1
|
Ren X, Wang M, Du J, Dai Y, Dang L, Li Z, Shu J. Glycans in the oral bacteria and fungi: Shaping host-microbe interactions and human health. Int J Biol Macromol 2024; 282:136932. [PMID: 39490874 DOI: 10.1016/j.ijbiomac.2024.136932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The human oral cavity serves as the natural entry port to both the gastrointestinal and respiratory tracts, and hosts a diverse microbial community essential for maintaining health. Dysbiosis of this microbiome can lead to various diseases. Glycans, as vital carriers of biological information, are indispensable structural components of living organisms and play key roles in numerous biological processes. In the oral microbiome, glycans influence microbial binding to host receptors, promote colonization, and mediate communication among microbial communities, as well as between microbes and the host immune system. Targeting glycans may provide innovative strategies for modulating the composition of the oral microbiome, with broader implications for human health. Additionally, exogenous glycans regulate the oral microbiome by serving as carbon and energy sources for microbes, while certain specific glycans can inhibit microbial growth and activity. This review summarizes glycosylation pathways in oral bacteria and fungi, explores the regulation of host-microbiota interactions by glycans, and discusses the effects of exogenous glycans on oral microbiome. The review aims to highlight the multifaceted role of glycans in shaping the oral microbiome and its impact on the host, while also indicates potential future applications.
Collapse
Affiliation(s)
- Xiameng Ren
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Min Wang
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Jiabao Du
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Yu Dai
- School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Zheng Li
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Jian Shu
- Laboratory for Functional Glycomics, Faculty of Life Science & Medicine, Northwest University, Xi'an, China; School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Hager-Mair FF, Bloch S, Schäffer C. Glycolanguage of the oral microbiota. Mol Oral Microbiol 2024; 39:291-320. [PMID: 38515284 DOI: 10.1111/omi.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
The oral cavity harbors a diverse and dynamic bacterial biofilm community which is pivotal to oral health maintenance and, if turning dysbiotic, can contribute to various diseases. Glycans as unsurpassed carriers of biological information are participating in underlying processes that shape oral health and disease. Bacterial glycoinfrastructure-encompassing compounds as diverse as glycoproteins, lipopolysaccharides (LPSs), cell wall glycopolymers, and exopolysaccharides-is well known to influence bacterial fitness, with direct effects on bacterial physiology, immunogenicity, lifestyle, and interaction and colonization capabilities. Thus, understanding oral bacterias' glycoinfrastructure and encoded glycolanguage is key to elucidating their pathogenicity mechanisms and developing targeted strategies for therapeutic intervention. Driven by their known immunological role, most research in oral glycobiology has been directed onto LPSs, whereas, recently, glycoproteins have been gaining increased interest. This review draws a multifaceted picture of the glycolanguage, with a focus on glycoproteins, manifested in prominent oral bacteria, such as streptococci, Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum. We first define the characteristics of the different glycoconjugate classes and then summarize the current status of knowledge of the structural diversity of glycoconjugates produced by oral bacteria, describe governing biosynthetic pathways, and list biological roles of these energetically costly compounds. Additionally, we highlight emerging research on the unraveling impact of oral glycoinfrastructure on dental caries, periodontitis, and systemic conditions. By integrating current knowledge and identifying knowledge gaps, this review underscores the importance of studying the glycolanguage oral bacteria speak to advance our understanding of oral microbiology and develop novel antimicrobials.
Collapse
Affiliation(s)
- Fiona F Hager-Mair
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, NanoGlycobiology Research Group, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
3
|
Liu H, Huang L, Cai Y, Bikker FJ, Wei X, Mei Deng D. A novel gingipain regulatory gene in Porphyromonas gingivalis mediates host cell detachment and inhibition of wound closure. Microbiologyopen 2020; 9:e1128. [PMID: 33047890 PMCID: PMC7755767 DOI: 10.1002/mbo3.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/09/2022] Open
Abstract
The black pigmentation-related genes in Porphyromonas gingivalis are primarily involved in regulating gingipain functions. In this study, we identified a pigmentation-related gene, designated as pgn_0361. To characterize the role of pgn_0361 in regulating P. gingivalis-mediated epithelial cell detachment and inhibition of wound closure, PgΔ0361, an isogenic pgn_0361-defective mutant strain, and PgΔ0361C, a complementation strain, were constructed using P. gingivalis ATCC 33277. The gingipain and hemagglutination activities, as well as biofilm formation, were examined in all three strains. The effect of P. gingivalis strains on epithelial cell detachment was investigated using the HO-1-N-1 and Ca9-22 epithelial cell lines. The inhibition of wound closure by heat-killed P. gingivalis cells and culture supernatant was analyzed using an in vitro wound closure assay. Compared to the wild-type strain, the PgΔ0361 strain did not exhibit gingipain or hemagglutination activity but exhibited enhanced biofilm formation. Additionally, the PgΔ0361 strain exhibited attenuated ability to detach the epithelial cells and to inhibit wound closure in vitro. Contrastingly, the culture supernatant of PgΔ0361 exhibited high gingipain activity and strong inhibition of wound closure. The characteristics of PgΔ0361C and wild-type strains were comparable. In conclusion, the pgn_0361 gene is involved in regulating gingipains. The PGN_0361-defective strain exhibited reduced virulence in terms of epithelial cell detachment and inhibition of wound closure. The culture supernatant of the mutant strain highly inhibited wound closure, which may be due to high gingipain activity.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Huang
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Yanling Cai
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, Free University and University of Amsterdam, Amsterdam, The Netherlands
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Dong Mei Deng
- Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
4
|
Muthiah AS, Aruni W, Robles AG, Dou Y, Roy F, Fletcher HM. Correction: In Porphyromonas gingivalis VimF Is Involved in Gingipain Maturation through the Transfer of Galactose. PLoS One 2019; 14:e0223145. [PMID: 31545847 PMCID: PMC6756511 DOI: 10.1371/journal.pone.0223145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Naito M, Tominaga T, Shoji M, Nakayama K. PGN_0297 is an essential component of the type IX secretion system (T9SS) in Porphyromonas gingivalis: Tn-seq analysis for exhaustive identification of T9SS-related genes. Microbiol Immunol 2019; 63:11-20. [PMID: 30599082 PMCID: PMC6590471 DOI: 10.1111/1348-0421.12665] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
Abstract
The type IX secretion system (T9SS) was originally discovered in Porphyromonas gingivalis, one of the pathogenic bacteria associated with periodontal disease and is now known to be present in many members of the phylum Bacteroidetes. The T9SS secretes a number of potent virulence factors, including the highly hydrolytic proteases called gingipains, across the outer membrane in P. gingivalis. To understand the entire machinery of T9SS, an exhaustive search for T9SS‐related genes in P. gingivalis using the mariner family transposon (Tn) and Tn‐seq analysis was performed. Seven hundred and two Tn insertion sites in Tn mutants with no colony pigmentation that is associated with Lys‐gingipain (Kgp) defectiveness were determined, and it was found that the Tn was inserted in the kgp gene and 54 T9SS‐related candidate genes. Thirty‐three out of the 54 genes were already known as T9SS‐related genes. Furthermore, deletion mutant analysis of the remaining 21 genes revealed that they were not related to the T9SS. The 33 T9SS‐related genes include a gene for PGN_0297, which was found to be associated with the T9SS components PorK and PorN. A PGN_0297 gene deletion mutant was constructed, and it was found that the mutant showed no colony pigmentation, hemagglutination or gingipain activities, indicating that PGN_0297 was an essential component of the T9SS. The 33 genes did not include the six genes (gppX, omp17, porY, rfa, sigP and wzx) that were also reported as T9SS‐related genes. gppX deletion and insertion mutants were constructed, and it was found that they did not show deficiency in the T9SS.
Collapse
Affiliation(s)
- Mariko Naito
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| | - Takashi Tominaga
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki City, Nagasaki, 852-8588, Japan
| |
Collapse
|
6
|
Dou Y, Rutanhira H, Chen X, Mishra A, Wang C, Fletcher HM. Role of extracytoplasmic function sigma factor PG1660 (RpoE) in the oxidative stress resistance regulatory network of Porphyromonas gingivalis. Mol Oral Microbiol 2017; 33:89-104. [PMID: 29059500 DOI: 10.1111/omi.12204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
Abstract
In Porphyromonas gingivalis, the protein PG1660, composed of 174 amino acids, is annotated as an extracytoplasmic function (ECF) sigma factor (RpoE homologue-σ24). Because PG1660 can modulate several virulence factors and responds to environmental signals in P. gingivalis, its genetic properties were evaluated. PG1660 is co-transcribed with its downstream gene PG1659, and the transcription start site was identified as adenine residue 54-nucleotides upstream of the ATG translation start codon. In addition to binding its own promoter, using the purified rPG1660 and RNAP core enzyme from Escherichia coli with the PG1660 promoter DNA as template, the function of PG1660 as a sigma factor was demonstrated in an in vitro transcription assay. Transcriptome analyses of a P. gingivalis PG1660-defective isogenic mutant revealed that under oxidative stress conditions 176 genes including genes involved in secondary metabolism were downregulated more than two-fold compared with the parental strain. The rPG1660 protein also showed the ability to bind to the promoters of the highly downregulated genes in the PG1660-deficient mutant. As the ECF sigma factor PG0162 has a 29% identity with PG1660 and can modulate its expression, the cross-talk between their regulatory networks was explored. The expression profile of the PG0162PG1660-deficient mutant (P. gingivalis FLL356) revealed that the type IX secretion system genes and several virulence genes were downregulated under hydrogen peroxide stress conditions. Taken together, we have confirmed that PG1660 can function as a sigma factor, and plays an important regulatory role in the oxidative stress and virulence regulatory network of P. gingivalis.
Collapse
Affiliation(s)
- Y Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - H Rutanhira
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - X Chen
- Department of Basic Sciences, School of Medicine, Center for Genomics, Loma Linda University, Loma Linda, CA, USA
| | - A Mishra
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - C Wang
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Basic Sciences, School of Medicine, Center for Genomics, Loma Linda University, Loma Linda, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
7
|
Shoji M, Sato K, Yukitake H, Kamaguchi A, Sasaki Y, Naito M, Nakayama K. Identification of genes encoding glycosyltransferases involved in lipopolysaccharide synthesis inPorphyromonas gingivalis. Mol Oral Microbiol 2017; 33:68-80. [DOI: 10.1111/omi.12200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/16/2022]
Affiliation(s)
- M. Shoji
- Department of Microbiology and Oral Infection; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - K. Sato
- Department of Microbiology and Oral Infection; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - H. Yukitake
- Department of Microbiology and Oral Infection; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - A. Kamaguchi
- Department of Oral Microbiology; School of Dentistry; Health Sciences University of Hokkaido; Hokkaido Japan
| | - Y. Sasaki
- Department of Microbiology and Oral Infection; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - M. Naito
- Department of Microbiology and Oral Infection; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - K. Nakayama
- Department of Microbiology and Oral Infection; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| |
Collapse
|
8
|
Huang L, van Loveren C, Ling J, Wei X, Crielaard W, Deng DM. Epithelial cell detachment by Porphyromonas gingivalis biofilm and planktonic cultures. BIOFOULING 2016; 32:489-496. [PMID: 26963862 DOI: 10.1080/08927014.2016.1148693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Porphyromonas gingivalis is present as a biofilm at the sites of periodontal infections. The detachment of gingival epithelial cells induced by P. gingivalis biofilms was examined using planktonic cultures as a comparison. Exponentially grown planktonic cultures or 40-h biofilms were co-incubated with epithelial cells in a 24-well plate for 4 h. Epithelial cell detachment was assessed using imaging. The activity of arginine-gingipain (Rgp) and gene expression profiles of P. gingivalis cultures were examined using a gingipain assay and quantitative PCR, respectively. P. gingivalis biofilms induced significantly higher cell detachment and displayed higher Rgp activity compared to the planktonic cultures. The genes involved in gingipain post-translational modification, but not rgp genes, were significantly up-regulated in P. gingivalis biofilms. The results underline the importance of including biofilms in the study of bacterial and host cell interactions.
Collapse
Affiliation(s)
- Lijia Huang
- a Department of Operative Dentistry and Endodontics , Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou , PR China
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands
| | - Cor van Loveren
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands
| | - Junqi Ling
- a Department of Operative Dentistry and Endodontics , Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou , PR China
- c Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| | - Xi Wei
- a Department of Operative Dentistry and Endodontics , Guanghua School of Stomatology, Sun Yat-sen University , Guangzhou , PR China
| | - Wim Crielaard
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands
| | - Dong Mei Deng
- b Department of Preventive Dentistry , Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam , Amsterdam , The Netherlands
- c Guangdong Provincial Key Laboratory of Stomatology , Sun Yat-sen University , Guangzhou , PR China
| |
Collapse
|
9
|
Shoji M, Nakayama K. Glycobiology of the oral pathogen Porphyromonas gingivalis and related species. Microb Pathog 2015; 94:35-41. [PMID: 26456570 DOI: 10.1016/j.micpath.2015.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/22/2022]
Abstract
Until recently, glycoproteins had only been described in eukaryotes. However, advances in detection methods and genome analyses have allowed the discovery of N-linked or O-linked glycoproteins, similar to those found in eukaryotes, in some bacterial species. These prokaryotic glycoproteins play roles in adhesion, solubility, formation of protein complexes, protection from protein degradation, and changes in antigenicity. Periodontal pathogen Porphyromonas gingivalis secretes virulence proteins via the type IX secretion system, some of which localize on the cell surface by binding to lipopolysaccharide (LPS). These virulence proteins have a conserved C-terminal domain (CTD) region, which is used as a secretion signal. However, it is still uncertain how the secreted proteins on the cell surface bind to LPS. In this review, we discuss the synthesis of P. gingivalis O polysaccharide, which plays a role in anchoring the CTD protein on the cell surface, and recent discoveries of glycoproteins in P. gingivalis as well as other species in the phylum Bacteroidetes.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan.
| |
Collapse
|
10
|
Dou Y, Robles A, Roy F, Aruni AW, Sandberg L, Nothnagel E, Fletcher HM. The roles of RgpB and Kgp in late onset gingipain activity in the vimA-defective mutant of Porphyromonas gingivalis W83. Mol Oral Microbiol 2015; 30:347-60. [PMID: 25858089 DOI: 10.1111/omi.12098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that VimA, an acetyltransferase, can modulate gingipain biogenesis in Porphyromonas gingivalis. Inactivation of the vimA gene resulted in isogenic mutants that showed a late onset of gingipain activity that only occurred during the stationary growth phase. To further elucidate the role and contribution of the gingipains in this VimA-dependent process, isogenic mutants defective in the gingipain genes in the vimA-deficient genetic background were evaluated. In contrast with the wild-type strain, RgpB and Kgp gingipain activities were absent in exponential phase in the ∆rgpA::tetQ-vimA::ermF mutant. However, these activities increased to 31 and 53%, respectively, of that of the wild-type during stationary phase. In the ∆rgpA::cat-∆kgp::tetQ-vimA::ermF mutant, the RgpB protein was observed in the extracellular fraction but no activity was present even at the stationary growth phase. There was no gingipain activity observed in the ∆rgpB::cat-∆kgp::tetQ-vimA::ermF mutant whereas Kgp activity in ∆rgpA::cat-∆rgpB::tetQ-vimA::ermF mutant was 24% of the wild-type at late stationary phase. In contrast to RgpA, the glycosylation profile of the RgpB catalytic domain from both W83 and P. gingivalis FLL92 (vimA::ermF) showed similarity. Taken together, the results suggest multiple gingipain activation pathways in P. gingivalis. Whereas the maturation pathways for RgpA and RgpB are different, the late-onset gingipain activity in the vimA-defective mutant was due to activation/maturation of RgpB and Kgp. Moreover, unlike RgpA, which is VimA-dependent, the maturation/activation pathways for RgpB and Kgp are interdependent in the absence VimA.
Collapse
Affiliation(s)
- Y Dou
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - A Robles
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - F Roy
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - A W Aruni
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - L Sandberg
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - E Nothnagel
- Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
11
|
Saiki K, Konishi K. Assembly and function of PG27/LptO, PG0026, and HagA in the secretion and modification system of C-terminal domain proteins. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Involvement of PG2212 zinc finger protein in the regulation of oxidative stress resistance in Porphyromonas gingivalis W83. J Bacteriol 2014; 196:4057-70. [PMID: 25225267 DOI: 10.1128/jb.01907-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adaptation of Porphyromonas gingivalis to H2O2-induced stress while inducible is modulated by an unknown OxyR-independent mechanism. Previously, we reported that the PG_2212 gene was highly upregulated in P. gingivalis under conditions of prolonged oxidative stress. Because this gene may have regulatory properties, its function in response to H2O2 was further characterized. PG2212, annotated as a hypothetical protein of unknown function, is a 10.3-kDa protein with a cysteine 2-histidine 2 (Cys2His2) zinc finger domain. The isogenic mutant P. gingivalis FLL366 (ΔPG_2212) showed increased sensitivity to H2O2 and decreased gingipain activity compared to the parent strain. Transcriptome analysis of P. gingivalis FLL366 revealed that approximately 11% of the genome displayed altered expression (130 downregulated genes and 120 upregulated genes) in response to prolonged H2O2-induced stress. The majority of the modulated genes were hypothetical or of unknown function, although some are known to participate in oxidative stress resistance. The promoter region of several of the most highly modulated genes contained conserved motifs. In electrophoretic mobility shift assays, the purified rPG2212 protein did not bind its own promoter region but bound a similar region in several of the genes modulated in the PG_2212-deficient mutant. A metabolome analysis revealed that PG2212 can regulate a number of genes coding for proteins involved in metabolic pathways critical for its survival under the conditions of oxidative stress. Collectively, our data suggest that PG2212 is a transcriptional regulator that plays an important role in oxidative stress resistance and virulence regulation in P. gingivalis.
Collapse
|
13
|
Shoji M, Sato K, Yukitake H, Naito M, Nakayama K. Involvement of the Wbp pathway in the biosynthesis of Porphyromonas gingivalis lipopolysaccharide with anionic polysaccharide. Sci Rep 2014; 4:5056. [PMID: 24852504 PMCID: PMC4031482 DOI: 10.1038/srep05056] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/06/2014] [Indexed: 11/15/2022] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis has two different lipopolysaccharide (LPS) molecules, O-LPS and A-LPS. We have recently shown that P. gingivalis strain HG66 lacks A-LPS. Here, we found that introduction of a wild-type wbpB gene into strain HG66 restored formation of A-LPS. Sequencing of the wbpB gene from strain HG66 revealed the presence of a nonsense mutation in the gene. The wbpB gene product is a member of the Wbp pathway, which plays a role in the synthesis of UDP-ManNAc(3NAc)A in Pseudomonas aeruginosa; UDP-ManNAc(3NAc)A is sequentially synthesized by the WbpA, WbpB, WbpE, WbpD and WbpI proteins. We then determined the effect of the PGN_0002 gene, a wbpD homolog, on the biosynthesis of A-LPS. A PGN_0002-deficient mutant demonstrated an A-LPS biosynthesis deficiency. Taken together with previous studies, the present results suggest that the final product synthesized by the Wbp pathway is one of the sugar substrates necessary for the biosynthesis of A-LPS.
Collapse
Affiliation(s)
- Mikio Shoji
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Keiko Sato
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Hideharu Yukitake
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8588, Japan
| |
Collapse
|