1
|
Femel J, Hill C, Illa Bochaca I, Booth JL, Asnaashari TG, Steele MM, Moshiri AS, Do H, Zhong J, Osman I, Leachman SA, Tsujikawa T, White KP, Chang YH, Lund AW. Quantitative multiplex immunohistochemistry reveals inter-patient lymphovascular and immune heterogeneity in primary cutaneous melanoma. Front Immunol 2024; 15:1328602. [PMID: 38361951 PMCID: PMC10867179 DOI: 10.3389/fimmu.2024.1328602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Quantitative, multiplexed imaging is revealing complex spatial relationships between phenotypically diverse tumor infiltrating leukocyte populations and their prognostic implications. The underlying mechanisms and tissue structures that determine leukocyte distribution within and around tumor nests, however, remain poorly understood. While presumed players in metastatic dissemination, new preclinical data demonstrates that blood and lymphatic vessels (lymphovasculature) also dictate leukocyte trafficking within tumor microenvironments and thereby impact anti-tumor immunity. Here we interrogate these relationships in primary human cutaneous melanoma. Methods We established a quantitative, multiplexed imaging platform to simultaneously detect immune infiltrates and tumor-associated vessels in formalin-fixed paraffin embedded patient samples. We performed a discovery, retrospective analysis of 28 treatment-naïve, primary cutaneous melanomas. Results Here we find that the lymphvasculature and immune infiltrate is heterogenous across patients in treatment naïve, primary melanoma. We categorized five lymphovascular subtypes that differ by functionality and morphology and mapped their localization in and around primary tumors. Interestingly, the localization of specific vessel subtypes, but not overall vessel density, significantly associated with the presence of lymphoid aggregates, regional progression, and intratumoral T cell infiltrates. Discussion We describe a quantitative platform to enable simultaneous lymphovascular and immune infiltrate analysis and map their spatial relationships in primary melanoma. Our data indicate that tumor-associated vessels exist in different states and that their localization may determine potential for metastasis or immune infiltration. This platform will support future efforts to map tumor-associated lymphovascular evolution across stage, assess its prognostic value, and stratify patients for adjuvant therapy.
Collapse
Affiliation(s)
- Julia Femel
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| | - Cameron Hill
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Irineu Illa Bochaca
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Jamie L. Booth
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| | - Tina G. Asnaashari
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health & Science University, Portland, OR, United States
| | - Maria M. Steele
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Ata S. Moshiri
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Hyungrok Do
- Department of Population Health, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Judy Zhong
- Department of Population Health, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
| | - Iman Osman
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
| | - Sancy A. Leachman
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Takahiro Tsujikawa
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kevin P. White
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
| | - Young H. Chang
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Amanda W. Lund
- Department of Cell, Developmental, & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
- Ronald O. Perelman Department of Dermatology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health & Science University, Portland, OR, United States
- Laura and Isaac Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
- Department of Dermatology, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Pathology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
2
|
Progression of Quantum Dots Confined Polymeric Systems for Sensorics. Polymers (Basel) 2023; 15:polym15020405. [PMID: 36679283 PMCID: PMC9863920 DOI: 10.3390/polym15020405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The substantial fluorescence (FL) capabilities, exceptional photophysical qualities, and long-term colloidal stability of quantum dots (QDs) have aroused a lot of interest in recent years. QDs have strong and wide optical absorption, good chemical stability, quick transfer characteristics, and facile customization. Adding polymeric materials to QDs improves their effectiveness. QDs/polymer hybrids have implications in sensors, photonics, transistors, pharmaceutical transport, and other domains. There are a great number of review articles available online discussing the creation of CDs and their many uses. There are certain review papers that can be found online that describe the creation of composites as well as their many different uses. For QDs/polymer hybrids, the emission spectra were nearly equal to those of QDs, indicating that the optical characteristics of QDs were substantially preserved. They performed well as biochemical and biophysical detectors/sensors for a variety of targets because of their FL quenching efficacy. This article concludes by discussing the difficulties that still need to be overcome as well as the outlook for the future of QDs/polymer hybrids.
Collapse
|
3
|
Jauch AS, Wohlfeil SA, Weller C, Dietsch B, Häfele V, Stojanovic A, Kittel M, Nolte H, Cerwenka A, Neumaier M, Schledzewski K, Sticht C, Reiners-Koch PS, Goerdt S, Géraud C. Lyve-1 deficiency enhances the hepatic immune microenvironment entailing altered susceptibility to melanoma liver metastasis. Cancer Cell Int 2022; 22:398. [PMID: 36496412 PMCID: PMC9741792 DOI: 10.1186/s12935-022-02800-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hyaluronan receptor LYVE-1 is expressed by liver sinusoidal endothelial cells (LSEC), lymphatic endothelial cells and specialized macrophages. Besides binding to hyaluronan, LYVE-1 can mediate adhesion of leukocytes and cancer cells to endothelial cells. Here, we assessed the impact of LYVE-1 on physiological liver functions and metastasis. METHODS Mice with deficiency of Lyve-1 (Lyve-1-KO) were analyzed using histology, immunofluorescence, microarray analysis, plasma proteomics and flow cytometry. Liver metastasis was studied by intrasplenic/intravenous injection of melanoma (B16F10 luc2, WT31) or colorectal carcinoma (MC38). RESULTS Hepatic architecture, liver size, endothelial differentiation and angiocrine functions were unaltered in Lyve-1-KO. Hyaluronan plasma levels were significantly increased in Lyve-1-KO. Besides, plasma proteomics revealed increased carbonic anhydrase-2 and decreased FXIIIA. Furthermore, gene expression analysis of LSEC indicated regulation of immunological pathways. Therefore, liver metastasis of highly and weakly immunogenic tumors, i.e. melanoma and colorectal carcinoma (CRC), was analyzed. Hepatic metastasis of B16F10 luc2 and WT31 melanoma cells, but not MC38 CRC cells, was significantly reduced in Lyve-1-KO mice. In vivo retention assays with B16F10 luc2 cells were unaltered between Lyve-1-KO and control mice. However, in tumor-free Lyve-1-KO livers numbers of hepatic CD4+, CD8+ and regulatory T cells were increased. In addition, iron deposition was found in F4/80+ liver macrophages known to exert pro-inflammatory effects. CONCLUSION Lyve-1 deficiency controlled hepatic metastasis in a tumor cell-specific manner leading to reduced growth of hepatic metastases of melanoma, but not CRC. Anti-tumorigenic effects are likely due to enhancement of the premetastatic hepatic immune microenvironment influencing early liver metastasis formation.
Collapse
Affiliation(s)
- Anna Sophia Jauch
- grid.7700.00000 0001 2190 4373Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian A. Wohlfeil
- grid.7700.00000 0001 2190 4373Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany ,grid.7497.d0000 0004 0492 0584Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Céline Weller
- grid.7700.00000 0001 2190 4373Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bianca Dietsch
- grid.7700.00000 0001 2190 4373Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Verena Häfele
- grid.7700.00000 0001 2190 4373Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana Stojanovic
- grid.7700.00000 0001 2190 4373Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maximilian Kittel
- grid.7700.00000 0001 2190 4373Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hendrik Nolte
- grid.419502.b0000 0004 0373 6590Max-Planck-Institute for Biology of Ageing, Cologne, Germany
| | - Adelheid Cerwenka
- grid.7700.00000 0001 2190 4373Department of Immunobiochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Neumaier
- grid.7700.00000 0001 2190 4373Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kai Schledzewski
- grid.7700.00000 0001 2190 4373Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany
| | - Carsten Sticht
- grid.7700.00000 0001 2190 4373NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp-Sebastian Reiners-Koch
- grid.7700.00000 0001 2190 4373Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sergij Goerdt
- grid.7700.00000 0001 2190 4373Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cyrill Géraud
- grid.7700.00000 0001 2190 4373Section of Clinical and Molecular Dermatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany ,grid.7700.00000 0001 2190 4373Department of Dermatology, Venereology, and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, and Center of Excellence in Dermatology, 68135 Mannheim, Germany ,grid.7700.00000 0001 2190 4373European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Choi J, Choi E, Choi D. The ambivalent nature of the relationship between lymphatics and cancer. Front Cell Dev Biol 2022; 10:931335. [PMID: 36158182 PMCID: PMC9489845 DOI: 10.3389/fcell.2022.931335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Do lymphatic vessels support cancer cells? Or are they vessels that help suppress cancer development? It is known that the lymphatic system is a vehicle for tumor metastasis and that the lymphangiogenic regulator VEGF-C supports the tumor. One such role of VEGF-C is the suppression of the immune response to cancer. The lymphatic system has also been correlated with an increase in interstitial fluid pressure of the tumor microenvironment. On the other hand, lymphatic vessels facilitate immune surveillance to mount an immune response against tumors with the support of VEGF-C. Furthermore, the activation of lymphatic fluid drainage may prove to filter and decrease tumor interstitial fluid pressure. In this review, we provide an overview of the dynamic between lymphatics, cancer, and tumor fluid pressure to suggest that lymphatic vessels may be used as an antitumor therapy due to their capabilities of immune surveillance and fluid pressure drainage. The application of this potential may help to prevent tumor proliferation or increase the efficacy of drugs that target cancer.
Collapse
|
5
|
Xia Y, Li Y, Fu BM. Differential effects of vascular endothelial growth factor on glycocalyx of endothelial and tumor cells and potential targets for tumor metastasis. APL Bioeng 2022; 6:016101. [PMID: 35071967 PMCID: PMC8769769 DOI: 10.1063/5.0064381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
On the surface of every mammalian cell, there is a matrix-like glycocalyx (GCX) consisting of proteoglycans and glycosaminoglycans (GAGs). Disruption of endothelial cell (EC) GCX by a vascular endothelial growth factor (VEGF, VEGF-A165), a tumor secretion, was found to be an early event in tumor cell (TC) metastasis across vascular barriers. However, how the TC secretion VEGF affects its own GCX is unknown. To investigate the VEGF effect on TC GCX and to elucidate the ultrastructural organization of EC and TC GCX and their alteration by VEGF, we employed super-resolution stochastic optical reconstruction microscopy to observe the spatio-chemical organizations of the heparan sulfate (HS) and hyaluronic acid (HA), two representative GAGs of GCX, on human cerebral microvascular endothelial cells (hCMEC) and malignant breast cancer cells MDA-MB-231 (MB231). We found that HS and HA have distinct organizations on hCMEC and MB231. Only HS of hCMEC is perpendicular to the cell surface, while HA of hCMEC as well as HS and HA of MB231 all lie in the same plane as the cell surface where they appear to weave into a 2D network covering the cell. We also found that VEGF significantly reduces the length and coverage of HS on hCMEC but does not change the thickness and coverage of HA on hCMEC. On the contrary, VEGF significantly enhances the coverage of HS and HA on MB231 although it does not alter the thickness. The differential effects of VEGF on the GCX of TC and that of EC may favor TC adhesion and transmigration across EC barriers for their metastasis.
Collapse
Affiliation(s)
- Yifan Xia
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| | - Yunfei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| | - Bingmei M. Fu
- Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, USA
| |
Collapse
|
6
|
He Y, Liu T, Dai S, Xu Z, Wang L, Luo F. Tumor-Associated Extracellular Matrix: How to Be a Potential Aide to Anti-tumor Immunotherapy? Front Cell Dev Biol 2021; 9:739161. [PMID: 34733848 PMCID: PMC8558531 DOI: 10.3389/fcell.2021.739161] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023] Open
Abstract
The development of cancer immunotherapy, particularly immune checkpoint blockade therapy, has made major breakthroughs in the therapy of cancers. However, less than one-third of the cancer patients obtain significant and long-lasting therapeutic effects by cancer immunotherapy. Over the past few decades, cancer-related inflammations have been gradually more familiar to us. It’s known that chronic inflammation in tumor microenvironment (TME) plays a predominant role in tumor immunosuppression. Tumor-associated extracellular matrix (ECM), as a core member of TME, has been a research hotspot recently. A growing number of studies indicate that tumor-associated ECM is one of the major obstacles to realizing more successful cases of cancer immunotherapy. In this review, we discussed the potential application of tumor-associated ECM in the cancer immunity and its aide potentialities to anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Yingying He
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Oncology Department, People's Hospital of Deyang City, Deyang, China
| | - Tao Liu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Karinen S, Juurikka K, Hujanen R, Wahbi W, Hadler-Olsen E, Svineng G, Eklund KK, Salo T, Åström P, Salem A. Tumour cells express functional lymphatic endothelium-specific hyaluronan receptor in vitro and in vivo: Lymphatic mimicry promotes oral oncogenesis? Oncogenesis 2021; 10:23. [PMID: 33674563 PMCID: PMC7977063 DOI: 10.1038/s41389-021-00312-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Lymphatic metastasis represents the main route of tumour cell dissemination in oral squamous cell carcinoma (OSCC). Yet, there are no FDA-approved therapeutics targeting cancer-related lymphangiogenesis to date. The lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE-1), a specific lymphatic marker, is associated with poor survival in OSCC patients. In this study, we present a potential novel mechanism of lymphatic metastasis in OSCC-lymphatic mimicry (LM), a process whereby tumour cells form cytokeratin+/LYVE-1+, but podoplanin-negative, mosaic endothelial-like vessels. LM was detected in one-third (20/57; 35.08%) of randomly selected OSCC patients. The LM-positive patients had shorter overall survival (OS) compared to LM-negative group albeit not statistically significant. Highly-metastatic tumour cells formed distinct LM structures in vitro and in vivo. Importantly, the siRNA-mediated knockdown of LYVE-1 not only impaired tumour cell migration but also blunted their capacity to form LM-vessels in vitro and reduced tumour metastasis in vivo. Together, our findings uncovered, to our knowledge, a previously unknown expression and function of LYVE-1 in OSCC, whereby tumour cells could induce LM formation and promote lymphatic metastasis. Finally, more detailed studies on LM are warranted to better define this phenomenon in the future. These studies could benefit the development of targeted therapeutics for blocking tumour-related lymphangiogenesis.
Collapse
Affiliation(s)
- Sini Karinen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Krista Juurikka
- Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, 90220, Oulu, Finland
| | - Roosa Hujanen
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland
| | - Elin Hadler-Olsen
- Department of medical biology, Faculty of Health sciences, Arctic university of Norway, 9037, Tromsø, Norway.,The Public Dental Health Competence Center of Northern Norway, 9271, Tromsø, Norway
| | - Gunbjørg Svineng
- Department of medical biology, Faculty of Health sciences, Arctic university of Norway, 9037, Tromsø, Norway
| | - Kari K Eklund
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.,Department of Rheumatology, Helsinki University and Helsinki University Hospital, and Orton Orthopedic Hospital and Research Institute, 00014, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland.,Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland.,Medical Research Centre Oulu, Oulu University Hospital and University of Oulu, 90220, Oulu, Finland.,Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.,Helsinki University Hospital (HUS), 00014, Helsinki, Finland
| | - Pirjo Åström
- The Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, 90014, Oulu, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, 00014, Helsinki, Finland. .,Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
8
|
Pibuel MA, Poodts D, Díaz M, Hajos SE, Lompardía SL. The scrambled story between hyaluronan and glioblastoma. J Biol Chem 2021; 296:100549. [PMID: 33744285 PMCID: PMC8050860 DOI: 10.1016/j.jbc.2021.100549] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in cancer biology are revealing the importance of the cancer cell microenvironment on tumorigenesis and cancer progression. Hyaluronan (HA), the main glycosaminoglycan in the extracellular matrix, has been associated with the progression of glioblastoma (GBM), the most frequent and lethal primary tumor in the central nervous system, for several decades. However, the mechanisms by which HA impacts GBM properties and processes have been difficult to elucidate. In this review, we provide a comprehensive assessment of the current knowledge on HA's effects on GBM biology, introducing its primary receptors CD44 and RHAMM and the plethora of relevant downstream signaling pathways that can scramble efforts to directly link HA activity to biological outcomes. We consider the complexities of studying an extracellular polymer and the different strategies used to try to capture its function, including 2D and 3D in vitro studies, patient samples, and in vivo models. Given that HA affects not only migration and invasion, but also cell proliferation, adherence, and chemoresistance, we highlight the potential role of HA as a therapeutic target. Finally, we review the different existing approaches to diminish its protumor effects, such as the use of 4-methylumbelliferone, HA oligomers, and hyaluronidases and encourage further research along these lines in order to improve the survival and quality of life of GBM patients.
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| |
Collapse
|
9
|
Hu S, Shi X, Liu Y, He Y, Du Y, Zhang G, Yang C, Gao F. CD44 cross-linking increases malignancy of breast cancer via upregulation of p-Moesin. Cancer Cell Int 2020; 20:563. [PMID: 33292278 PMCID: PMC7686781 DOI: 10.1186/s12935-020-01663-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background CD44 is highly expressed in most cancer cells and its cross-linking pattern is closely related to tumor migration and invasion. However, the underlying molecular mechanism regarding CD44 cross-linking during cancer cell metastasis is poorly understood. Therefore, the purpose of this study was to explore whether disruption of CD44 cross-linking in breast cancer cells could prevent the cells migration and invasion and determine the effects of CD44 cross-linking on the malignancy of the cancer cells. Methods The expression of CD44, CD44 cross-linking and Moesin phosphorylation in breast cancer cells was assessed by Western Blot assays. Effects of CD44 cross-linking on tumor metastasis were evaluated by Transwell assay. The effects of CD44 cross-linking disruption on cell viability were assessed using CCK-8 assays. The expression of p-Moesin between normal and breast cancer tissues was examined by immunohistochemical staining. Results High expression of CD44 cross-linking was found in invasive breast cancer cells (BT-549 and MDA-MB-231), which is associated with the malignancy of breast cancer. The expressions of ERM complex in a panel of breast cancer cell lines indicate that Moesin and its phosphorylation may play a significant role in cell metastasis. Moesin phosphorylation was inhibited by CD44 de-crosslinking in breast cancer cells and Moesin shRNA knockdown attenuated the promotion of CD44 cross-linking on cell migration and invasion. Finally, immunohistochemistry results demonstrated that p-Moesin was overexpressed in primary and metastatic cancers. Conclusions Our study suggested that CD44 cross-linking could elevate p-Moesin expression and further affect migration and invasion of breast cancer cells. These results also indicate that p-Moesin may be useful in future targeted cancer therapy.
Collapse
Affiliation(s)
- Song Hu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaoxing Shi
- Department of Laboratory Medicine, Shanghai Wujing General Hospital, Shanghai, 201103, China
| | - Yiwen Liu
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yiqing He
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yan Du
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guoliang Zhang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cuixia Yang
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Feng Gao
- Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
10
|
Wang X, Lin FK, Li JR, Wang HS. A Comprehensive Risk Assessment Model for Ovarian Cancer Patients with Phospho-STAT3 and IL-31 as Immune Infiltration Relevant Genes. Onco Targets Ther 2020; 13:5617-5628. [PMID: 32606776 PMCID: PMC7305843 DOI: 10.2147/ott.s254494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Ovarian carcinoma is a malignant tumor with a high mortality rate and a lack of effective treatment options for patients at advanced stages. For improving outcomes and helping patients with poor prognosis, choose a suitable therapy and an excellent risk assessment model and new treatment options are needed. Materials and Methods Ovarian cancer gene expression profile of GSE32062 was downloaded from the NCBI GEO database for screening differentially expressed genes (DEGs) between well and poor prognosis groups using limma package in R (version 3.4.1). Prognosis-related genes and clinical prognostic factors were obtained from univariate and multivariate Cox regression analyses, and a comprehensive risk assessment model was constructed using a Pathway Dysregulation Score (PDS) matrix, Cox-Proportional Hazards (Cox-PH) regression, as well as L1-least absolute shrinkage and selection operator (L1-LASSO) penalization. Then, significant DEGs were converted to pathways and optimal prognosis-related pathways were screened. Finally, risk prediction models based on pathways, genes involved in pathways, and comprehensive clinical risk factors with pathways were built. Their prognostic functions were assessed in verification sets. Besides, genes involved in immune-pathways were checked for immune infiltration using immunohistochemistry. Results A superior risk assessment model involving 9 optimal combinations of pathways and one clinical factor was constructed. The pathway-based model was found to be superior to the gene-based model. Phospho-STAT3 (from JAK-STAT signaling pathway) and IL-31 (from DEGs) were found to be related to immune infiltration. Conclusion We have generated a comprehensive risk assessment model consisting of a clinical risk factor and pathways that showed a possible bright foreground. The set of significant pathways might play as a better prognosis model which is more accurate and applicable than the DEG set. Besides, p-STAT3 and IL-31 showing correlation to immune infiltration of ovarian cancer tissues may be potential therapeutic targets for treating ovarian cancers.
Collapse
Affiliation(s)
- Xue Wang
- Department of Obstetrics & Gynecology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China.,Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Fei-Kai Lin
- Department of Obstetrics & Gynecology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China.,Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Jia-Rui Li
- Department of Obstetrics & Gynecology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Hu-Sheng Wang
- Department of Obstetrics & Gynecology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| |
Collapse
|
11
|
Asaoka M, Patnaik SK, Zhang F, Ishikawa T, Takabe K. Lymphovascular invasion in breast cancer is associated with gene expression signatures of cell proliferation but not lymphangiogenesis or immune response. Breast Cancer Res Treat 2020; 181:309-322. [PMID: 32285241 DOI: 10.1007/s10549-020-05630-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND While the prognostic relevance of lymphovascular invasion (LVI) in breast cancer is well known, its molecular biology is poorly understood. We hypothesized that pathologically determined LVI reflects molecular features of tumors and can be discerned from their genomic and transcriptomic profiles. METHODS LVI status and Nottingham histological scores of primary breast tumors of The Cancer Genome Atlas (TCGA) project were assessed from pathology reports; other clinical and molecular data were obtained from TCGA data portals and publications. Two independent datasets (GSE5460 and GSE7849) were combined and used for validation. RESULTS LVI status was determinable for 639 and 196 cases of the TCGA and validation cohorts, among whom LVI incidence was 37.8% and 37.2%, respectively. LVI was associated with high tumor Ki67 expression, advanced pathologic stage, and high Nottingham scores. LVI-positive cases had worse overall and progression-free survival regardless of cancer subtype. Surprisingly, in both cohorts, LVI was not associated with lymphangiogenesis or lymphatic vessel density as estimated from tumor expression of lymphatic endothelium-associated genes. LVI-positive tumors had higher genome copy number aberrations, aneuploidy, and homologous recombination defects, but not single-nucleotide variations or intra-tumor genome heterogeneity. Tumor immune cell composition and cytolytic activity was not associated with LVI status. On the other hand, expression of cell proliferation-related genes was significantly increased in LVI-positive tumors. CONCLUSION Our study suggests that breast cancer with LVI is a highly proliferative cancer, and it does not correlate with gene expression markers for lymphangiogenesis or immune response.
Collapse
Affiliation(s)
- Mariko Asaoka
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Santosh K Patnaik
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Frank Zhang
- Giesel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Kazuaki Takabe
- Department of Breast Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA. .,Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan. .,Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA. .,Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan. .,Department of Surgery, Yokohama City University, Yokohama, Japan.
| |
Collapse
|
12
|
Vodyanoy V, Pustovyy O, Globa L, Kulesza RJ, Sorokulova I. Hemmule: A Novel Structure with the Properties of the Stem Cell Niche. Int J Mol Sci 2020; 21:ijms21020539. [PMID: 31947705 PMCID: PMC7013657 DOI: 10.3390/ijms21020539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022] Open
Abstract
Stem cells are nurtured and regulated by a specialized microenvironment known as stem cell niche. While the functions of the niches are well defined, their structure and location remain unclear. We have identified, in rat bone marrow, the seat of hematopoietic stem cells—extensively vascularized node-like compartments that fit the requirements for stem cell niche and that we called hemmules. Hemmules are round or oval structures of about one millimeter in diameter that are surrounded by a fine capsule, have afferent and efferent vessels, are filled with the extracellular matrix and mesenchymal, hematopoietic, endothelial stem cells, and contain cells of the megakaryocyte family, which are known for homeostatic quiescence and contribution to the bone marrow environment. We propose that hemmules are the long sought hematopoietic stem cell niches and that they are prototypical of stem cell niches in other organs.
Collapse
Affiliation(s)
- Vitaly Vodyanoy
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Correspondence: ; Tel.: +1-334-826-9894
| | - Oleg Pustovyy
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
| | - Ludmila Globa
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
| | - Randy J. Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA;
| | - Iryna Sorokulova
- Department Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA; (O.P.); (L.G.); (I.S.)
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Murakami T, Kim J, Li Y, Green GE, Shikanov A, Ono A. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat Commun 2018; 9:2436. [PMID: 29934525 PMCID: PMC6015004 DOI: 10.1038/s41467-018-04846-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Fibroblastic reticular cells (FRCs) are stromal cells in secondary lymphoid organs, the major sites for HIV-1 infection of CD4+ T cells. Although FRCs regulate T cell survival, proliferation, and migration, whether they play any role in HIV-1 spread has not been studied. Here, we show that FRCs enhance HIV-1 spread via trans-infection in which FRCs capture HIV-1 and facilitate infection of T cells that come into contact with FRCs. FRCs mediate trans-infection in both two- and three-dimensional culture systems and in a manner dependent on the virus producer cells. This producer cell dependence, which was also observed for virus spread in secondary lymphoid tissues ex vivo, is accounted for by CD44 incorporated into virus particles and hyaluronan bound to such CD44 molecules. This virus-associated hyaluronan interacts with CD44 expressed on FRCs, thereby promoting virus capture by FRCs. Overall, our results reveal a novel role for FRCs in promoting HIV-1 spread. Fibroblastic reticular cells (FRCs) are important regulators of T cell survival, proliferation, and migration in secondary lymphoid organs, but their role in HIV infection isn’t studied. Here, Murakami et al. show that FRCs enhance HIV spread via CD44- and hyaluronan-mediated trans-infection.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jiwon Kim
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Li
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Glenn Edward Green
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ariella Shikanov
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Antoni CH, McDuffie Y, Bauer J, Sleeman JP, Boehm H. Effect of Co-presentation of Adhesive Ligands and Short Hyaluronan on Lymphendothelial Cells. Front Bioeng Biotechnol 2018; 6:25. [PMID: 29629370 PMCID: PMC5876295 DOI: 10.3389/fbioe.2018.00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/05/2018] [Indexed: 11/13/2022] Open
Abstract
Controlled activation of lymphangiogenesis through functional biomaterials represents a promising approach to support wound healing after surgical procedures, yet remains a challenge. In a synthetic biological approach, we therefore set out to mimic the basal microenvironment of human primary dermal lymphatic endothelial cells (LECs) during lymphangiogenesis. As the extracellular matrix component hyaluronan (HA) regulates lymphangiogenesis, we designed a bifunctional surface in which adhesive peptide ligands and short HA oligosaccharides (sHA) tethered to nanoparticles are copresented to the basal side of LECs in a controlled, concentration-dependent manner. Exposure of LECs to sHA in solution to mimic luminal stimulation of the cells did not result in modified metabolic activity. However, LECs grown on the bifunctional adhesive surfaces showed a biphasic change in metabolic activity, with increased metabolic activity being observed in response to increasing nanoparticle densities up to a maximum of 540 particles/μm2. Thus, interfaces that concomitantly present adhesive ligands and sHA can stimulate LEC metabolism and might be able to trigger lymphangiogenesis.
Collapse
Affiliation(s)
- Christiane H Antoni
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Yvonne McDuffie
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Jochen Bauer
- Institute of Toxicology and Genetics, Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany
| | - Jonathan P Sleeman
- Institute of Toxicology and Genetics, Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany.,Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Heike Boehm
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Demir B, Lemberger MM, Panagiotopoulou M, Medina Rangel PX, Timur S, Hirsch T, Tse Sum Bui B, Wegener J, Haupt K. Tracking Hyaluronan: Molecularly Imprinted Polymer Coated Carbon Dots for Cancer Cell Targeting and Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3305-3313. [PMID: 29299913 DOI: 10.1021/acsami.7b16225] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
War against cancer constantly requires new affinity tools to selectively detect, localize, and quantify biomarkers for diagnosis or prognosis. Herein, carbon nanodots (CDs), an emerging class of fluorescent nanomaterials, coupled with molecularly imprinted polymers (MIPs), are employed as a biocompatible optical imaging tool for probing cancer biomarkers. First, N-doped CDs were prepared by hydrothermal synthesis using starch as carbon source and l-tryptophan as nitrogen atom provider to achieve a high quantum yield of 25.1 ± 2%. The CDs have a typical size of ∼3.2 nm and produce an intense fluorescence at 450 nm upon excitation with UV light. A MIP shell for specific recognition of glucuronic acid (GlcA) was then synthesized around the CDs, using the emission of the CDs as an internal light source for photopolymerization. GlcA is a substructure (epitope) of hyaluronan, a biomarker for certain cancers. The biotargeting and bioimaging of hyaluronan on fixated human cervical cancer cells using CD core-MIP shell nanocomposites is demonstrated. Human keratinocytes were used as noncancerous reference cells and indeed, less staining was observed by the CD-MIP.
Collapse
Affiliation(s)
- Bilal Demir
- Department of Biochemistry, Faculty of Science, Ege University , 35100 Bornova, Izmir, Turkey
| | - Michael M Lemberger
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg , Universitätsstraße 31, 93053 Regensburg, Germany
| | - Maria Panagiotopoulou
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France
| | - Paulina X Medina Rangel
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University , 35100 Bornova, Izmir, Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University , 35100 Bornova, Izmir, Turkey
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg , Universitätsstraße 31, 93053 Regensburg, Germany
| | - Bernadette Tse Sum Bui
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France
| | - Joachim Wegener
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg , Universitätsstraße 31, 93053 Regensburg, Germany
| | - Karsten Haupt
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS Enzyme and Cell Engineering Laboratory, Rue Roger Couttolenc, CS 60319, 60203 Compiègne Cedex, France
| |
Collapse
|
16
|
A function-blocking CD47 antibody modulates extracellular vesicle-mediated intercellular signaling between breast carcinoma cells and endothelial cells. J Cell Commun Signal 2017; 12:157-170. [PMID: 29188480 DOI: 10.1007/s12079-017-0428-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022] Open
Abstract
Tumor cells release extracellular vesicles (EVs) into the tumor microenvironment that may facilitate malignant progression and metastasis. Breast carcinoma EVs express high levels of the thrombospondin-1 and signal regulatory protein-α receptor CD47, which is the target of several experimental therapeutics currently in clinical trials. We analyzed changes in gene expression and function in human umbilical vein endothelial cells (HUVEC) induced by treatment with EVs derived from breast carcinoma cells and the effects of the function-blocking CD47 antibody B6H12 on the resulting intercellular communication. CD47+ EVs exhibited greater uptake by HUVEC compared to CD47- EVs, but the CD47 antibody did not inhibit their uptake. Global and targeted analyses of transcripts demonstrated that treatment of HUVEC with EVs derived from MDA-MB-231 breast carcinomas cells altered pathways associated with tumor necrosis factor-α signaling, angiogenesis, lymphangiogenesis, endothelial-mesenchymal transition, and extracellular matrix. EVs from triple-negative MDA-MB-231 cells were more active than EVs from less metastatic breast carcinoma cell lines. Treatment with MDA-MB-231 EVs down-regulated VEGFR2 mRNA expression and tyrosine phosphorylation while enhancing phosphorylation of the tyrosine phosphatase SHP2. VEGFR2 expression and phosphorylation in HUVEC was further inhibited by the CD47 antibody. Consistent with the observed changes in endothelial-mesenchymal transition genes and SHP2, treatment with MDA-MB-231-derived EVs decreased Zeb1 protein levels in HUVEC, whereas the CD47 antibody increased Zeb1 levels. The induction of E-selectin and other known targets of tumor necrosis factor-α signaling by EVs was also enhanced by the CD47 antibody, and E-selectin was the most up-regulated transcript following CD47 antibody treatment alone. These studies reveal several mechanisms by which therapeutics targeting CD47 could modulate tumor growth by altering the cross talk between cancer-derived EVs and nonmalignant cells in the tumor stroma.
Collapse
|
17
|
Lee E, Pandey NB, Popel AS. Crosstalk between cancer cells and blood endothelial and lymphatic endothelial cells in tumour and organ microenvironment. Expert Rev Mol Med 2015; 17:e3. [PMID: 25634527 PMCID: PMC4352000 DOI: 10.1017/erm.2015.2] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumour and organ microenvironments are crucial for cancer progression and metastasis. Crosstalk between multiple non-malignant cell types in the microenvironments and cancer cells promotes tumour growth and metastasis. Blood and lymphatic endothelial cells (BEC and LEC) are two of the components in the microenvironments. Tumour blood vessels (BV), comprising BEC, serve as conduits for blood supply into the tumour, and are important for tumour growth as well as haematogenous tumour dissemination. Lymphatic vessels (LV), comprising LEC, which are relatively leaky compared with BV, are essential for lymphogenous tumour dissemination. In addition to describing the conventional roles of the BV and LV, we also discuss newly emerging roles of these endothelial cells: their crosstalk with cancer cells via molecules secreted by the BEC and LEC (also called angiocrine and lymphangiocrine factors). This review suggests that BEC and LEC in various microenvironments can be orchestrators of tumour progression and proposes new mechanism-based strategies to discover new therapies to supplement conventional anti-angiogenic and anti-lymphangiogenic therapies.
Collapse
Affiliation(s)
- Esak Lee
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Niranjan B. Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
18
|
Li Y, Zhang Z. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis. Sci Rep 2014; 4:7097. [PMID: 25403569 PMCID: PMC4235308 DOI: 10.1038/srep07097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/30/2014] [Indexed: 01/01/2023] Open
Abstract
Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.
Collapse
Affiliation(s)
- Yue Li
- 1] Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada [2] The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Zhaolei Zhang
- 1] Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada [2] The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada [3] Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada [4] Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
19
|
Nunomiya K, Shibata Y, Abe S, Inoue S, Igarashi A, Yamauchi K, Kimura T, Aida Y, Nemoto T, Sato M, Kishi H, Nakano H, Sato K, Kubota I. Relationship between Serum Level of Lymphatic Vessel Endothelial Hyaluronan Receptor-1 and Prognosis in Patients with Lung Cancer. J Cancer 2014; 5:242-7. [PMID: 24665348 PMCID: PMC3963081 DOI: 10.7150/jca.8486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/23/2014] [Indexed: 02/07/2023] Open
Abstract
Background: Lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) is a hyaluronic acid receptor that is selectively expressed in the endothelia of lymphatic capillaries. The density of lymphatic vessels expressing LYVE-1 on immunohistochemistry negatively correlates with prognosis of patients with non-small-cell lung cancer. However, the relationship between LYVE-1 serum levels and lung cancer staging is unknown. Methods: We collected blood samples from 58 lung cancer patients before treatment and measured LYVE-1 serum levels using an enzyme-linked immunosorbent assay. Results: Mean serum LYVE-1 levels were 1,420 pg/mL. Serum LYVE-1 levels correlated positively with serum albumin levels, but inversely with primary tumor size, leukocyte counts, and platelet counts by Pearson's product-moment correlation coefficient. A high cancer staging, occurrence of lymph-node metastases, and occurrence of distant metastases were significantly associated with low LYVE-1 levels. Moreover, multiple logistic regression analyses revealed that LYVE-1 levels were predictive of the presence of lymph node and distant metastases, independently of the other factors. Kaplan-Meier analysis showed that the survival of patients with serum LYVE-1 ≤1,553 pg/mL was significantly poorer than that of patients with serum LYVE-1 >1,553 pg/mL. This survival difference relative to LYVE-1 levels remained statistically significant after adjusting for age and gender by the Cox proportional-hazard analysis. Conclusion: Serum LYVE-1 is significantly low in lung cancer patients with metastasis, compared with those without. Measuring LYVE-1 levels in lung cancer patients may be useful for evaluating lung cancer progression.
Collapse
Affiliation(s)
- Keiko Nunomiya
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yoko Shibata
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Shuichi Abe
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Sumito Inoue
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keiko Yamauchi
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tomomi Kimura
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Yasuko Aida
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Takako Nemoto
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hiroyuki Kishi
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hiroshi Nakano
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Kento Sato
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology,Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| |
Collapse
|
20
|
Skandalis SS, Afratis N, Smirlaki G, Nikitovic D, Theocharis AD, Tzanakakis GN, Karamanos NK. Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans. Matrix Biol 2013; 35:182-93. [PMID: 24063949 DOI: 10.1016/j.matbio.2013.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 02/07/2023]
Abstract
In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Nikolaos Afratis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dragana Nikitovic
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - George N Tzanakakis
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|