1
|
Coakley AJ, Hruby A, Wang J, Bong A, Nair T, Ramos CM, Alcala A, Averbukh M, Dutta N, Moaddeli D, Hicks D, de los Rios Rogers M, Sahay A, Curran SP, Mullen PJ, Benayoun BA, Garcia G, Higuchi-Sanabria R. Distinct mechanisms of non-autonomous UPR ER mediated by GABAergic, glutamatergic, and octopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595950. [PMID: 38854121 PMCID: PMC11160609 DOI: 10.1101/2024.05.27.595950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The capacity to deal with stress declines during the aging process, and preservation of cellular stress responses is critical to healthy aging. The unfolded protein response of the endoplasmic reticulum (UPRER) is one such conserved mechanism, which is critical for the maintenance of several major functions of the ER during stress, including protein folding and lipid metabolism. Hyperactivation of the UPRER by overexpression of the major transcription factor, xbp-1s, solely in neurons drives lifespan extension as neurons send a neurotransmitter-based signal to other tissue to activate UPRER in a non-autonomous fashion. Previous work identified serotonergic and dopaminergic neurons in this signaling paradigm. To further expand our understanding of the neural circuitry that underlies the non-autonomous signaling of ER stress, we activated UPRER solely in glutamatergic, octopaminergic, and GABAergic neurons in C. elegans and paired whole-body transcriptomic analysis with functional assays. We found that UPRER-induced signals from glutamatergic neurons increased expression of canonical protein homeostasis pathways and octopaminergic neurons promoted pathogen response pathways, while minor, but statistically significant changes were observed in lipid metabolism-related genes with GABAergic UPRER activation. These findings provide further evidence for the distinct role neuronal subtypes play in driving the diverse response to ER stress.
Collapse
Affiliation(s)
- Aeowynn J. Coakley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Jing Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Tripti Nair
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Carmen M. Ramos
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Daniel Hicks
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Mattias de los Rios Rogers
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, United States
| | - Arushi Sahay
- Department of Cell & Molecular Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Peter J. Mullen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | | | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
2
|
Ghenea S, Chiritoiu M, Tacutu R, Miranda-Vizuete A, Petrescu SM. Targeting EDEM protects against ER stress and improves development and survival in C. elegans. PLoS Genet 2022; 18:e1010069. [PMID: 35192599 PMCID: PMC8912907 DOI: 10.1371/journal.pgen.1010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 03/10/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
EDEM-1, EDEM-2 and EDEM-3 are key players for the quality control of newly synthesized proteins in the endoplasmic reticulum (ER) by accelerating disposal and degradation of misfolded proteins through ER Associated Degradation (ERAD). Although many previous studies reported the role of individual ERAD components especially in cell-based systems, still little is known about the consequences of ERAD dysfunction under physiological and ER stress conditions in the context of a multicellular organism. Here we report the first individual and combined characterization and functional interplay of EDEM proteins in Caenorhabditis elegans using single, double, and triple mutant combinations. We found that EDEM-2 has a major role in the clearance of misfolded proteins from ER under physiological conditions, whereas EDEM-1 and EDEM-3 roles become prominent under acute ER stress. In contrast to SEL-1 loss, the loss of EDEMs in an intact organism induces only a modest ER stress under physiological conditions. In addition, chronic impairment of EDEM functioning attenuated both XBP-1 activation and up-regulation of the stress chaperone GRP78/BiP, in response to acute ER stress. We also show that pre-conditioning to EDEM loss in acute ER stress restores ER homeostasis and promotes survival by activating ER hormesis. We propose a novel role for EDEM in fine-tuning the ER stress responsiveness that affects ER homeostasis and survival. ER stress and UPRER malfunctions have been implicated in the pathogenesis of neurodegeneration, metabolic and inflammatory diseases as well as tumor progression and diabetes, whereby disturbed ER homeostasis negatively influences the pathology of the disease. Under ER stress conditions, the cells either activate UPRER-dependent cytoprotective mechanisms when ER stress is at subtoxic levels or, in case of an excessive ER stress, the cytotoxic response stimulates cell death. Here, we used Caenorhabditis elegans to study the cellular responses to ER stress at organismal level. We show that EDEMs respond differently to ER stress stimuli, and moreover, EDEMs deficiencies activate an XBP-1 independent adaptive program to promote organism survival under acute ER stress. Corroborated with the fact that loss of EDEM-2 and EDEM-3 induces resistance to acute ER stress in an intact organism, our data implicate EDEM proteins in a broader response to ER stress than previously established, which opens a new avenue for understanding the regulation of ER stress with implications for clinical and therapeutic investigations.
Collapse
Affiliation(s)
- Simona Ghenea
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- * E-mail: (SG); (SMP)
| | - Marioara Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Robi Tacutu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Romanian Academy, Bucharest, Romania
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Stefana Maria Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
- * E-mail: (SG); (SMP)
| |
Collapse
|
3
|
Jeong DE, Lee Y, Ham S, Lee D, Kwon S, Park HEH, Hwang SY, Yoo JY, Roh TY, Lee SJV. Inhibition of the oligosaccharyl transferase in Caenorhabditis elegans that compromises ER proteostasis suppresses p38-dependent protection against pathogenic bacteria. PLoS Genet 2020; 16:e1008617. [PMID: 32130226 PMCID: PMC7055741 DOI: 10.1371/journal.pgen.1008617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
The oligosaccharyl transferase (OST) protein complex mediates the N-linked glycosylation of substrate proteins in the endoplasmic reticulum (ER), which regulates stability, activity, and localization of its substrates. Although many OST substrate proteins have been identified, the physiological role of the OST complex remains incompletely understood. Here we show that the OST complex in C. elegans is crucial for ER protein homeostasis and defense against infection with pathogenic bacteria Pseudomonas aeruginosa (PA14), via immune-regulatory PMK-1/p38 MAP kinase. We found that genetic inhibition of the OST complex impaired protein processing in the ER, which in turn up-regulated ER unfolded protein response (UPRER). We identified vitellogenin VIT-6 as an OST-dependent glycosylated protein, critical for maintaining survival on PA14. We also showed that the OST complex was required for up-regulation of PMK-1 signaling upon infection with PA14. Our study demonstrates that an evolutionarily conserved OST complex, crucial for ER homeostasis, regulates host defense mechanisms against pathogenic bacteria. N-linked glycosylation is essential for the function of various proteins, but its effects on physiology at an organism level remain poorly understood. Using the roundworm Caenorhabditis elegans, we show that the oligosaccharyl transferase (OST) complex, which mediates the N-glycosylation of substrate proteins in the ER, reduces susceptibility to pathogenic bacteria, Pseudomonas aeruginosa. We find that OST enhances defense against P. aeruginosa via maintenance of ER unfolded protein response (UPRER) and up-regulation of cytosolic p38 MAP kinase signaling. Our findings propose an intriguing model for the organellar crosstalk between the ER and the cytosol in host defense mechanisms. Because the OST complex components are highly conserved among eukaryotes, our study on the regulation of cellular signaling and C. elegans physiology by the OST complex will provide an insight into the function of its mammalian counterpart.
Collapse
Affiliation(s)
- Dae-Eun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Yujin Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Seokjin Ham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Hae-Eun H. Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
| | - Sun-Young Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Tae-Young Roh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Seung-Jae V. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, South Korea
- * E-mail:
| |
Collapse
|
4
|
Daniele JR, Higuchi-Sanabria R, Durieux J, Monshietehadi S, Ramachandran V, Tronnes SU, Kelet N, Sanchez M, Metcalf MG, Garcia G, Frankino PA, Benitez C, Zeng M, Esping DJ, Joe L, Dillin A. UPR ER promotes lipophagy independent of chaperones to extend life span. SCIENCE ADVANCES 2020; 6:eaaz1441. [PMID: 31911951 PMCID: PMC6938708 DOI: 10.1126/sciadv.aaz1441] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/05/2019] [Indexed: 05/13/2023]
Abstract
Longevity is dictated by a combination of environmental and genetic factors. One of the key mechanisms to regulate life-span extension is the induction of protein chaperones for protein homeostasis. Ectopic activation of the unfolded protein response of the endoplasmic reticulum (UPRER) specifically in neurons is sufficient to enhance organismal stress resistance and extend life span. Here, we find that this activation not only promotes chaperones but also facilitates ER restructuring and ER function. This restructuring is concomitant with lipid depletion through lipophagy. Activation of lipophagy is distinct from chaperone induction and is required for the life-span extension found in this paradigm. Last, we find that overexpression of the lipophagy component, ehbp-1, is sufficient to deplete lipids, remodel ER, and promote life span. Therefore, UPR induction in neurons triggers two distinct programs in the periphery: the proteostasis arm through protein chaperones and metabolic changes through lipid depletion mediated by EH domain binding protein 1 (EHBP-1).
Collapse
Affiliation(s)
- Joseph R. Daniele
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Ryo Higuchi-Sanabria
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Jenni Durieux
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Samira Monshietehadi
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Vidhya Ramachandran
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Thermo Fisher Scientific, Genetic Sciences Division, Santa Clara, CA 95051, USA
| | - Sarah U. Tronnes
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Naame Kelet
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Melissa Sanchez
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Melissa G. Metcalf
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Gilberto Garcia
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Phillip A. Frankino
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Camila Benitez
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Mandy Zeng
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Daniel J. Esping
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Larry Joe
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Andrew Dillin
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720-3370, USA
- Corresponding author.
| |
Collapse
|
5
|
Kanaki N, Matsuda A, Dejima K, Murata D, Nomura KH, Ohkura T, Gengyo-Ando K, Yoshina S, Mitani S, Nomura K. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase is indispensable for oogenesis, oocyte-to-embryo transition, and larval development of the nematode Caenorhabditis elegans. Glycobiology 2019; 29:163-178. [PMID: 30445613 DOI: 10.1093/glycob/cwy104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
N-linked glycosylation of proteins is the most common post-translational modification of proteins. The enzyme UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosaminephosphotransferase (DPAGT1) catalyses the first step of N-glycosylation, and DPAGT1 knockout is embryonic lethal in mice. In this study, we identified the sole orthologue (algn-7) of the human DPAGT1 in the nematode C. elegans. The gene activity was disrupted by RNAi and deletion mutagenesis, which resulted in larval lethality, defects in oogenesis and oocyte-to-embryo transition. Endomitotic oocytes, abnormal fusion of pronuclei, abnormal AB cell rotation, disruption of permeation barriers of eggs, and abnormal expression of chitin and chitin synthase in oocytes and eggs were the typical phenotypes observed. The results indicate that N-glycosylation is indispensable for these processes. We further screened an N-glycosylated protein database of C. elegans, and identified 456 germline-expressed genes coding N-glycosylated proteins. By examining RNAi phenotypes, we identified five germline-expressed genes showing similar phenotypes to the algn-7 (RNAi) animals. They were ribo-1, stt-3, ptc-1, ptc-2, and vha-19. We identified known congenital disorders of glycosylation (CDG) genes (ribo-1 and stt-3) and a recently found CDG gene (vha-19). The results show that phenotype analyses using the nematode could be a powerful tool to detect new CDG candidate genes and their associated gene networks.
Collapse
Affiliation(s)
- Nanako Kanaki
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Ayako Matsuda
- Department of Systems Life Sciences, Kyushu University Graduate School, Fukuoka, Japan
| | - Katsufumi Dejima
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Daisuke Murata
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuko H Nomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ohkura
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, Japan
| | - Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Kazuya Nomura
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Li X, Ding L, Li X, Zhu H, Gashash EA, Li Z, Wang PG, Ma C. An integrated proteomic and glycoproteomic study for differences on glycosylation occupancy in rheumatoid arthritis. Anal Bioanal Chem 2019; 411:1331-1338. [DOI: 10.1007/s00216-018-1543-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/06/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023]
|
7
|
Stevens J, Spang A. Attenuation of N-glycosylation causes polarity and adhesion defects in the C. elegans embryo. J Cell Sci 2017; 130:1224-1231. [PMID: 28202691 DOI: 10.1242/jcs.189316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
The Caenorhabditiselegans early embryo is highly polarized, requiring sequestration of cytoplasmic polarity factors at the plasma membrane. This compartmentalization aids asymmetric distribution of lipids and proteins, which is partially responsible for the fates of the daughter cells. Since most plasma membrane proteins are glycosylated, we determined the effect of attenuation of N-glycosylation on cell polarity. While polarity establishment was not perturbed, the size difference between the two cells formed in first cell division (AB and P1) was more variable in embryos with reduced N-glycosylation than in the mock-treated embryos. In addition, among other deficiencies, we observed spindle orientation defects in two-cell embryos. Moreover, cell-cell adhesion was specifically lost at the two-cell stage when N-glycosylation was reduced. This loss-of-adhesion phenotype was rescued by interfering with polarity establishment, indicating that polarity establishment enforces plasma membrane compartmentalization. Consistent with this idea, the decreased plasma membrane levels of the adhesion proteins E-cadherin and MAGI-1 in ribo-1(RNAi) embryos were restored in the absence of functional PAR-2. Our data suggest a general role for N-glycosylation in plasma membrane compartmentalization and cell polarity.
Collapse
Affiliation(s)
- Julia Stevens
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| |
Collapse
|
8
|
Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells. Biosens Bioelectron 2016; 88:85-93. [PMID: 27481167 DOI: 10.1016/j.bios.2016.07.080] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/11/2016] [Accepted: 07/23/2016] [Indexed: 11/21/2022]
Abstract
Altered glycosylation levels or distribution of sialic acids (SA) or hyaluronan in animal cells are indicators of pathological conditions like infection or malignancy. We applied fluorescently-labeled molecularly imprinted polymer (MIP) particles for bioimaging of fixed and living human keratinocytes, to localize hyaluronan and sialylation sites. MIPs were prepared with the templates D-glucuronic acid (GlcA), a substructure of hyaluronan, and N-acetylneuraminic acid (NANA), the most common member of SA. Both MIPs were found to be highly selective towards their target monosaccharides, as no cross-reactivity was observed with other sugars like N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, D-glucose and D-galactose, present on the cell surface. The dye rhodamine and two InP/ZnS quantum dots (QDs) emitting in the green and in the red regions were used as fluorescent probes. Rhodamine-MIPGlcA and rhodamine-MIPNANA were synthesized as monodispersed 400nm sized particles and were found to bind selectively their targets located in the extracellular region, as imaged by epifluorescence and confocal microscopy. In contrast, when MIP-GlcA and MIP-NANA particles with a smaller size (125nm) were used, the MIPs being synthesized as thin shells around green and red emitting QDs respectively, it was possible to stain the intracellular and pericellular regions as well. In addition, simultaneous dual-color imaging with the two different colored QDs-MIPs was demonstrated. Importantly, the MIPs were not cytotoxic and did not affect cell viability; neither was the cells morphology affected as demonstrated by live cell imaging. These synthetic receptors could offer a new and promising imaging tool to monitor disease progression.
Collapse
|
9
|
Akiyoshi S, Nomura KH, Dejima K, Murata D, Matsuda A, Kanaki N, Takaki T, Mihara H, Nagaishi T, Furukawa S, Ando KG, Yoshina S, Mitani S, Togayachi A, Suzuki Y, Shikanai T, Narimatsu H, Nomura K. RNAi screening of human glycogene orthologs in the nematode Caenorhabditis elegans and the construction of the C. elegans glycogene database. Glycobiology 2015; 25:8-20. [PMID: 25091817 PMCID: PMC4245905 DOI: 10.1093/glycob/cwu080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/16/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022] Open
Abstract
In this study, we selected 181 nematode glycogenes that are orthologous to human glycogenes and examined their RNAi phenotypes. The results are deposited in the Caenorhabditis elegans Glycogene Database (CGGDB) at AIST, Tsukuba, Japan. The most prominent RNAi phenotypes observed are disruptions of cell cycle progression in germline mitosis/meiosis and in early embryonic cell mitosis. Along with the previously reported roles of chondroitin proteoglycans, glycosphingolipids and GPI-anchored proteins in cell cycle progression, we show for the first time that the inhibition of the functions of N-glycan synthesis genes (cytoplasmic alg genes) resulted in abnormal germline formation, ER stress and small body size phenotypes. The results provide additional information on the roles of glycoconjugates in the cell cycle progression mechanisms of germline and embryonic cells.
Collapse
Affiliation(s)
| | - Kazuko H Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Katsufumi Dejima
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Daisuke Murata
- Graduate School of Systems Life Sciences, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | | | - Nanako Kanaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Tetsuro Takaki
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroyuki Mihara
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Takayuki Nagaishi
- Graduate School of Systems Life Sciences, and Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Shuhei Furukawa
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan
| | - Keiko-Gengyo Ando
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666, Japan
| | - Akira Togayachi
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Yoshinori Suzuki
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Toshihide Shikanai
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Hisashi Narimatsu
- Glycomedicine Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Kazuya Nomura
- Department of Biological Sciences, Faculty of Sciences 33, Kyushu University, Fukuoka 812-8581, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi Center Building, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
10
|
Profiling of the mammalian mitotic spindle proteome reveals an ER protein, OSTD-1, as being necessary for cell division and ER morphology. PLoS One 2013; 8:e77051. [PMID: 24130834 PMCID: PMC3794981 DOI: 10.1371/journal.pone.0077051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Cell division is important for many cellular processes including cell growth, reproduction, wound healing and stem cell renewal. Failures in cell division can often lead to tumors and birth defects. To identify factors necessary for this process, we implemented a comparative profiling strategy of the published mitotic spindle proteome from our laboratory. Of the candidate mammalian proteins, we determined that 77% had orthologs in Caenorhabditis elegans and 18% were associated with human disease. Of the C. elegans candidates (n=146), we determined that 34 genes functioned in embryonic development and 56% of these were predicted to be membrane trafficking proteins. A secondary, visual screen to detect distinct defects in cell division revealed 21 genes that were necessary for cytokinesis. One of these candidates, OSTD-1, an ER resident protein, was further characterized due to the aberrant cleavage furrow placement and failures in division. We determined that OSTD-1 plays a role in maintaining the dynamic morphology of the ER during the cell cycle. In addition, 65% of all ostd-1 RNAi-treated embryos failed to correctly position cleavage furrows, suggesting that proper ER morphology plays a necessary function during animal cell division.
Collapse
|