1
|
Zhang YQ, Zhang M, Wang ZL, Bao YO, Wang YQ, Tian YG, Ye L, Ye M. Identification of Key Post‐modification Enzymes Involved in the Biosynthesis of Lanostane‐type Triterpenoids in the Medicinal Mushroom Antrodia camphorata. Angew Chem Int Ed Engl 2024:e202420104. [PMID: 39617723 DOI: 10.1002/anie.202420104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Through different gene mining strategies, three key enzymes (AcCYP4, AcSDR6, AcSMT1) involved in the downstream biosynthesis of major lanostane-type triterpenoids were discovered and identified from Antrodia camphorata. The catalytic mechanisms of AcSDR6 were elucidated by crystal structure analysis. These post-modification enzymes could be used to synthesize at least 11 major Antrodia lanostanoids.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yu-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yun-Gang Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Lei Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
2
|
Zeng C, Xu S, Shen J, Zhao S, Xu X, Peng L. Hydroxysteroid Dehydrogenase-Catalyzed Highly Regio-, Chemo-, and Enantioselective Hydrogenation of 3-Keto in Steroids. Org Lett 2024; 26:127-131. [PMID: 38127069 DOI: 10.1021/acs.orglett.3c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A highly selective hydrogenation of 3-keto in steroids to 3-hydroxyl steroids catalyzed by hydroxysteroid dehydrogenases (HSDHs) was demonstrated. The Ct3α-HSDH-catalyzed hydrogenation generated 3α-hydroxyl steroids as the main enantiopure isomers in high yields, while the Ss3β-HSDH catalytic system afforded 3β-hydroxyl steroids in excellent yields. In both catalytic systems, the hydrogenation proceeded regioselectively at 3-keto with 7-, 11-, 17-, and 20-keto almost unreacted, and chemoselectively with the C═C bond and ester group unattacked. Our HSDH-promoted hydrogenation showed advantages like high regio-, chemo-, and enantioselectivity, good yields, mild conditions, a wide substrate scope, and being suitable for gram-scale synthesis. Notably, bioactive molecules like dehydroepiandrosterone, brienolone, and alfaxalone were obtained facilely in high yields via our hydrogenation approach.
Collapse
Affiliation(s)
- Chunling Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Norchem Pharmaceutical Company, Ltd., Changsha 410000, P. R. China
| | - Shitang Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jie Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Saijie Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xinhua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Norchem Pharmaceutical Company, Ltd., Changsha 410000, P. R. China
| | - Lifen Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
- Hunan Norchem Pharmaceutical Company, Ltd., Changsha 410000, P. R. China
| |
Collapse
|
3
|
Liu S, Sommese RF, Nedoma NL, Stevens LM, Dutra JK, Zhang L, Edmonds DJ, Wang Y, Garnsey M, Clasquin MF. Structural basis of lipid-droplet localization of 17-beta-hydroxysteroid dehydrogenase 13. Nat Commun 2023; 14:5158. [PMID: 37620305 PMCID: PMC10449848 DOI: 10.1038/s41467-023-40766-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Hydroxysteroid 17-beta-dehydrogenase 13 (HSD17B13) is a hepatic lipid droplet-associated enzyme that is upregulated in patients with non-alcoholic fatty liver disease. Recently, there have been several reports that predicted loss of function variants in HSD17B13 protect against the progression of steatosis to non-alcoholic steatohepatitis with fibrosis and hepatocellular carcinoma. Here we report crystal structures of full length HSD17B13 in complex with its NAD+ cofactor, and with lipid/detergent molecules and small molecule inhibitors from two distinct series in the ligand binding pocket. These structures provide insights into a mechanism for lipid droplet-associated proteins anchoring to membranes as well as a basis for HSD17B13 variants disrupting function. Two series of inhibitors interact with the active site residues and the bound cofactor similarly, yet they occupy different paths leading to the active site. These structures provide ideas for structure-based design of inhibitors that may be used in the treatment of liver disease.
Collapse
Affiliation(s)
- Shenping Liu
- Medicine Design, Pfizer Inc, Groton, CT, 06340, USA.
| | | | | | | | - Jason K Dutra
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
| | - Liying Zhang
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
- Discovery Chemistry, Merck Research Laboratories, Cambridge, MA, USA
| | - David J Edmonds
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
- Medicinal Chemistry, Roche, Basel, Switzerland
| | - Yang Wang
- Medicine Design, Pfizer Inc, Cambridge, MA, 02139, USA
| | | | | |
Collapse
|
4
|
Liu Z, Zhang R, Zhang W, Xu Y. Structure-based rational design of hydroxysteroid dehydrogenases for improving and diversifying steroid synthesis. Crit Rev Biotechnol 2022:1-17. [PMID: 35834355 DOI: 10.1080/07388551.2022.2054770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A group of steroidogenic enzymes, hydroxysteroid dehydrogenases are involved in steroid metabolism which is very important in the cell: signaling, growth, reproduction, and energy homeostasis. The enzymes show an inherent function in the interconversion of ketosteroids and hydroxysteroids in a position- and stereospecific manner on the steroid nucleus and side-chains. However, the biocatalysis of steroids reaction is a vital and demanding, yet challenging, task to produce the desired enantiopure products with non-natural substrates or non-natural cofactors, and/or in non-physiological conditions. This has driven the use of protein design strategies to improve their inherent biosynthetic efficiency or activate their silent catalytic ability. In this review, the innate features and catalytic characteristics of enzymes based on sequence-structure-function relationships of steroidogenic enzymes are reviewed. Combining structure information and catalytic mechanisms, progress in protein redesign to stimulate potential function, for example, substrate specificity, cofactor dependence, and catalytic stability are discussed.
Collapse
Affiliation(s)
- Zhiyong Liu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Rongzhen Zhang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Liu C, Liu K, Zhao C, Gong P, Yu Y. The characterization of a short chain dehydrogenase/reductase (SDRx) in Comamonas testosteroni. Toxicol Rep 2020; 7:460-467. [PMID: 32215256 PMCID: PMC7090274 DOI: 10.1016/j.toxrep.2020.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
C. testosteroni is a research topic that can degrade steroid hormones into water and carbon dioxide through a series of enzymes in the body. Short-chain dehydrogenase (SDR) are a class of NAD (P) H-dependent oxidoreductases in C. testosteroni. Its main function is catalyzing the redox of the hydroxyl/ketone group of the hormone. In this paper, a SDR gene(SDRx) is cloned from C. testosteroni ATCC11996 and expressed. The polyclonal antibody was prepared and the SDRx gene knocked out by homologous recombination. Wild type and mutant C. testosteroni induced by testosterone, estradiol, estrone and estriol. The growth curves of the bacteria were measured by spectrophotometer. ELISA established the expression of SDRx protein, and high-performance liquid chromatography(HPLC) detected the contents of various hormones. The results show that the growth of wild type was faster than mutant type induced by testosterone. The concentration of SDRx is 0.318 mg/ml under testosterone induction. It has a great change in steroid hormones residue in culture medium measured by HPLC: Testosterone residue in the mutant type group was 42.4 % more than the wild type in culture medium. The same thing happens with induced by estrone. In summary, this SDRx gene involved in the degradation of testosterone and estradiol, and effects the growth of C. testosteroni.
Collapse
Affiliation(s)
- Chuanzhi Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989, Changchun, Jilin Province, 130022, PR China
| | - Kai Liu
- School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989, Changchun, Jilin Province, 130022, PR China
| | - Chunru Zhao
- School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989, Changchun, Jilin Province, 130022, PR China
| | - Ping Gong
- School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989, Changchun, Jilin Province, 130022, PR China
| | - Yuanhua Yu
- School of Life Science and Technology, Changchun University of Science and Technology, Weixing Road 7989, Changchun, Jilin Province, 130022, PR China
| |
Collapse
|
6
|
Hwang CC, Chang PR, Hsieh CL, Chou YH, Wang TP. Thermodynamic analysis of remote substrate binding energy in 3α-hydroxysteroid dehydrogenase/carbonyl reductase catalysis. Chem Biol Interact 2019; 302:183-189. [PMID: 30794798 DOI: 10.1016/j.cbi.2019.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022]
Abstract
The binding energy of enzyme and substrate is used to lower the activation energy for the catalytic reaction. 3α-HSD/CR uses remote binding interactions to accelerate the reaction of androsterone with NAD+. Here, we examine the enthalpic and entropic components of the remote binding energy in the 3α-HSD/CR-catalyzed reaction of NAD+ with androsterone versus the substrate analogs, 2-decalol and cyclohexanol, by analyzing the temperature-dependent kinetic parameters through steady-state kinetics. The effects of temperature on kcat/Km for 3α-HSD/CR acting on androsterone, 2-decalol, and cyclohexanol show the reactions are entropically favorable but enthalpically unfavorable. Thermodynamic analysis from the temperature-dependent values of Km and kcat shows the binding of the E-NAD+ complex with either 2-decalol or cyclohexanol to form the ternary complex is endothermic and entropy-driven, and the subsequent conversion to the transition state is both enthalpically and entropically unfavorable. Hence, solvation entropy may play an important role in the binding process through both the desolvation of the solute molecules and the release of bound water molecules from the active site into bulk solvent. As compared to the thermodynamic parameters of 3α-HSD/CR acting on cyclohexanol, the hydrophobic interaction of the B-ring of steroids with the active site of 3α-HSD/CR contributes to catalysis by increasing exclusively the entropy of activation (ΔTΔS‡ = 1.8 kcal/mol), while the BCD-ring of androsterone significantly lowers ΔΔH‡ by 10.4 kcal/mol with a slight entropic penalty of -1.9 kcal/mol. Therefore, the remote non-reacting sites of androsterone may induce a conformational change of the substrate binding loop with an entropic cost for better interaction with the transition state to decrease the enthalpy of activation, significantly increasing catalytic efficiency.
Collapse
Affiliation(s)
- Chi-Ching Hwang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| | - Pei-Ru Chang
- Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Chia-Lin Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Yun-Hao Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
7
|
P212A Mutant of Dihydrodaidzein Reductase Enhances (S)-Equol Production and Enantioselectivity in a Recombinant Escherichia coli Whole-Cell Reaction System. Appl Environ Microbiol 2016; 82:1992-2002. [PMID: 26801575 DOI: 10.1128/aem.03584-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/07/2016] [Indexed: 01/28/2023] Open
Abstract
(S)-Equol, a gut bacterial isoflavone derivative, has drawn great attention because of its potent use for relieving female postmenopausal symptoms and preventing prostate cancer. Previous studies have reported on the dietary isoflavone metabolism of several human gut bacteria and the involved enzymes for conversion of daidzein to (S)-equol. However, the anaerobic growth conditions required by the gut bacteria and the low productivity and yield of (S)-equol limit its efficient production using only natural gut bacteria. In this study, the low (S)-equol biosynthesis of gut microorganisms was overcome by cloning the four enzymes involved in the biosynthesis from Slackia isoflavoniconvertens into Escherichia coli BL21(DE3). The reaction conditions were optimized for (S)-equol production from the recombinant strain, and this recombinant system enabled the efficient conversion of 200 μM and 1 mM daidzein to (S)-equol under aerobic conditions, achieving yields of 95% and 85%, respectively. Since the biosynthesis of trans-tetrahydrodaidzein was found to be a rate-determining step for (S)-equol production, dihydrodaidzein reductase (DHDR) was subjected to rational site-directed mutagenesis. The introduction of the DHDR P212A mutation increased the (S)-equol productivity from 59.0 mg/liter/h to 69.8 mg/liter/h in the whole-cell reaction. The P212A mutation caused an increase in the (S)-dihydrodaidzein enantioselectivity by decreasing the overall activity of DHDR, resulting in undetectable activity for (R)-dihydrodaidzein, such that a combination of the DHDR P212A mutant with dihydrodaidzein racemase enabled the production of (3S,4R)-tetrahydrodaidzein with an enantioselectivity of >99%.
Collapse
|
8
|
Jibran R, Sullivan KL, Crowhurst R, Erridge ZA, Chagné D, McLachlan ARG, Brummell DA, Dijkwel PP, Hunter DA. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6849-6862. [PMID: 26261268 DOI: 10.1093/jxb/erv390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Stresses such as energy deprivation, wounding and water-supply disruption often contribute to rapid deterioration of harvested tissues. To uncover the genetic regulation behind such stresses, a simple assessment system was used to detect senescence mutants in conjunction with two rapid mapping techniques to identify the causal mutations. To demonstrate the power of this approach, immature inflorescences of Arabidopsis plants that contained ethyl methanesulfonate-induced lesions were detached and screened for altered timing of dark-induced senescence. Numerous mutant lines displaying accelerated or delayed timing of senescence relative to wild type were discovered. The underlying mutations in three of these were identified using High Resolution Melting analysis to map to a chromosomal arm followed by a whole-genome sequencing-based mapping method, termed 'Needle in the K-Stack', to identify the causal lesions. All three mutations were single base pair changes and occurred in the same gene, NON-YELLOW COLORING1 (NYC1), a chlorophyll b reductase of the short-chain dehydrogenase/reductase (SDR) superfamily. This was consistent with the mutants preferentially retaining chlorophyll b, although substantial amounts of chlorophyll b were still lost. The single base pair mutations disrupted NYC1 function by three distinct mechanisms, one by producing a termination codon, the second by interfering with correct intron splicing and the third by replacing a highly conserved proline with a non-equivalent serine residue. This non-synonymous amino acid change, which occurred in the NADPH binding domain of NYC1, is the first example of such a mutation in an SDR protein inhibiting a physiological response in plants.
Collapse
Affiliation(s)
- Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Kerry L Sullivan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Zoe A Erridge
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Andrew R G McLachlan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Paul P Dijkwel
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Donald A Hunter
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| |
Collapse
|