1
|
Minnaar IA, Hui C, Clusella-Trullas S. Jack, master or both? The invasive ladybird Harmonia axyridis performs better than a native coccinellid despite divergent trait plasticity. NEOBIOTA 2022. [DOI: 10.3897/neobiota.77.91402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasticity of performance traits can promote the success of biological invasions and therefore, precisely estimating trait reaction norms can help to predict the establishment and persistence of introduced species in novel habitats. Most studies focus only on a reduced set of traits and rarely include trait variability that may be vital to predicting establishment success. Here, using a split-brood full-sib design, we acclimated the globally invasive ladybird Harmonia axyridis and a native co-occurring and competing species Cheilomenes lunata to cold, medium and warm temperature regimes, and measured critical thermal limits, life-history traits, and starvation resistance. We used the conceptual framework of “Jack, Master or both” to test predictions regarding performance differences of these two species. The native C. lunata had a higher thermal plasticity of starvation resistance and a higher upper thermal tolerance than H. axyridis. By contrast, H. axyridis had a higher performance than C. lunata for preoviposition period, fecundity and adult emergence from pupae. We combined trait responses, transport duration and propagule pressure to predict the size of the populations established in a novel site following cold, medium and warm scenarios. Although C. lunata initially had a higher performance than the invasive species during transport, more individuals of H. axyridis survived in all simulated environments due to the combined life-history responses, and in particular, higher fecundity. Despite an increased starvation mortality in the warm scenario, given a sufficient propagule size, H. axyridis successfully established. This study underscores how the combination and plasticity of multiple performance traits can strongly influence establishment potential of species introduced into novel environments.
Collapse
|
2
|
Ortego J, Céspedes V, Millán A, Green AJ. Genomic data support multiple introductions and explosive demographic expansions in a highly invasive aquatic insect. Mol Ecol 2021; 30:4189-4203. [PMID: 34192379 DOI: 10.1111/mec.16050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 01/19/2023]
Abstract
The study of the genetic makeup and demographic fate of alien species is essential to understand their capacity to recover from founder effects, adapt to new environmental conditions and, ultimately, become invasive and potentially damaging. Here, we employ genomic data to gain insights into key demographic processes that might help to explain the extraordinarily successful invasion of the Western Mediterranean region by the North American boatman Trichocorixa verticalis (Hemiptera: Corixidae). Our analyses revealed the genetic distinctiveness of populations from the main areas comprising the invasive range and coalescent-based simulations supported that they originated from independent introductions events probably involving different source populations. Testing of alternative demographic models indicated that all populations experienced a strong bottleneck followed by a recent and instantaneous demographic expansion that restored a large portion (>30%) of their ancestral effective population sizes shortly after introductions took place (<60 years ago). Considerable genetic admixture of some populations suggest that hypothetical barriers to dispersal (i.e., land and sea water) are permeable to gene flow and/or that they originated from introductions involving multiple lineages. This study demonstrates the repeated arrival of propagules with different origins and short time lags between arrival and establishment, emphasizing the extraordinary capacity of the species to recover from founder effects and genetically admix in invaded areas. This can explain the demonstrated capacity of this aquatic insect to spread and outcompete native species once it colonizes new suitable regions. Future genomic analyses of native range populations could help to infer the genetic makeup of introduced populations and track invasion routes.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Vanessa Céspedes
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| |
Collapse
|
3
|
Arribas P, Gutiérrez-Cánovas C, Botella-Cruz M, Cañedo-Argüelles M, Antonio Carbonell J, Millán A, Pallarés S, Velasco J, Sánchez-Fernández D. Insect communities in saline waters consist of realized but not fundamental niche specialists. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2018.0008. [PMID: 30509910 DOI: 10.1098/rstb.2018.0008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Considering how organisms adapt to stress is essential if we are to anticipate biological responses to global change in ecosystems. Communities in stressful environments can potentially be assembled by specialists (i.e. species that only occur in a limited range of environmental conditions) and/or generalist species with wider environmental tolerances. We review the existing literature on the salinity tolerance of aquatic insects previously identified as saline specialists because they were exclusively found in saline habitats, and explore if these saline realized niche specialists are also specialists in their fundamental niches or on the contrary are fundamental niche generalist species confined to the highest salinities they can tolerate. The results suggest that species inhabiting saline waters are generalists in their fundamental niches, with a predominant pattern of high survival in freshwater-low salinity conditions, where their fitness tends to be similar or even higher than in saline waters. Additionally, their performance in freshwater tends to be similar to related strictly freshwater species, so no apparent trade-off of generalization is shown. These results are discussed in the framework of the ecological and evolutionary processes driving community assembly across the osmotic stress gradient, and their potential implications for predicting impacts from saline dilution and freshwater salinization.This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.
Collapse
Affiliation(s)
- Paula Arribas
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Canary Islands, Spain
| | - Cayetano Gutiérrez-Cánovas
- Grup de Recerca Freshwater Ecology and Management (FEM), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | - María Botella-Cruz
- Department of Ecology and Hydrology, University of Murcia, 30100 Murcia, Spain
| | - Miguel Cañedo-Argüelles
- Grup de Recerca Freshwater Ecology, Hydrology and Management (FEHM-LAB), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08028 Barcelona, Catalonia, Spain
| | | | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, 30100 Murcia, Spain
| | - Susana Pallarés
- Instituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Toledo, Spain
| | - Josefa Velasco
- Department of Ecology and Hydrology, University of Murcia, 30100 Murcia, Spain
| | - David Sánchez-Fernández
- Department of Ecology and Hydrology, University of Murcia, 30100 Murcia, Spain .,Instituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
4
|
O'Neill EM, Beard KH, Fox CW. Body Size and Life History Traits in Native and Introduced Populations of Coqui Frogs. COPEIA 2018. [DOI: 10.1643/ce-17-642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Céspedes V, Sánchez MI, Green AJ. Predator-prey interactions between native brine shrimp Artemia parthenogenetica and the alien boatman Trichocorixa verticalis: influence of salinity, predator sex, and size, abundance and parasitic status of prey. PeerJ 2017; 5:e3554. [PMID: 28713654 PMCID: PMC5508811 DOI: 10.7717/peerj.3554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/17/2017] [Indexed: 11/20/2022] Open
Abstract
Trichocorixa verticalis (T. verticalis), native to North America and the Caribbean islands, is an invasive waterboatman species (Corixidae) in the southwest of the Iberian Peninsula. Previous studies in the native range have suggested that predation by T. verticalis can regulate the abundance of Anostracan and Cladoceran zooplankton in saline ecosystems, causing increases in phytoplankton through a trophic cascade. In this experimental study, we tested the predator–prey relationship between the native brine shrimp Artemia parthenogenetica, and T. verticalis from the Odiel salt ponds in SW Spain. In three experiments, we investigated (1) the effects of Artemia life stage (metanauplii, juveniles, and adults), (2) abundance (three, six, and 12 adult Artemia) and (3) parasitic status (Artemia infected with avian cestodes or uninfected) on predation rates by T. verticalis. We also considered how predation rates in all three experiments were influenced by the sex of T. verticalis and by different salinities (25 and 55 g l−1). Experiment 1 showed that predation rates were highest for metanauplii, possibly because their photophilic behavior makes them more prone to predation. In Experiment 2, we found that predation rate was higher for female T. verticalis and the higher salinity, although the strength of the sex effect varied between treatments. Experiment 3 showed that T. verticalis selectively predated adult Artemia infected with cestodes (red in color), as previously reported for predation by avian final hosts. Collectively, these results indicate that T. verticalis are important predators in their introduced range, and are likely to reduce the abundance of Artemia in more salt ponds as they expand their range, thus increasing phytoplankton abundance through trophic cascades.
Collapse
Affiliation(s)
- Vanessa Céspedes
- Department of Wetland Ecology, Doñana Biological Station, Seville, Spain
| | - Marta I Sánchez
- Department of Wetland Ecology, Doñana Biological Station, Seville, Spain
| | - Andy J Green
- Department of Wetland Ecology, Doñana Biological Station, Seville, Spain
| |
Collapse
|
6
|
Rott KH, Caviedes-Vidal E, Karasov WH. Intestinal digestive enzyme modulation in house sparrow nestlings occurs within 24 hours of a change in diet composition. J Exp Biol 2017; 220:2733-2742. [DOI: 10.1242/jeb.157511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/08/2017] [Indexed: 11/20/2022]
Abstract
Nestling house sparrows near fledging age (12 days) were previously found to reversibly modulate the activity of their intestinal digestive enzymes in response to changes in diet composition. However, it is not known how quickly nestlings can adjust to new diets with different substrate compositions, nor is it known how early in life nestlings can modulate their enzyme activity in response to changes in diet. In the current study, 3-day-old nestlings were captured from the wild and fed and switched among contrasting diets – one high in protein and low in carbohydrate and another higher in carbohydrate and with lower but adequate protein – in order to determine (1) how quickly house sparrow nestlings could adjust to changes in diet composition, (2) how early in life nestlings could modulate their digestive enzyme activity in response to these changes, and (3) which digestive enzymes could be modulated in house sparrow nestlings earlier in life. We found that house sparrow nestlings as young as three days post-hatch were capable of modulating their intestinal disaccharidase activity within 24 hours of a change in diet composition, and nestlings gained the ability to modulate aminopeptidase-N by six or seven days of age. To our knowledge, this is the first evidence of digestive enzyme modulation completed within 24 hours of a change in diet in an avian species and the first study to show intestinal digestive enzyme modulation in response to changes in diet composition in any animal this early in development.
Collapse
Affiliation(s)
- Katherine H. Rott
- Department of Zoology, University of Wisconsin, 250 N Mills Street, Madison, WI 53706, USA
| | - Enrique Caviedes-Vidal
- Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700 San Luis, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, 5700 San Luis, Argentina
| | - William H. Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
7
|
Pallarés S, Botella-Cruz M, Arribas P, Millán A, Velasco J. Aquatic insects in a multistress environment: cross-tolerance to salinity and desiccation. J Exp Biol 2017; 220:1277-1286. [DOI: 10.1242/jeb.152108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/16/2017] [Indexed: 01/09/2023]
Abstract
Exposing organims to a particular stressor may enhance tolerance to a subsequent stress, when protective mechanisms against both stressors are shared. Such cross-tolerance is a common adaptive response in dynamic multivariate environments and often indicates potential co-evolution of stress traits. Many aquatic insects in inland saline waters from Mediterranean-climate regions are sequentially challenged with salinity and desiccation stress. Thus, cross-tolerance to these physiologically similar stressors could have been positively selected in insects of these regions. We used adults of the saline water beetles Enochrus jesusarribasi (Hydrophilidae) and Nebrioporus baeticus (Dytiscidae) to test cross-tolerance responses to desiccation and salinity. In independent laboratory experiments, we evaluated the effects of i) salinity stress on the subsequent resistance to desiccation and ii) desiccation stress (rapid and slow dehydration) on the subsequent tolerance to salinity. Survival, water loss and haemolymph osmolality were measured. Exposure to stressful salinity improved water control under subsequent desiccation stress in both species, with a clear cross-tolerance (enhanced performance) in N. baeticus. In contrast, general negative effects on performance were found under the inverse stress sequence. The rapid and slow dehydration produced different water loss and haemolymph osmolality dynamics that were reflected in different survival patterns. Our finding of cross-tolerance to salinity and desiccation in ecologically similar species from distant lineages, together with parallel responses between salinity and thermal stress previously found in several aquatic taxa, highlights the central role of adaption to salinity and co-occurring stressors in arid inland waters, having important implications for the species' persistence under climate change.
Collapse
Affiliation(s)
- Susana Pallarés
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - María Botella-Cruz
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Paula Arribas
- Department of Life Sciences, Natural History Museum London, London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Island Ecology and Evolution Research Group, IPNA-CSIC, La Laguna, Spain
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Josefa Velasco
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| |
Collapse
|
8
|
Kopecký O, Patoka J, Kalous L. Establishment risk and potential invasiveness of the selected exotic amphibians from pet trade in the European Union. J Nat Conserv 2016. [DOI: 10.1016/j.jnc.2016.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Plasticity-mediated persistence in new and changing environments. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:416497. [PMID: 25386380 PMCID: PMC4216699 DOI: 10.1155/2014/416497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/18/2022]
Abstract
Baldwin's synthesis of the Organicist position, first published in 1896 and elaborated in 1902, sought to rescue environmentally induced phenotypes from disrepute by showing their Darwinian significance. Of particular interest to Baldwin was plasticity's mediating role during environmental change or colonization—plastic individuals were more likely to successfully survive and reproduce in new environments than were nonplastic individuals. Once a population of plastic individuals had become established, plasticity could further mediate the future course of evolution. The evidence for plasticity-mediated persistence (PMP) is reviewed here with a particular focus on evolutionary rescue experiments, studies on invasive success, and the role of learning in survival. Many PMP studies are methodologically limited, showing that preexistent plasticity has utility in new environments (soft PMP) rather than directly demonstrating that plasticity is responsible for persistence (hard PMP). An ideal PMP study would be able to demonstrate that (1) plasticity preexisted environmental change, (2) plasticity was fortuitously beneficial in the new environment, (3) plasticity was responsible for individual persistence in the new environment, and (4) plasticity was responsible for population persistence in succeeding generations. Although PMP is not ubiquitous, Baldwin's hypotheses have been largely vindicated in theoretical and empirical studies, but much work remains.
Collapse
|
10
|
Ecophysiology of native and alien-invasive clams in an ocean warming context. Comp Biochem Physiol A Mol Integr Physiol 2014; 175:28-37. [DOI: 10.1016/j.cbpa.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 02/02/2023]
|