1
|
Wyatt-Johnson SK, Afify R, Brutkiewicz RR. The immune system in neurological diseases: What innate-like T cells have to say. J Allergy Clin Immunol 2024; 153:913-923. [PMID: 38365015 PMCID: PMC10999338 DOI: 10.1016/j.jaci.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The immune system classically consists of 2 lines of defense, innate and adaptive, both of which interact with one another effectively to protect us against any pathogenic threats. Importantly, there is a diverse subset of cells known as innate-like T cells that act as a bridge between the innate and adaptive immune systems and are pivotal players in eliciting inflammatory immune responses. A growing body of evidence has demonstrated the regulatory impact of these innate-like T cells in central nervous system (CNS) diseases and that such immune cells can traffic into the brain in multiple pathological conditions, which can be typically attributed to the breakdown of the blood-brain barrier. However, until now, it has been poorly understood whether innate-like T cells have direct protective or causative properties, particularly in CNS diseases. Therefore, in this review, our attention is focused on discussing the critical roles of 3 unique subsets of unconventional T cells, namely, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells, in the context of CNS diseases, disorders, and injuries and how the interplay of these immune cells modulates CNS pathology, in an attempt to gain a better understanding of their complex functions.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Reham Afify
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
2
|
Borjini N, Lun Y, Jang GF, Crabb J, Chen Y, Crabb J, Fox DA, Ivanov AI, Lin F. CD6 triggers actomyosin cytoskeleton remodeling after binding to its receptor complex. J Leukoc Biol 2024; 115:450-462. [PMID: 37820034 PMCID: PMC10890838 DOI: 10.1093/jleuko/qiad124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
The T cell marker CD6 regulates both T cells and target cells during inflammatory responses by interacting with its receptors. However, only a few receptors binding to the extracellular domains of CD6 have been identified, and cellular events induced by CD6 engagement with its receptors in target cells remain poorly understood. In this study, we identified CD44 as a novel CD6 receptor by proximity labeling and confirmed the new CD6-CD44 interaction by biochemical and biophysical approaches. CD44 and the other 2 known CD6 receptors, CD166 and CDCP1, were distributed diffusely on resting retinal pigment epithelium (RPE) cells but clustered together to form a receptor complex upon CD6 binding. CD6 stimulation induced dramatic remodeling of the actomyosin cytoskeleton in RPE cells mediated by activation of RhoA, and Rho-associated kinase signaling, resulting in increased myosin II phosphorylation. Such actomyosin activation triggered the disassembly of tight junctions responsible for RPE barrier integrity in a process that required all components of the tripartite CD6 receptor complex. These data provided new insights into the mechanisms by which CD6 mediates T cell-driven disruption of tissue barriers during inflammation.
Collapse
Affiliation(s)
- Nozha Borjini
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States
| | - Yu Lun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States
| | - Geen-Fu Jang
- Cole Eye Institute, Cleveland Clinic, 2042 E 102nd St, Cleveland, OH 44106, United States
| | - Jack Crabb
- Cole Eye Institute, Cleveland Clinic, 2042 E 102nd St, Cleveland, OH 44106, United States
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, 2210 Circle Dr Robbins Building, Cleveland, OH 44106, United States
| | - John Crabb
- Cole Eye Institute, Cleveland Clinic, 2042 E 102nd St, Cleveland, OH 44106, United States
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109, United States
| | - Andrei I Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States
- Cole Eye Institute, Cleveland Clinic, 2042 E 102nd St, Cleveland, OH 44106, United States
| |
Collapse
|
3
|
Lezhnyova V, Davidyuk Y, Mullakhmetova A, Markelova M, Zakharov A, Khaiboullina S, Martynova E. Analysis of herpesvirus infection and genome single nucleotide polymorphism risk factors in multiple sclerosis, Volga federal district, Russia. Front Immunol 2022; 13:1010605. [PMID: 36451826 PMCID: PMC9703080 DOI: 10.3389/fimmu.2022.1010605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 09/29/2023] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous disease where herpesvirus infection and genetic predisposition are identified as the most consistent risk factors. Serum and blood samples were collected from 151 MS and 70 controls and used to analyze circulating antibodies for, and DNA of, Epstein Barr virus (EBV), human cytomegalovirus (HCMV), human herpes virus 6 (HHV6), and varicella zoster virus (VZV). The frequency of selected single nucleotide polymorphisms (SNPs) in MS and controls were studied. Herpesvirus DNA in blood samples were analyzed using qPCR. Anti-herpesvirus antibodies were detected by ELISA. SNPs were analyzed by the allele-specific PCR. For statistical analysis, Fisher exact test, odds ratio and Kruskall-Wallis test were used; p<0.05 values were considered as significant. We have found an association between circulating anti-HHV6 antibodies and MS diagnosis. We also confirmed higher frequency of A and C alleles in rs2300747 and rs12044852 of CD58 gene and G allele in rs929230 of CD6 gene in MS as compared to controls. Fatigue symptom was linked to AC and AA genotype in rs12044852 of CD58 gene. An interesting observation was finding higher frequency of GG genotype in rs12722489 of IL2RA and T allele in rs1535045 of CD40 genes in patient having anti-HHV6 antibodies. A link was found between having anti-VZV antibodies in MS and CC genotype in rs1883832 of CD40 gene.
Collapse
Affiliation(s)
- Vera Lezhnyova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Asia Mullakhmetova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Alexander Zakharov
- Department of Neurology and Neurosurgery, Samara State Medical University, Samara, Russia
| | - Svetlana Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
4
|
Casadó‐Llombart S, Ajami T, Consuegra‐Fernández M, Carreras E, Aranda F, Armiger N, Alcaraz A, Mengual L, Lozano F. Gene variation impact on prostate cancer progression: Lymphocyte modulator, activation, and cell adhesion gene variant contribution. Prostate 2022; 82:1331-1337. [PMID: 35767366 PMCID: PMC9542726 DOI: 10.1002/pros.24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND The view of prostate cancer (PCa) progression as a result of the interaction of epithelial cancer cells with the host's immune system is supported by the presence of tumor infiltrating lymphocytes (TILs). TILs fate and interaction with the tumor microenvironment is mediated by accessory molecules such as CD5 and CD6, two signal-transducing coreceptors involved in fine-tuning of T cell responses. While the nature of the CD5 ligand is still controversial, CD6 binds CD166/ALCAM, a cell adhesion molecule involved in progression and dissemination of epithelial cancers, including PCa. The purpose of the present study was to determine the role of CD5, CD6, and CD166/ALCAM gene variants in PCa. METHODS Functionally relevant CD5 (rs2241002 and rs2229177), CD6 (rs17824933, rs11230563, and rs12360861) and CD166/ALCAM (rs6437585, rs579565, rs1044243, and rs35271455) single nucleotide polymorphisms (SNPs) were genotyped in germline DNA samples from 376 PCa patients. Their association with PCa prognostic factors, namely biochemical recurrence (BCR) and International Society of Urological Pathology (ISUP) grade was analyzed by generalized linear models and survival analyses. RESULT Proportional hazards regression showed that the minor CD6 rs12360861AA and CD166/ALCAM rs579565AA genotypes were associated with earlier BCR, with hazard ratios of 2.65 (95% CI: 1.39-5.05, p = 0.003) and 1.86, (95% CI: 1.02-3.39, p = 0.043), respectively. Individually, none of the analyzed SNPs was significantly associated with ISUP grade, but haplotype analyses revealed association of the CD5 rs2241002C -rs2229177T haplotype with ISUP grade ≥2, with odds ratio of 1.52 (95% CI: 1.05-2.21, p = 0.026). CONCLUSION The results show the impact on PCa aggressiveness and recurrence brought about by gene variants involved in modulation of lymphocyte activation (CD5, CD6) and immune-epithelial cell adhesion (CD166/ALCAM) in PCa aggressiveness and recurrence, thus supporting a role for host immune response in PCa pathophysiology.
Collapse
Affiliation(s)
- Sergi Casadó‐Llombart
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Tarek Ajami
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
| | - Marta Consuegra‐Fernández
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Esther Carreras
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Fernando Aranda
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Noelia Armiger
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Antonio Alcaraz
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
| | - Lourdes Mengual
- Laboratori i Servei d'UrologiaHospital Clínic de BarcelonaBarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la SalutUniversitat de Barcelona (UB)BarcelonaSpain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i AdaptatiuInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Genètica i tumors urològicsInstitut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPSBarcelonaSpain
- Departament de Biomedicina, Facultat de Medicina i Ciències de la SalutUniversitat de Barcelona (UB)BarcelonaSpain
- Servei d'Immunologia, Centre de Diagnòstic BiomèdicHospital Clínic de BarcelonaBarcelonaSpain
| |
Collapse
|
5
|
Zhang L, Borjini N, Lun Y, Parab S, Asonye G, Singh R, Bell BA, Bonilha VL, Ivanov A, Fox DA, Caspi R, Lin F. CDCP1 regulates retinal pigmented epithelial barrier integrity for the development of experimental autoimmune uveitis. JCI Insight 2022; 7:e157038. [PMID: 35951427 PMCID: PMC9675461 DOI: 10.1172/jci.insight.157038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cub domain-containing protein 1 (CDCP1) is a protein that is highly expressed on the surface of many cancer cells. However, its distribution in normal tissues and its potential roles in nontumor cells are poorly understood. We found that CDCP1 is present on both human and mouse retinal pigment epithelial (RPE) cells. CDCP1-KO mice developed attenuated retinal inflammation in a passive model of autoimmune uveitis, with disrupted tight junctions and infiltrating T cells detected in RPE flat mounts from WT but not CDCP1-KO mice during EAU development. Mechanistically, we discovered that CDCP1 on RPE cells was upregulated by IFN-γ in vitro and after EAU induction in vivo. CD6 stimulation induced increased RPE barrier permeability of WT but not CDCP1-knockdown (CDCP1-KD) RPE cells, and activated T cells migrated through WT RPE monolayers more efficiently than the CDCP1-KD RPE monolayers. In addition, CD6 stimulation of WT but not the CDCP1-KD RPE cells induced massive stress fiber formation and focal adhesion disruption to reduce cell barrier tight junctions. These data suggest that CDCP1 on RPE cells interacts with CD6 on T cells to induce RPE cytoskeleton remodeling and focal adhesion disruption, which open up the tight junctions to facilitate T cell infiltration for the development of uveitis.
Collapse
Affiliation(s)
- Lingjun Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nozha Borjini
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yu Lun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sweta Parab
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gospel Asonye
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brent A. Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vera L. Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrei Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - David A. Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Casadó-Llombart S, Velasco-de Andrés M, Català C, Leyton-Pereira A, Gutiérrez-Cózar R, Suárez B, Armiger N, Carreras E, Esteller M, Ricart E, Ordás I, Gisbert JP, Chaparro M, Esteve M, Márquez L, Busquets D, Iglesias E, García-Planella E, Martín-Arranz MD, Lohmann J, Ayata CK, Niess JH, Engel P, Panés J, Salas A, Domènech E, Lozano F. Experimental and genetic evidence for the impact of CD5 and CD6 expression and variation in inflammatory bowel disease. Front Immunol 2022; 13:966184. [PMID: 36211446 PMCID: PMC9532939 DOI: 10.3389/fimmu.2022.966184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Crohn’s disease (CD) and ulcerative colitis (UC) are inflammatory bowel diseases (IBD) resulting from the interaction of multiple environmental, genetic and immunological factors. CD5 and CD6 are paralogs encoding lymphocyte co-receptors involved in fine-tuning intracellular signals delivered upon antigen-specific recognition, microbial pattern recognition and cell adhesion. While CD5 and CD6 expression and variation is known to influence some immune-mediated inflammatory disorders, their role in IBD remains unclear. To this end, Cd5- and Cd6-deficient mice were subjected to dextran sulfate sodium (DSS)-induced colitis, the most widely used experimental animal model of IBD. The two mouse lines showed opposite results regarding body weight loss and disease activity index (DAI) changes following DSS-induced colitis, thus supporting Cd5 and Cd6 expression involvement in the pathophysiology of this experimental IBD model. Furthermore, DNA samples from IBD patients of the ENEIDA registry were used to test association of CD5 (rs2241002 and rs2229177) and CD6 (rs17824933, rs11230563, and rs12360861) single nucleotide polymorphisms with susceptibility and clinical parameters of CD (n=1352) and UC (n=1013). Generalized linear regression analyses showed association of CD5 variation with CD ileal location (rs2241002CC) and requirement of biological therapies (rs2241002C-rs2229177T haplotype), and with poor UC prognosis (rs2241002T-rs2229177T haplotype). Regarding CD6, association was observed with CD ileal location (rs17824933G) and poor prognosis (rs12360861G), and with left-sided or extensive UC, and absence of ankylosing spondylitis in IBD (rs17824933G). The present experimental and genetic evidence support a role for CD5 and CD6 expression and variation in IBD’s clinical manifestations and therapeutic requirements, providing insight into its pathophysiology and broadening the relevance of both immunomodulatory receptors in immune-mediated disorders.
Collapse
Affiliation(s)
- Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María Velasco-de Andrés
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Cristina Català
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alejandra Leyton-Pereira
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rebeca Gutiérrez-Cózar
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Belén Suárez
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Noelia Armiger
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Esther Carreras
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miriam Esteller
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Elena Ricart
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Ingrid Ordás
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Javier P. Gisbert
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Chaparro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - María Esteve
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Department, Hospital Universitari Mútua Terrassa, Terrassa, Spain
| | - Lucía Márquez
- Gastroenterology Department, Hospital del Mar and Institut Hospital del Mar Investigacions Mèdiques, Barcelona, Spain
| | - David Busquets
- Department of Gastroenterology, Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Eva Iglesias
- Department of Gastroenterology, Hospital Universitario Reina Sofía, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | | | - María Dolores Martín-Arranz
- Department of Gastroenterology, and Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juliane Lohmann
- Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - C. Korcan Ayata
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital, Basel, Switzerland
| | - Pablo Engel
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Julián Panés
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Inflammatory Bowel Disease Unit, Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Azucena Salas
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Inflammatory Bowel Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Eugeni Domènech
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- *Correspondence: Francisco Lozano,
| | | |
Collapse
|
7
|
Casadó-Llombart S, Gheitasi H, Ariño S, Consuegra-Fernández M, Armiger-Borràs N, Kostov B, Ramos-Casals M, Brito-Zerón P, Lozano F. Gene Variation at Immunomodulatory and Cell Adhesion Molecules Loci Impacts Primary Sjögren's Syndrome. Front Med (Lausanne) 2022; 9:822290. [PMID: 35372412 PMCID: PMC8971656 DOI: 10.3389/fmed.2022.822290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune disease triggered by a combination of environmental and host genetic factors, which results in the focal lymphocytic infiltration of exocrine glands causing eye and mouth dryness. Glandular infiltrates include T and B cell subsets positive for CD5 and/or CD6, two surface scavenger receptors involved in the fine-tuning of intracellular signals mediated by the antigen-specific receptor complex of T (TCR) and B (BCR) cells. Moreover, the epithelial cells of inflamed glands overexpress CD166/ALCAM, a CD6 ligand involved in homo and heterotypic cell adhesion interactions. All this, together with the reported association of functionally relevant single nucleotide polymorphisms (SNPs) of CD5, CD6, and CD166/ALCAM with the risk or prognosis of some immune-mediated inflammatory disorders, led us to investigate similar associations in a local cohort of patients with pSS. The logistic regression analyses of individual SNPs showed the association of CD5 rs2241002T with anti-Ro/La positivity, CD6 rs17824933C with neutropenia, and CD6 rs11230563T with increased leukopenia and neutropenia but decreased peripheral nervous system EULAR Sjögren's syndrome disease activity index (ESSDAI). Further analyses showed the association of haplotypes from CD5 (rs2241002T-rs2229177C) with anemia and thrombocytopenia, CD6 (rs17824933G-rs11230563C-rs12360861G) with cutaneous ESSDAI, and CD166/ALCAM (rs6437585C-rs579565A-rs1044243C and rs6437585C-rs579565G-rs1044243T) with disease susceptibility and several analytical parameters (anti-nuclear antibodies, neurological ESSDAI, and hematologic cytopenias). These results support the relevance of gene variation at loci coding for cell surface receptors involved in the modulation of T and B lymphocyte activation (CD5, CD6) and epithelial-immune cell adhesion (CD166/ALCAM) in modulating the clinical and analytical outcomes in patients with pSS.
Collapse
Affiliation(s)
- Sergi Casadó-Llombart
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Hoda Gheitasi
- Department of Autoimmune Diseases, ICMiD, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Silvia Ariño
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Consuegra-Fernández
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Belchin Kostov
- Primary Care Centre Les Corts, Consorci d'Atenció Primària de Salut Barcelona Esquerra (CAPSBE), Barcelona, Spain
- Primary Healthcare Transversal Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
| | - Manuel Ramos-Casals
- Department of Autoimmune Diseases, ICMiD, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Pilar Brito-Zerón
- Research and Innovation Group in Autoimmune Diseases, RGAD-Sanitas Digital Hospital, Barcelona, Spain
- Systemic Autoimmune Diseases Unit, Internal Medicine, Millenium Clinic, Sanitas, Barcelona, Spain
- *Correspondence: Pilar Brito-Zerón
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat i Adaptatiu, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Francisco Lozano
| |
Collapse
|
8
|
Contribution of Evolutionary Selected Immune Gene Polymorphism to Immune-Related Disorders: The Case of Lymphocyte Scavenger Receptors CD5 and CD6. Int J Mol Sci 2021; 22:ijms22105315. [PMID: 34070159 PMCID: PMC8158487 DOI: 10.3390/ijms22105315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogens are one of the main selective pressures that ancestral humans had to adapt to. Components of the immune response system have been preferential targets of natural selection in response to such pathogen-driven pressure. In turn, there is compelling evidence showing that positively selected immune gene variants conferring increased resistance to past or present infectious agents are today associated with increased risk for autoimmune or inflammatory disorders but decreased risk of cancer, the other side of the same coin. CD5 and CD6 are lymphocytic scavenger receptors at the interphase of the innate and adaptive immune responses since they are involved in both: (i) microbial-associated pattern recognition; and (ii) modulation of intracellular signals mediated by the clonotypic antigen-specific receptor present in T and B cells (TCR and BCR, respectively). Here, we review available information on CD5 and CD6 as targets of natural selection as well as on the role of CD5 and CD6 variation in autoimmunity and cancer.
Collapse
|
9
|
Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet 2019; 51:1670-1678. [PMID: 31740837 PMCID: PMC6885121 DOI: 10.1038/s41588-019-0512-x] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a debilitating psychiatric disorder with approximately 1% lifetime risk globally. Large-scale schizophrenia genetic studies have reported primarily on European ancestry samples, potentially missing important biological insights. Here, we report the largest study to date of East Asian participants (22,778 schizophrenia cases and 35,362 controls), identifying 21 genome-wide significant associations in 19 genetic loci. Common genetic variants that confer risk for schizophrenia have highly similar effects between East Asian and European ancestries (rg = 0.98 ± 0.03), indicating that the genetic basis of schizophrenia and its biology are broadly shared across populations. A fixed-effect meta-analysis including individuals from East Asian and European ancestries identified 208 significant associations in 176 genetic loci (53 novel). Trans-ancestry fine-mapping reduced the sets of candidate causal variants in 44 loci. Polygenic risk scores had reduced performance when transferred across ancestries, highlighting the importance of including sufficient samples of major ancestral groups to ensure their generalizability across populations.
Collapse
|
10
|
Meyer A, Kofler DM. Failure of a T cell regulator: CD6 contributes to the aggravation of autoimmune inflammation. Cell Mol Immunol 2018; 16:733-734. [PMID: 30002450 DOI: 10.1038/s41423-018-0089-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Anja Meyer
- Division of Clinical Immunology and Rheumatology, Department I of Internal Medicine, University of Cologne, Cologne, 50937, Germany
| | - David M Kofler
- Division of Clinical Immunology and Rheumatology, Department I of Internal Medicine, University of Cologne, Cologne, 50937, Germany.
| |
Collapse
|
11
|
Consuegra-Fernández M, Lin F, Fox DA, Lozano F. Clinical and experimental evidence for targeting CD6 in immune-based disorders. Autoimmun Rev 2018. [DOI: 10.1016/j.autrev.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Genetic and experimental evidence for the involvement of the CD6 lymphocyte receptor in psoriasis. Cell Mol Immunol 2017; 15:898-906. [PMID: 29225340 DOI: 10.1038/cmi.2017.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 12/16/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with a strong genetic background and is triggered by environmental factors. Available evidence supports CD6, a lymphocyte surface receptor mostly expressed by T cells, as a putative target in autoimmunity. Accordingly, a humanized anti-CD6 antibody has been assayed for the treatment of certain autoimmune disorders, including psoriasis. Here, we present novel evidence in mice and humans for a direct involvement of CD6 in psoriasis pathophysiology. First, an attenuated form of imiquimod-induced psoriasis-like skin inflammation was demonstrated in CD6-deficient mice, as deduced from lower epidermal thickness and local reduced production of pro-inflammatory cytokines, namely, interleukin-17A. Thus, isolated CD4+CD62L+ T cells from CD6-deficient mice displayed decreased in vitro T-helper type 17 polarization. Second, a statistically significant association between CD6 single-nucleotide polymorphisms (rs17824933, rs11230563 and rs12360861) and more severe forms of psoriasis was demonstrated in a cohort of 304 patients at three public hospitals from the metropolitan area of Barcelona. Taken together, these results provide new supportive evidence of the contribution of the CD6 lymphocyte receptor in psoriasis at both experimental and clinical levels.
Collapse
|
13
|
Consuegra-Fernández M, Martínez-Florensa M, Aranda F, de Salort J, Armiger-Borràs N, Lozano T, Casares N, Lasarte JJ, Engel P, Lozano F. Relevance of CD6-Mediated Interactions in the Regulation of Peripheral T-Cell Responses and Tolerance. Front Immunol 2017; 8:594. [PMID: 28611770 PMCID: PMC5447708 DOI: 10.3389/fimmu.2017.00594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/04/2017] [Indexed: 11/13/2022] Open
Abstract
The CD6 lymphocyte receptor has been involved in the pathophysiology of different autoimmune disorders and is now considered a feasible target for their treatment. In vitro data show the relevance of CD6 in the stabilization of adhesive contacts between T-cell and antigen-presenting cells, and the modulation of T-cell receptor signals. However, the in vivo consequences of such a function are yet undisclosed due to the lack of suitable genetically modified animal models. Here, the in vitro and in vivo challenge of CD6-deficient (CD6-/-) cells with allogeneic cells was used as an approach to explore the role of CD6 in immune responses under relative physiological stimulatory conditions. Mixed lymphocyte reaction (MLR) assays showed lower proliferative responses of splenocytes from CD6-/- mice together with higher induction of regulatory T cells (Treg, CD4+CD25+FoxP3+) with low suppressive activity on T and B-cell proliferation. In line with these results, CD6-/- mice undergoing a lupus-like disorder induced by chronic graft-versus-host disease (cGvHD) showed higher serum titers of anti-double-stranded DNA and nucleosome autoantibodies. This occurred together with reduced splenomegaly, which was associated with lower in vivo bromodesoxyuridine incorporation of spleen cells and with increased percentages of spleen follicular B cells (B2, CD21+CD23hi) and Treg cells. Interestingly, functional analysis of in vivo-generated CD6-/- Treg cells exhibited defective suppressive activity. In conclusion, the data from MLR and cGvHD-induced lupus-like models in CD6-/- mice illustrate the relevance of CD6 in T (and B) cell proliferative responses and, even more importantly, Treg induction and suppressive function in the in vivo maintenance of peripheral tolerance.
Collapse
Affiliation(s)
- Marta Consuegra-Fernández
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mario Martínez-Florensa
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fernando Aranda
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José de Salort
- Immunology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Noelia Armiger-Borràs
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan José Lasarte
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Pablo Engel
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Immunology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Immunology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain.,Immunology Department, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Genetic polymorphisms of cell adhesion molecules in Behcet's disease in a Chinese Han population. Sci Rep 2016; 6:24974. [PMID: 27108704 PMCID: PMC4842956 DOI: 10.1038/srep24974] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules (CAMs) are involved in various immune-mediated diseases. This study was conducted to investigate the association of single nucleotide polymorphisms (SNPs) of CAMs with Behçet’s disease (BD) in a Chinese Han population. A two-stage association study was carried out in 1149 BD patients and 2107 normal controls. Genotyping of 43 SNPs was performed using MassARRAY System (Sequenom), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP assays. The expression of CD6 and CD11c was examined by real-time PCR and cytokine production was measured by ELISA. A significantly higher frequency of the CT genotype, and a lower frequency of the CC genotype and C allele of CD6 rs11230563 were observed in BD as compared with controls. Analysis of CD11c rs2929 showed that patients with BD had a significantly higher frequency of the GG genotype and G allele, and a lower frequency of the AG genotype as compared with controls. Functional experiments showed an increased CD11c expression and increased production of TNF-α and IL-1beta by LPS stimulated PBMCs in GG carriers of CD11c rs2929 compared to AA/AG carriers. Our study provides evidence that CD6 and CD11c are involved in the susceptibility to BD in a Chinese Han population.
Collapse
|
15
|
D'Cunha MA, Pandit L, Malli C. CD6 gene polymorphism rs17824933 is associated with multiple sclerosis in Indian population. Ann Indian Acad Neurol 2016; 19:491-494. [PMID: 27994359 PMCID: PMC5144471 DOI: 10.4103/0972-2327.192384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Multiple sclerosis (MS) prevalence has increased worldwide. The known genetic association for MS in the west has not been studied in detail in nonwhite populations and particularly Indians. Objective: The objective of this study was to evaluate some known genetic variations outside the major histocompatibility complex (MHC) region associated with MS in patients of Indian origin. Materials and Methods: We investigated 10 gene-associated single nucleotide polymorphisms (SNP's) outside the MHC region in 300 patients and 720 unrelated controls. Genotyping was performed on an ABI7500 real-time polymerase chain reaction genotyping platform using predesigned TaqMan SNP genotyping assays. Results: CD6 gene associated SNP (rs17824933) showed significant association with MS (P = 4.2 × 10−5, odds ratio [OR] = 2.24, confidence interval (CI) = 1.51–3.33). A modest association was also noted for TMEM39A rs1132200 (P = 0.023, OR = 1.41, CI = 1.05–1.91) and IL2RA rs2104286 (P = 0.04, OR = 1.3, CI = 1.006–1.67). In the remaining SNPs, the allele frequencies were overexpressed in patients when compared to healthy controls. Conclusion: Our data illustrate the similarity in risk association between Indian and European populations for MS.
Collapse
Affiliation(s)
- Mary Anitha D'Cunha
- Center for Advanced Neurological Research, KS Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Lekha Pandit
- Center for Advanced Neurological Research, KS Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - Chaithra Malli
- Center for Advanced Neurological Research, KS Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| |
Collapse
|
16
|
Chappell PE, Garner LI, Yan J, Metcalfe C, Hatherley D, Johnson S, Robinson CV, Lea SM, Brown MH. Structures of CD6 and Its Ligand CD166 Give Insight into Their Interaction. Structure 2015; 23:1426-1436. [PMID: 26146185 PMCID: PMC4533223 DOI: 10.1016/j.str.2015.05.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 11/28/2022]
Abstract
CD6 is a transmembrane protein with an extracellular region containing three scavenger receptor cysteine rich (SRCR) domains. The membrane proximal domain of CD6 binds the N-terminal immunoglobulin superfamily (IgSF) domain of another cell surface receptor, CD166, which also engages in homophilic interactions. CD6 expression is mainly restricted to T cells, and the interaction between CD6 and CD166 regulates T-cell activation. We have solved the X-ray crystal structures of the three SRCR domains of CD6 and two N-terminal domains of CD166. This first structure of consecutive SRCR domains reveals a nonlinear organization. We characterized the binding sites on CD6 and CD166 and showed that a SNP in CD6 causes glycosylation that hinders the CD6/CD166 interaction. Native mass spectrometry analysis showed that there is competition between the heterophilic and homophilic interactions. These data give insight into how interactions of consecutive SRCR domains are perturbed by SNPs and potential therapeutic reagents. First structure of consecutive scavenger receptor cysteine rich domains in CD6 Structure of the two N-terminal domains of CD166 which is the ligand for CD6 Mapping binding sites on CD6 and CD166 Insight into how CD6 and its interactions are perturbed by polymorphisms and mAbs
Collapse
Affiliation(s)
- Paul E Chappell
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Lee I Garner
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jun Yan
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Clive Metcalfe
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Deborah Hatherley
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Marion H Brown
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
17
|
Wagner M, Bilinska M, Pokryszko-Dragan A, Sobczynski M, Cyrul M, Kusnierczyk P, Jasek M. ALCAM and CD6--multiple sclerosis risk factors. J Neuroimmunol 2014; 276:98-103. [PMID: 25216742 DOI: 10.1016/j.jneuroim.2014.08.621] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
ALCAM and CD6 may play an important role in the pathogenesis of multiple sclerosis (MS), since they are involved in the transmigration of leukocytes across the blood-brain barrier. In this study, we confirmed our previous findings about the association of the ALCAM gene with risk, development and progression of MS. Additionally, we showed that in the case of the CD6 gene (encoding receptor of ALCAM) not only polymorphisms but also mRNA expression level are associated with MS. Our analysis revealed that the risk of the disease for AA individuals in rs12360861 was almost 3.0-fold lower in comparison to GG individuals (OR=0.34; CI95%=0.12; 0.81). Moreover, we observed lower expression of CD6 mRNA in patients than in healthy individuals (T(2)2,74=6.678; p=0.002).
Collapse
Affiliation(s)
- M Wagner
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114 Wroclaw, Poland.
| | - M Bilinska
- Department and Clinic of Neurology, Wroclaw Medical University, Ul. Borowska 213, 50-566 Wroclaw, Poland
| | - A Pokryszko-Dragan
- Department and Clinic of Neurology, Wroclaw Medical University, Ul. Borowska 213, 50-566 Wroclaw, Poland
| | - M Sobczynski
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, Ul. Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - M Cyrul
- Department and Clinic of Neurology, Wroclaw Medical University, Ul. Borowska 213, 50-566 Wroclaw, Poland
| | - P Kusnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114 Wroclaw, Poland
| | - M Jasek
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
18
|
Malekzadeh A, Teunissen C. Recent progress in omics-driven analysis of MS to unravel pathological mechanisms. Expert Rev Neurother 2014; 13:1001-16. [PMID: 24053344 DOI: 10.1586/14737175.2013.835602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At present, the pathophysiology and specific biological markers reflecting pathology of multiple sclerosis (MS) remain undetermined. The risk of developing MS is considered to depend on genetic susceptibility and environmental factors. The interaction of environmental factors with epigenetic mechanisms could affect the transcriptional level and therefore also the translational level. In the last decade, growing amount of hypothesis-free 'omics' studies have shed light on the potential MS mechanisms and raised potential biomarker targets. To understand MS pathophysiology and discover a subset of biomarkers, it is becoming essential to take a step forward and integrate the findings of the different fields of 'omics' into a systems biology network. In this review, we will discuss the recent findings of the genomic, transcriptomic and proteomic fields for MS and aim to make a unifying model.
Collapse
Affiliation(s)
- Arjan Malekzadeh
- Department of Clinical Chemistry, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | |
Collapse
|