? Med Clin (Barc) 2016; 146:455-9. [DOI: 10.1016/j.medcli.2015.11.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 01/10/2023]
|
19
|
Rapid Diagnosis of Infection in the Critically Ill, a Multicenter Study of Molecular Detection in Bloodstream Infections, Pneumonia, and Sterile Site Infections. Crit Care Med 2016; 43:2283-91. [PMID: 26327198 PMCID: PMC4603364 DOI: 10.1097/ccm.0000000000001249] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is available in the text. Early identification of causative microorganism(s) in patients with severe infection is crucial to optimize antimicrobial use and patient survival. However, current culture-based pathogen identification is slow and unreliable such that broad-spectrum antibiotics are often used to insure coverage of all potential organisms, carrying risks of overtreatment, toxicity, and selection of multidrug-resistant bacteria. We compared the results obtained using a novel, culture-independent polymerase chain reaction/electrospray ionization-mass spectrometry technology with those obtained by standard microbiological testing and evaluated the potential clinical implications of this technique.
Collapse
|
20
|
Warhurst G, Dunn G, Chadwick P, Blackwood B, McAuley D, Perkins GD, McMullan R, Gates S, Bentley A, Young D, Carlson GL, Dark P. Rapid detection of health-care-associated bloodstream infection in critical care using multipathogen real-time polymerase chain reaction technology: a diagnostic accuracy study and systematic review. Health Technol Assess 2016; 19:1-142. [PMID: 25961752 DOI: 10.3310/hta19350] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias. OBJECTIVE Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture. DESIGN Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria. SETTING Critical care departments within NHS hospitals in the north-west of England. PARTICIPANTS Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation. MAIN OUTCOME MEASURES SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard. RESULTS Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4-16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy. CONCLUSION SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error. STUDY REGISTRATION The systematic review is registered as PROSPERO CRD42011001289. FUNDING The National Institute for Health Research Health Technology Assessment programme. Professor Daniel McAuley and Professor Gavin D Perkins contributed to the systematic review through their funded roles as codirectors of the Intensive Care Foundation (UK).
Collapse
Affiliation(s)
- Geoffrey Warhurst
- Infection, Injury and Inflammation Research Group, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| | - Graham Dunn
- Centre for Biostatistics, Institute of Population Health, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| | - Paul Chadwick
- Microbiology Department, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| | - Bronagh Blackwood
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Daniel McAuley
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, UK
| | - Gavin D Perkins
- Clinical Trials Unit, Medical School, Warwick University, Coventry, UK
| | - Ronan McMullan
- Medical Microbiology, Royal Victoria Hospital, Belfast, UK
| | - Simon Gates
- Clinical Trials Unit, Medical School, Warwick University, Coventry, UK
| | - Andrew Bentley
- Institue of Inflammation and Repair, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| | - Duncan Young
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Gordon L Carlson
- Infection, Injury and Inflammation Research Group, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| | - Paul Dark
- Infection, Injury and Inflammation Research Group, Salford Royal NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Salford, UK
| |
Collapse
|
21
|
Molecular and Mass Spectrometry Detection and Identification of Causative Agents of Bloodstream Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Dubourg G, Raoult D. Emerging methodologies for pathogen identification in positive blood culture testing. Expert Rev Mol Diagn 2015; 16:97-111. [PMID: 26559655 DOI: 10.1586/14737159.2016.1112274] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bloodstream infections (BSIs) represent a major cause of death in developed countries and are associated with long-term loss of functions. Blood culture remains the gold standard for BSI diagnosis, as it is easy to perform and displays a good analytical sensitivity. However, its major drawback remains the long turnaround time, which can result in inappropriate therapy, fall of survival rate, emergence of antibiotic resistance and increase of medical costs. Over the last 10 years, molecular tools have been the alternative to blood cultures, allowing early identification of pathogens involved in sepsis, as well detection of critical antibiotic resistance genes. Besides, the advent of MALDI-TOF revolutionized practice in routine microbiology significantly reduced the time to result. Reviewed here are recent improvements in early BSI diagnosis and these authors' view for the future is presented, including innovative high-throughput technologies.
Collapse
Affiliation(s)
- Grégory Dubourg
- a Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille , Marseille , France.,b Université Aix-Marseille, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Didier Raoult
- a Pôle des Maladies Infectieuses et Tropicales Clinique et Biologique, Fédération de Bactériologie-Hygiène-Virologie, University, Hospital Centre Timone, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Assistance Publique - Hôpitaux de Marseille , Marseille , France.,b Université Aix-Marseille, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE) UM 63 CNRS 7278 IRD 198 INSERM U1095, Facultés de Médecine et de Pharmacie , Marseille , France
| |
Collapse
|
23
|
Jordana-Lluch E, Giménez M, Quesada MD, Rivaya B, Marcó C, Domínguez MJ, Arméstar F, Martró E, Ausina V. Evaluation of the Broad-Range PCR/ESI-MS Technology in Blood Specimens for the Molecular Diagnosis of Bloodstream Infections. PLoS One 2015; 10:e0140865. [PMID: 26474394 PMCID: PMC4608784 DOI: 10.1371/journal.pone.0140865] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/01/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Rapid identification of the etiological agent in bloodstream infections is of vital importance for the early administration of the most appropriate antibiotic therapy. Molecular methods may offer an advantage to current culture-based microbiological diagnosis. The goal of this study was to evaluate the performance of IRIDICA, a platform based on universal genetic amplification followed by mass spectrometry (PCR/ESI-MS) for the molecular diagnosis of sepsis-related pathogens directly from the patient's blood. METHODS A total of 410 whole blood specimens from patients admitted to Emergency Room (ER) and Intensive Care Unit (ICU) with clinical suspicion of sepsis were tested with the IRIDICA BAC BSI Assay (broad identification of bacteria and Candida spp.). Microorganisms grown in culture and detected by IRIDICA were compared considering blood culture as gold standard. When discrepancies were found, clinical records and results from other cultures were taken into consideration (clinical infection criterion). RESULTS The overall positive and negative agreement of IRIDICA with blood culture in the analysis by specimen was 74.8% and 78.6%, respectively, rising to 76.9% and 87.2% respectively, when compared with the clinical infection criterion. Interestingly, IRIDICA detected 41 clinically significant microorganisms missed by culture, most of them from patients under antimicrobial treatment. Of special interest were the detections of one Mycoplasma hominis and two Mycobacterium simiae in immunocompromised patients. When ICU patients were analyzed separately, sensitivity, specificity, positive and negative predictive values compared with blood culture were 83.3%, 78.6%, 33.9% and 97.3% respectively, and 90.5%, 87.2%, 64.4% and 97.3% respectively, in comparison with the clinical infection criterion. CONCLUSIONS IRIDICA is a promising technology that offers an early and reliable identification of a wide variety of pathogens directly from the patient's blood within 6h, which brings the opportunity to improve management of septic patients, especially for those critically ill admitted to the ICU.
Collapse
Affiliation(s)
- Elena Jordana-Lluch
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
- CIBER in Respiratory Diseases (CIBERES), Madrid, Spain
- Health Sciences Research Institute (IGTP), Badalona, Spain
| | - Montserrat Giménez
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
- CIBER in Respiratory Diseases (CIBERES), Madrid, Spain
| | - Mª Dolores Quesada
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | - Belén Rivaya
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | - Clara Marcó
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
| | - Mª Jesús Domínguez
- Emergency Room, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Fernando Arméstar
- Intensive Care Unit, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Elisa Martró
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
- Health Sciences Research Institute (IGTP), Badalona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- * E-mail:
| | - Vicente Ausina
- Microbiology Service, Germans Trias i Pujol University Hospital, Department of Genetics and Microbiology, Autonomous University of Barcelona, Badalona, Spain
- CIBER in Respiratory Diseases (CIBERES), Madrid, Spain
- Health Sciences Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
24
|
Pfaller MA, Castanheira M. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis. Med Mycol 2015; 54:1-22. [PMID: 26385381 DOI: 10.1093/mmy/myv076] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 01/12/2023] Open
Abstract
Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis.
Collapse
Affiliation(s)
- Michael A Pfaller
- T2Biosystems, Lexington, Massachusetts JMI Laboratories, North Liberty, Iowa University of Iowa College of Medicine College of Public Health, Iowa City, Iowa
| | | |
Collapse
|
25
|
Brady AC, Wong B, Pfeiffer CD. Utilizing Rapid Diagnostics for Detection of Candida Species. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2015. [DOI: 10.1007/s40506-015-0049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Application of Culture-Independent Rapid Diagnostic Tests in the Management of Invasive Candidiasis and Cryptococcosis. J Fungi (Basel) 2015; 1:217-251. [PMID: 29376910 PMCID: PMC5753112 DOI: 10.3390/jof1020217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022] Open
Abstract
The diagnosis of invasive candidiasis (IC) and cryptococcosis is often complicated by slow and insensitive culture-based methods. Such delay results in poor outcomes due to the lack of timely therapeutic interventions. Advances in serological, biochemical, molecular and proteomic approaches have made a favorable impact on this process, improving the timeliness and accuracy of diagnosis with resultant improvements in outcome. This paper will serve as an overview of recent developments in the diagnostic approaches to infections due to these important yeast-fungi.
Collapse
|
27
|
Early and adequate empirical antibiotic treatment in sepsis saves lives, but how should it be provided? Med Intensiva 2015; 39:457-8. [PMID: 26233587 DOI: 10.1016/j.medin.2015.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 05/31/2015] [Indexed: 11/24/2022]
|
28
|
Romero R, Miranda J, Chaemsaithong P, Chaiworapongsa T, Kusanovic JP, Dong Z, Ahmed AI, Shaman M, Lannaman K, Yoon BH, Hassan SS, Kim CJ, Korzeniewski SJ, Yeo L, Kim YM. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2015; 28:1394-409. [PMID: 25190175 PMCID: PMC5371030 DOI: 10.3109/14767058.2014.958463] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The objectives of this study were to: (1) determine the amniotic fluid (AF) microbiology of patients with preterm prelabor rupture of membranes (PROM); and (2) examine the relationship between intra-amniotic inflammation with and without microorganisms (sterile inflammation) and adverse pregnancy outcomes in patients with preterm PROM. METHODS AF samples obtained from 59 women with preterm PROM were analyzed using cultivation techniques (for aerobic and anaerobic bacteria as well as genital mycoplasmas) and with broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry (PCR/ESI-MS). AF concentration of interleukin-6 (IL-6) was determined using ELISA. Results of both tests were correlated with AF IL-6 concentrations and the occurrence of adverse obstetrical/perinatal outcomes. RESULTS (1) PCR/ESI-MS, AF culture, and the combination of these two tests each identified microorganisms in 36% (21/59), 24% (14/59) and 41% (24/59) of women with preterm PROM, respectively; (2) the most frequent microorganisms found in the amniotic cavity were Sneathia species and Ureaplasma urealyticum; (3) the frequency of microbial-associated and sterile intra-amniotic inflammation was overall similar [ 29% (17/59)]: however, the prevalence of each differed according to the gestational age when PROM occurred; (4) the earlier the gestational age at preterm PROM, the higher the frequency of both microbial-associated and sterile intra-amniotic inflammation; (5) the intensity of the intra-amniotic inflammatory response against microorganisms is stronger when preterm PROM occurs early in pregnancy; and (6) the frequency of acute placental inflammation (histologic chorioamnionitis and/or funisitis) was significantly higher in patients with microbial-associated intra-amniotic inflammation than in those without intra-amniotic inflammation [93.3% (14/15) versus 38% (6/16); p = 0.001]. CONCLUSIONS (1) The frequency of microorganisms in preterm PROM is 40% using both cultivation techniques and PCR/ESI-MS; (2) PCR/ESI-MS identified microorganisms in the AF of 50% more women with preterm PROM than AF culture; and (3) sterile intra-amniotic inflammation was present in 29% of these patients, and it was as or more common than microbial-associated intra-amniotic inflammation among those presenting after, but not before, 24 weeks of gestation.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Jezid Miranda
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juan P. Kusanovic
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
- Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
| | - Ahmed I. Ahmed
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Majid Shaman
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kia Lannaman
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong J. Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Steven J. Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Pathology, College of Medicine Inje University, Haeundae Paik Hospital, Seoul, Korea
| |
Collapse
|
29
|
Romero R, Miranda J, Chaiworapongsa T, Chaemsaithong P, Gotsch F, Dong Z, Ahmed AI, Yoon BH, Hassan SS, Kim CJ, Korzeniewski SJ, Yeo L, Kim YM. Sterile intra-amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern Fetal Neonatal Med 2015; 28:1343-1359. [PMID: 25123515 PMCID: PMC4372495 DOI: 10.3109/14767058.2014.954243] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 08/10/2014] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the frequency and clinical significance of sterile and microbial-associated intra-amniotic inflammation in asymptomatic patients with a sonographic short cervix. METHODS Amniotic fluid (AF) samples obtained by transabdominal amniocentesis from 231 asymptomatic women with a sonographic short cervix [cervical length (CL) ≤25 mm] were analyzed using cultivation techniques (for aerobic and anaerobic as well as genital mycoplasmas) and broad-range polymerase chain reaction (PCR) coupled with electrospray ionization mass spectrometry (PCR/ESI-MS). The frequency and magnitude of intra-amniotic inflammation [defined as an AF interleukin (IL)-6 concentration ≥2.6 ng/mL], acute histologic placental inflammation, spontaneous preterm delivery (sPTD), and the amniocentesis-to-delivery interval were examined according to the results of AF cultures, PCR/ESI-MS and AF IL-6 concentrations. RESULTS Ten percent (24/231) of patients with a sonographic short cervix had sterile intra-amniotic inflammation (an elevated AF IL-6 concentration without evidence of microorganisms using cultivation and molecular methods). Sterile intra-amniotic inflammation was significantly more frequent than microbial-associated intra-amniotic inflammation [10.4% (24/231) versus 2.2% (5/231); p < 0.001]. Patients with sterile intra-amniotic inflammation had a significantly higher rate of sPTD <34 weeks of gestation [70.8% (17/24) versus 31.6% (55/174); p < 0.001] and a significantly shorter amniocentesis-to-delivery interval than patients without intra-amniotic inflammation [median 35, (IQR: 10-70) versus median 71, (IQR: 47-98) days, (p < 0.0001)]. CONCLUSION Sterile intra-amniotic inflammation is more common than microbial-associated intra-amniotic inflammation in asymptomatic women with a sonographic short cervix, and is associated with increased risk of sPTD (<34 weeks). Further investigation is required to determine the causes of sterile intra-amniotic inflammation and the mechanisms whereby this condition is associated with a short cervix and sPTD.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Jezid Miranda
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Integrata Verona, Ostetricia Ginecologia, Azienda Ospedaliera Universitaria, Verona, Italy
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ahmed I. Ahmed
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong J. Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Pathology, College of Medicine Inje University, Haeundae Paik Hospital
| | - Steven J. Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD and Detroit, MI, USA
- Department of Pathology, College of Medicine Inje University, Haeundae Paik Hospital
| |
Collapse
|
30
|
Cohen J, Vincent JL, Adhikari NKJ, Machado FR, Angus DC, Calandra T, Jaton K, Giulieri S, Delaloye J, Opal S, Tracey K, van der Poll T, Pelfrene E. Sepsis: a roadmap for future research. THE LANCET. INFECTIOUS DISEASES 2015; 15:581-614. [DOI: 10.1016/s1473-3099(15)70112-x] [Citation(s) in RCA: 658] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Diagnostic and prognostic value of sCD14-ST--presepsin for patients admitted to hospital intensive care unit (ICU). Wien Klin Wochenschr 2015; 127:521-7. [PMID: 25854904 DOI: 10.1007/s00508-015-0719-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/19/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Sepsis is a serious problem in intensive care units all over the world. Biomarkers could be useful to identify patients at risk. We focused especially on the performance of presepsin (sCD14-ST), compared to C-reactive protein (CRP), procalcitonin (PCT) and CD64, to determine its diagnostic and prognostic indications. METHODS The study was conducted on 47 hospitalized patients after procedures, who were divided into three groups; systemic inflammatory response (SIRS), sepsis and septic shock. Expression of CD64 on neutrophils presented as CD64 index, sCD14-ST, CRP and PCT were measured in whole blood or plasma samples. All patients had standard samples like urine, respiratory tract samples etc. taken for culturing. Blood cultures were drawn to confirm bloodstream infection. RESULTS Forty (85 %) patients had SIRS with bacterial infection and seven (15 %) patients had SIRS with no infection. All infections were confirmed with blood cultures. Biomarkers were evaluated in all patients. In patients with confirmed infection the values were high. The patients with bacterial infection showed statistical significance with CD64 index (p = 0.003), CRP (p = 0.049) and sCD14-ST (p = 0.026), but not with PCT (p = 1.000). The severity of diagnosed SIRS was significant only with PCT (p < 0.001). CONCLUSION CD64 index, CRP and sCD14-ST served as good parameters to determine possible infection in patients that needed intensive care after major procedures. Values of PCT were the only ones to predict SIRS severity and could distinguish between sepsis and severe sepsis or septic shock.
Collapse
|
32
|
Opota O, Jaton K, Greub G. Microbial diagnosis of bloodstream infection: towards molecular diagnosis directly from blood. Clin Microbiol Infect 2015; 21:323-31. [PMID: 25686695 DOI: 10.1016/j.cmi.2015.02.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/01/2015] [Accepted: 02/04/2015] [Indexed: 11/19/2022]
Abstract
When a bloodstream infection (BSI) is suspected, most of the laboratory results-biochemical and haematologic-are available within the first hours after hospital admission of the patient. This is not the case for diagnostic microbiology, which generally takes a longer time because blood culture, which is to date the reference standard for the documentation of the BSI microbial agents, relies on bacterial or fungal growth. The microbial diagnosis of BSI directly from blood has been proposed to speed the determination of the etiological agent but was limited by the very low number of circulating microbes during these paucibacterial infections. Thanks to recent advances in molecular biology, including the improvement of nucleic acid extraction and amplification, several PCR-based methods for the diagnosis of BSI directly from whole blood have emerged. In the present review, we discuss the advantages and limitations of these new molecular approaches, which at best complement the culture-based diagnosis of BSI.
Collapse
Affiliation(s)
- O Opota
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - K Jaton
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - G Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland; Infectious Diseases Service, University of Lausanne and University Hospital Center, Lausanne, Switzerland.
| |
Collapse
|
33
|
Dong T, Zhao X. Rapid identification and susceptibility testing of uropathogenic microbes via immunosorbent ATP-bioluminescence assay on a microfluidic simulator for antibiotic therapy. Anal Chem 2015; 87:2410-8. [PMID: 25584656 DOI: 10.1021/ac504428t] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incorporation of pathogen identification with antimicrobial susceptibility testing (AST) was implemented on a concept microfluidic simulator, which is well suited for personalizing antibiotic treatment of urinary tract infections (UTIs). The microfluidic device employs a fiberglass membrane sandwiched between two polypropylene components, with capture antibodies immobilized on the membrane. The chambers in the microfluidic device share the same geometric distribution as the wells in a standard 384-well microplate, resulting in compatibility with common microplate readers. Thirteen types of common uropathogenic microbes were selected as the analytes in this study. The microbes can be specifically captured by various capture antibodies and then quantified via an ATP bioluminescence assay (ATP-BLA) either directly or after a variety of follow-up tests, including urine culture, antibiotic treatment, and personalized antibiotic therapy simulation. Owing to the design of the microfluidic device, as well as the antibody specificity and the ATP-BLA sensitivity, the simulator was proven to be able to identify UTI pathogen species in artificial urine samples within 20 min and to reliably and simultaneously verify the antiseptic effects of eight antibiotic drugs within 3-6 h. The measurement range of the device spreads from 1 × 10(3) to 1 × 10(5) cells/mL in urine samples. We envision that the medical simulator might be broadly employed in UTI treatment and could serve as a model for the diagnosis and treatment of other diseases.
Collapse
Affiliation(s)
- Tao Dong
- Institute of Applied Micro-Nano Science and Technology, Chongqing Engineering Laboratory for Detection, Control and Integrated System, Chongqing Technology and Business University , Nan'an District, Chongqing 400067, China
| | | |
Collapse
|
34
|
Heffernan DS, Fox ED. Advancing technologies for the diagnosis and management of infections. Surg Clin North Am 2014; 94:1163-74. [PMID: 25440117 DOI: 10.1016/j.suc.2014.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Infections remain a significant problem among surgical patients. Technological advances, especially in the arena of nano-technology, have markedly improved the ability to detect, prevent and treat surgical infections. No longer limited to culture-based methods of pathogen detection or standard antimicrobial therapies, options for management of surgical infections are rapidly expanding. Such advances are critical in this era of rapidly developing resistant and virulent strains of organisms. Further, our understanding of the host pathogen interaction grows exponentially with the development of computer-based modeling, aiding in expediting research endeavors.
Collapse
Affiliation(s)
- Daithi S Heffernan
- Division of Trauma and Surgical Critical Care, Department of Surgery, Alpert Medical School Brown University, Rhode Island Hospital, 435 APC Building, 593 Eddy Street, Providence, RI 02903, USA.
| | - Elizabeth D Fox
- Department of Surgery, Alpert Medical School Brown University, Rhode Island Hospital, 429 APC Building, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
35
|
Expression of CD64 on neutrophils can be used to predict the severity of bloodstream infection before broad range 16S rRNA PCR. Folia Microbiol (Praha) 2014; 60:111-8. [PMID: 25253263 DOI: 10.1007/s12223-014-0346-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
The aging population and increased incidence of severe bacterial infection can lead to sepsis. Interest to early identification of endangered patients and identification of pathogen do not always confirm the infection. To use biomarkers can help in early identification of infection and opportunity to start therapy timeously. All biomarkers were defined in 33 out of 96 patients. Thirty-two (97 %) patients had bacterial infection and 1 (3 %) patient had systemic inflammatory response syndrome (SIRS) without infection. PCR confirmed the infection in 27 cases and blood cultures in 8. Area under curve (AUC) for CD64 was 1.00, meanwhile other biomarkers showed 2-fold smaller AUC for positive infection. CD64 index was associated with bacterial infection (p<0.001) and could be used to confirm assessment of SIRS severity (p=0.037). As regards to our results, limited to only 33 patients, CD64 index served as a good parameter to predict bacterial infection and determine severity. The use of broad range 16S ribosomal RNA (rRNA) PCR proved to be an excellent tool to confirm bloodstream infection. The CD64 index had the highest AUC, which exceeded all the others, and could be used to predict the outcome of broad range 16S rRNA PCR from whole blood. However, C-reactive protein (CRP), procalcitonin (PCT) and sCD14 are much easier and faster to measure, but the values could be elevated in other clinical assessments.
Collapse
|
36
|
Bacconi A, Richmond GS, Baroldi MA, Laffler TG, Blyn LB, Carolan HE, Frinder MR, Toleno DM, Metzgar D, Gutierrez JR, Massire C, Rounds M, Kennel NJ, Rothman RE, Peterson S, Carroll KC, Wakefield T, Ecker DJ, Sampath R. Improved sensitivity for molecular detection of bacterial and Candida infections in blood. J Clin Microbiol 2014; 52:3164-74. [PMID: 24951806 PMCID: PMC4313132 DOI: 10.1128/jcm.00801-14] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022] Open
Abstract
The rapid identification of bacteria and fungi directly from the blood of patients with suspected bloodstream infections aids in diagnosis and guides treatment decisions. The development of an automated, rapid, and sensitive molecular technology capable of detecting the diverse agents of such infections at low titers has been challenging, due in part to the high background of genomic DNA in blood. PCR followed by electrospray ionization mass spectrometry (PCR/ESI-MS) allows for the rapid and accurate identification of microorganisms but with a sensitivity of about 50% compared to that of culture when using 1-ml whole-blood specimens. Here, we describe a new integrated specimen preparation technology that substantially improves the sensitivity of PCR/ESI-MS analysis. An efficient lysis method and automated DNA purification system were designed for processing 5 ml of whole blood. In addition, PCR amplification formulations were optimized to tolerate high levels of human DNA. An analysis of 331 specimens collected from patients with suspected bloodstream infections resulted in 35 PCR/ESI-MS-positive specimens (10.6%) compared to 18 positive by culture (5.4%). PCR/ESI-MS was 83% sensitive and 94% specific compared to culture. Replicate PCR/ESI-MS testing from a second aliquot of the PCR/ESI-MS-positive/culture-negative specimens corroborated the initial findings in most cases, resulting in increased sensitivity (91%) and specificity (99%) when confirmed detections were considered true positives. The integrated solution described here has the potential to provide rapid detection and identification of organisms responsible for bloodstream infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Megan Rounds
- Ibis Biosciences, Inc., Carlsbad, California, USA
| | | | - Richard E Rothman
- Department of Emergency Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen Peterson
- Department of Emergency Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Karen C Carroll
- The Johns Hopkins Hospital Clinical Microbiology Laboratory, Baltimore, Maryland, USA
| | - Teresa Wakefield
- The Johns Hopkins Hospital Clinical Microbiology Laboratory, Baltimore, Maryland, USA
| | | | | |
Collapse
|
37
|
Song Y, Giske CG, Gille-Johnson P, Emanuelsson O, Lundeberg J, Gyarmati P. Nuclease-assisted suppression of human DNA background in sepsis. PLoS One 2014; 9:e103610. [PMID: 25076135 PMCID: PMC4116218 DOI: 10.1371/journal.pone.0103610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/29/2014] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a severe medical condition characterized by a systemic inflammatory response of the body caused by pathogenic microorganisms in the bloodstream. Blood or plasma is typically used for diagnosis, both containing large amount of human DNA, greatly exceeding the DNA of microbial origin. In order to enrich bacterial DNA, we applied the C0t effect to reduce human DNA background: a model system was set up with human and Escherichia coli (E. coli) DNA to mimic the conditions of bloodstream infections; and this system was adapted to plasma and blood samples from septic patients. As a consequence of the C0t effect, abundant DNA hybridizes faster than rare DNA. Following denaturation and re-hybridization, the amount of abundant DNA can be decreased with the application of double strand specific nucleases, leaving the non-hybridized rare DNA intact. Our experiments show that human DNA concentration can be reduced approximately 100,000-fold without affecting the E. coli DNA concentration in a model system with similarly sized amplicons. With clinical samples, the human DNA background was decreased 100-fold, as bacterial genomes are approximately 1,000-fold smaller compared to the human genome. According to our results, background suppression can be a valuable tool to enrich rare DNA in clinical samples where a high amount of background DNA can be found.
Collapse
Affiliation(s)
- Yajing Song
- Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Christian G. Giske
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Karolinska University Hospital, Department of Clinical Microbiology, Stockholm, Sweden
| | - Patrik Gille-Johnson
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olof Emanuelsson
- Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Joakim Lundeberg
- Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Peter Gyarmati
- Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
- Karolinska University Hospital, Department of Clinical Microbiology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
38
|
Mycobacterium avium subsp. paratuberculosis is not discerned in diabetes mellitus patients in Hyderabad, India. Int J Med Microbiol 2014; 304:620-5. [DOI: 10.1016/j.ijmm.2014.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 01/16/2023] Open
|
39
|
Mancini N, Sambri V, Corti C, Ghidoli N, Tolomelli G, Paolucci M, Clerici D, Carletti S, Greco R, Tassara M, Pizzorno B, Zaniolo O, Povero M, Pradelli L, Burioni R, Stanzani M, Landini MP, Ciceri F, Clementi M. Cost-effectiveness of blood culture and a multiplex real-time PCR in hematological patients with suspected sepsis: an observational propensity score-matched study. Expert Rev Mol Diagn 2014; 14:623-32. [DOI: 10.1586/14737159.2014.916212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Improving the diagnosis of bloodstream infections: PCR coupled with mass spectrometry. BIOMED RESEARCH INTERNATIONAL 2014; 2014:501214. [PMID: 24818144 PMCID: PMC4000954 DOI: 10.1155/2014/501214] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/27/2014] [Indexed: 12/22/2022]
Abstract
The reference method for the diagnosis of bloodstream infections is blood culture followed by biochemical identification and antibiotic susceptibility testing of the isolated pathogen. This process requires 48 to 72 hours. The rapid administration of the most appropriate antimicrobial treatment is crucial for the survival of septic patients; therefore, a rapid method that enables diagnosis directly from analysis of a blood sample without culture is needed. A recently developed platform that couples broad-range PCR amplification of pathogen DNA with electrospray ionization mass spectrometry (PCR/ESI-MS) has the ability to identify virtually any microorganism from direct clinical specimens. To date, two clinical evaluations of the PCR/ESI-MS technology for the diagnosis of bloodstream infections from whole blood have been published. Here we discuss them and describe recent improvements that result in an enhanced sensitivity. Other commercially available assays for the molecular diagnosis of bloodstream infections from whole blood are also reviewed. The use of highly sensitive molecular diagnostic methods in combination with conventional procedures could substantially improve the management of septic patients.
Collapse
|
41
|
Lupetti A, Barnini S, Dodi C, Menconi M, Favre C, Giagnoni M, Florio W, Nibbering PH, Campa M. New rapid methods cannot replace the current method to diagnose bloodstream infections. J Med Microbiol 2014; 63:767-769. [PMID: 24554742 DOI: 10.1099/jmm.0.069161-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Antonella Lupetti
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127 Pisa, Italy
| | - Simona Barnini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127 Pisa, Italy
| | - Carlotta Dodi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127 Pisa, Italy
| | - Mariacristina Menconi
- U.O. Oncoematologia Pediatrica con Trapianto di Cellule Staminali Ematopoietiche, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Claudio Favre
- U.O. Oncoematologia Pediatrica con Trapianto di Cellule Staminali Ematopoietiche, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Marco Giagnoni
- Grandi Ustioni, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Walter Florio
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127 Pisa, Italy
| | - Peter H Nibbering
- Center for Infectious Diseases, Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mario Campa
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via San Zeno 35-39, 56127 Pisa, Italy
| |
Collapse
|
42
|
Molecular Diagnosis Contributing for Multi-Drug Resistant Infection Control. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2014. [DOI: 10.1007/s40506-013-0006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Romero R, Miranda J, Chaiworapongsa T, Chaemsaithong P, Gotsch F, Dong Z, Ahmed AI, Yoon BH, Hassan SS, Kim CJ, Korzeniewski SJ, Yeo L. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intra-amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol 2014; 71:330-58. [PMID: 24417618 DOI: 10.1111/aji.12189] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
PROBLEM The diagnosis of microbial invasion of the amniotic cavity (MIAC) has been traditionally performed using traditional cultivation techniques, which require growth of microorganisms in the laboratory. Shortcomings of culture methods include the time required (days) for identification of microorganisms, and that many microbes involved in the genesis of human diseases are difficult to culture. A novel technique combines broad-range real-time polymerase chain reaction with electrospray ionization time-of-flight mass spectrometry (PCR/ESI-MS) to identify and quantify genomic material from bacteria and viruses. METHOD OF STUDY AF samples obtained by transabdominal amniocentesis from 142 women with preterm labor and intact membranes (PTL) were analyzed using cultivation techniques (aerobic, anaerobic, and genital mycoplasmas) as well as PCR/ESI-MS. The prevalence and relative magnitude of intra-amniotic inflammation [AF interleukin 6 (IL-6) concentration ≥ 2.6 ng/mL], acute histologic chorioamnionitis, spontaneous preterm delivery, and perinatal mortality were examined. RESULTS (i) The prevalence of MIAC in patients with PTL was 7% using standard cultivation techniques and 12% using PCR/ESI-MS; (ii) seven of ten patients with positive AF culture also had positive PCR/ESI-MS [≥17 genome equivalents per PCR reaction well (GE/well)]; (iii) patients with positive PCR/ESI-MS (≥17 GE/well) and negative AF cultures had significantly higher rates of intra-amniotic inflammation and acute histologic chorioamnionitis, a shorter interval to delivery [median (interquartile range-IQR)], and offspring at higher risk of perinatal mortality, than women with both tests negative [90% (9/10) versus 32% (39/122) OR: 5.6; 95% CI: 1.4-22; (P < 0.001); 70% (7/10) versus 35% (39/112); (P = 0.04); 1 (IQR: <1-2) days versus 25 (IQR: 5-51) days; (P = 0.002), respectively]; (iv) there were no significant differences in these outcomes between patients with positive PCR/ESI-MS (≥17 GE/well) who had negative AF cultures and those with positive AF cultures; and (v) PCR/ESI-MS detected genomic material from viruses in two patients (1.4%). CONCLUSION (i) Rapid diagnosis of intra-amniotic infection is possible using PCR/ESI-MS; (ii) the combined use of biomarkers of inflammation and PCR/ESI-MS allows for the identification of specific bacteria and viruses in women with preterm labor and intra-amniotic infection; and (iii) this approach may allow for administration of timely and specific interventions to reduce morbidity attributed to infection-induced preterm birth.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|