1
|
Space, the original frontier. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
|
3
|
Abstract
Functional lateralisation in the avian visual system can be easily studied by testing monocularly occluded birds. The sun compass is a critical source of navigational information in birds, but studies of visual asymmetry have focussed on cues in a laboratory rather than a natural setting. We investigate functional lateralisation of sun compass use in the visual system of homing pigeons trained to locate food in an outdoor octagonal arena, with a coloured beacon in each sector and a view of the sun. The arena was rotated to introduce a cue conflict, and the experimental groups, a binocular treatment and two monocular treatments, were tested for their directional choice. We found no significant difference in test orientation between the treatments, with all groups showing evidence of both sun compass and beacon use, suggesting no complete functional lateralisation of sun compass use within the visual system. However, reduced directional consistency of binocular vs. monocular birds may reveal a conflict between the two hemispheres in a cue conflict condition. Birds using the right hemisphere were more likely to choose the intermediate sector between the training sector and the shifted training beacon, suggesting a possible asymmetry in favour of the left eye/right hemisphere (LE/RH) when integrating different cues.
Collapse
|
4
|
Padget O, Bond SL, Kavelaars MM, van Loon E, Bolton M, Fayet AL, Syposz M, Roberts S, Guilford T. In Situ Clock Shift Reveals that the Sun Compass Contributes to Orientation in a Pelagic Seabird. Curr Biol 2018; 28:275-279.e2. [PMID: 29337074 DOI: 10.1016/j.cub.2017.11.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 10/18/2022]
Abstract
Compass orientation is central to the control of animal movement from the scale of local food-caching movements around a familiar area in parids [1] and corvids [2, 3] to the first autumn vector navigation of songbirds embarking on long-distance migration [4-6]. In the study of diurnal birds, where the homing pigeon, Columba livia, has been the main model, a time-compensated sun compass [7] is central to the two-step map-and-compass process of navigation from unfamiliar places, as well as guiding movement via a representation of familiar area landmarks [8-12]. However, its use by an actively navigating wild bird is yet to be shown. By phase shifting an animal's endogenous clock, known as clock-shifting [13-15], sun-compass use can be demonstrated when the animal incorrectly consults the sun's azimuthal position while homing after experimental displacement [15-17]. By applying clock-shift techniques at the nest of a wild bird during natural incubation, we show here that an oceanic navigator-the Manx shearwater, Puffinus puffinus-incorporates information from a time-compensated sun compass during homeward guidance to the breeding colony after displacement. Consistently with homing pigeons navigating within their familiar area [8, 9, 11, 18], we find that the effect of clock shift, while statistically robust, is partial in nature, possibly indicating the incorporation of guidance from landmarks into movement decisions.
Collapse
Affiliation(s)
- Oliver Padget
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| | - Sarah L Bond
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Marwa M Kavelaars
- Behavioural Ecology and Ecophysiology Group, University of Antwerp, Universiteitsplein, Wilrijk, Antwerp, Belgium
| | - Emiel van Loon
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, Netherlands
| | - Mark Bolton
- RSPB Centre for Conservation Science, The Lodge, Sandy, Bedfordshire SG19 2DL, UK
| | - Annette L Fayet
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Martyna Syposz
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
| | - Stephen Roberts
- Machine Learning Research Group, Information Engineering Building, Engineering Science, Parks Rd., University of Oxford, Oxford OX1 3PJ, UK
| | - Tim Guilford
- Department of Zoology, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK.
| |
Collapse
|
5
|
Beason RC, Wiltschko W. Cues indicating location in pigeon navigation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:961-7. [PMID: 26149606 DOI: 10.1007/s00359-015-1027-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/06/2015] [Accepted: 06/19/2015] [Indexed: 11/24/2022]
Abstract
Domesticated Rock Pigeons (Columba livia f. domestica) have been selected for returning home after being displaced. They appear to use many of the physical cue sources available in the natural environment for Map-and-Compass navigation. Two compass mechanisms that have been well documented in pigeons are a time-compensated sun compass and a magnetic inclination compass. Location-finding, or map, mechanisms have been more elusive. Visual landmarks, magnetic fields, odors, gravity and now also infrasound have been proposed as sources of information on location. Even in highly familiar locations, pigeons appear to neither use nor need landmarks and can even return to the loft while wearing frosted lenses. Direct and indirect evidence indicates magnetic field information influences pigeon navigation in ways that are consistent with magnetic map components. The role of odors is unclear; it might be motivational in nature rather than navigational. The influence of gravity must be further analyzed. Experiments with infrasound have been interpreted in the sense that they provide information on the home direction, but this hypothesis is inconsistent with the Map-and-Compass Model. All these factors appear to be components of a multifactorial system, with the pigeons being opportunistic, preferring those cues that prove most suitable in their home region. This has made understanding the roles of individual cues challenging.
Collapse
Affiliation(s)
| | - Wolfgang Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Max-von-Laue-Straße 113, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Wiltschko R, Wiltschko W. Avian Navigation: A Combination of Innate and Learned Mechanisms. ADVANCES IN THE STUDY OF BEHAVIOR 2015. [DOI: 10.1016/bs.asb.2014.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Guilford T, Taylor GK. The sun compass revisited. Anim Behav 2014; 97:135-143. [PMID: 25389374 PMCID: PMC4222775 DOI: 10.1016/j.anbehav.2014.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/15/2014] [Accepted: 08/08/2014] [Indexed: 02/04/2023]
Abstract
Many animals, and birds in particular, are thought to use directional information from the sun in the form of a time-compensated sun compass, with predictably deviated orientation under clock shift being regarded as the litmus test of this. We suggest that this paradigm obscures a number of other ways in which solar-derived information could be important in animal orientation. We distinguish between the known use of the sun's azimuth to provide absolute geographical direction (compass mechanism) and its possible use to detect changes in heading (heading indicator mechanism). Just as in an aircraft, these two kinds of information may be provided by separate mechanisms and used for different functions, for example for navigation versus steering. We also argue that although a solar compass must be time-referenced to account for the sun's apparent diurnal movement, this need not entail full time compensation. This is because animals might also use time-dependent solar information in an associatively acquired, and hence time-limited, way. Furthermore, we show that a solar heading indicator, when used on a sufficiently short timescale, need not require time compensation at all. Finally, we suggest that solar-derived cues, such as shadows, could also be involved in navigation in ways that depend explicitly upon position, and are therefore not strictly compass-related. This could include giving directionality to landmarks, or acting as time-dependent landmarks involved in place recognition. We conclude that clock shift experiments alone are neither necessary nor sufficient to identify the occurrence of all conceivable uses of solar information in animal orientation, so that a predictable response to clock shift should not be regarded as an acid test of the use of solar information in navigation.
Collapse
Affiliation(s)
- Tim Guilford
- Animal Behaviour Research Group, Department of Zoology, University of Oxford, Oxford, U.K
| | - Graham K Taylor
- Animal Behaviour Research Group, Department of Zoology, University of Oxford, Oxford, U.K
| |
Collapse
|
8
|
Abstract
Homing pigeons (Columba livia) have been the central model of avian navigation research for many decades, but only more recently has research extended into understanding their mechanisms of orientation in the familiar area. The discovery (facilitated by GPS tracking) that pigeons gradually acquire with experience individually idiosyncratic routes home to which they remain faithful on repeated releases, even if displaced off-route, has helped uncover the fundamental role of familiar visual landmarks in the avian familiar area map. We evaluate the robustness and generality of the route-following phenomenon by examining extant studies in depth, including the single published counter-example, providing a detailed comparison of route efficiencies, flight corridor widths and fidelity. We combine this analysis with a review of inferences that can be drawn from other experimental approaches to understanding the nature of familiar area orientation in pigeons, including experiments on landmark recognition, and response to clock-shift, to build the first detailed picture of how bird orientation develops with experience of the familiar area. We articulate alternative hypotheses for how guidance might be controlled during route following, concluding that although much remains unknown, the details of route following strongly support a pilotage interpretation. Predictable patterns of efficiency increase, but limited to the local route, typical corridor widths of 100-200 m, high-fidelity pinch-points on route, attraction to landscape edges, and a robustness to clock-shift procedures, all demonstrate that birds can associatively acquire a map of their familiar area guided (at least partially) by direct visual control from memorised local landscape features.
Collapse
Affiliation(s)
- Tim Guilford
- Animal Behaviour Research Group, Department of Zoology, South Parks Road, Oxford OX1 3PS, UK
| | | |
Collapse
|
9
|
Jacobs LF, Menzel R. Navigation outside of the box: what the lab can learn from the field and what the field can learn from the lab. MOVEMENT ECOLOGY 2014; 2:3. [PMID: 25520814 PMCID: PMC4267593 DOI: 10.1186/2051-3933-2-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/30/2013] [Indexed: 06/04/2023]
Abstract
Space is continuous. But the communities of researchers that study the cognitive map in non-humans are strangely divided, with debate over its existence found among behaviorists but not neuroscientists. To reconcile this and other debates within the field of navigation, we return to the concept of the parallel map theory, derived from data on hippocampal function in laboratory rodents. Here the cognitive map is redefined as the integrated map, which is a construction of dual mechanisms, one based on directional cues (bearing map) and the other on positional cues (sketch map). We propose that the dual navigational mechanisms of pigeons, the navigational map and the familiar area map, could be homologous to these mammalian parallel maps; this has implications for both research paradigms. Moreover, this has implications for the lab. To create a bearing map (and hence integrated map) from extended cues requires self-movement over a large enough space to sample and model these cues at a high resolution. Thus a navigator must be able to move freely to map extended cues; only then should the weighted hierarchy of available navigation mechanisms shift in favor of the integrated map. Because of the paucity of extended cues in the lab, the flexible solutions allowed by the integrated map should be rare, despite abundant neurophysiological evidence for the existence of the machinery needed to encode and map extended cues through voluntary movement. Not only do animals need to map extended cues but they must also have sufficient information processing capacity. This may require a specific ontogeny, in which the navigator's nervous system is exposed to naturally complex spatial contingencies, a circumstance that occurs rarely, if ever, in the lab. For example, free-ranging, flying animals must process more extended cues than walking animals and for this reason alone, the integrated map strategy may be found more reliably in some species. By taking concepts from ethology and the parallel map theory, we propose a path to directly integrating the three great experimental paradigms of navigation: the honeybee, the homing pigeon and the laboratory rodent, towards the goal of a robust, unified theory of animal navigation.
Collapse
Affiliation(s)
- Lucia F Jacobs
- />Department of Psychology, University of California, Mailcode 1650, Berkeley, CA 94520-1650 USA
| | - Randolf Menzel
- />Institut für Biologie, Freie Universität, Königin-Luise-Strasse 28/30, 14195 Berlin, Germany
| |
Collapse
|
10
|
Schiffner I, Fuhrmann P, Wiltschko R. Homing flights of pigeons in the Frankfurt region: the effect of distance and local experience. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|