1
|
Ishii T, Warabi E, Mann GE. Stress Activated MAP Kinases and Cyclin-Dependent Kinase 5 Mediate Nuclear Translocation of Nrf2 via Hsp90α-Pin1-Dynein Motor Transport Machinery. Antioxidants (Basel) 2023; 12:antiox12020274. [PMID: 36829834 PMCID: PMC9952688 DOI: 10.3390/antiox12020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate in the efficient nuclear accumulation of Nrf2 in a cell-type-dependent manner. Activation of p38 induces membrane trafficking of a glutathione sensor neutral sphingomyelinase 2, which generates ceramide upon depletion of cellular glutathione. We previously proposed that caveolin-1 in lipid rafts provides a signaling hub for the phosphorylation of Nrf2 by ceramide-activated PKCζ and casein kinase 2 to stabilize Nrf2 and mask a nuclear export signal. We further propose a mechanism of facilitated Nrf2 nuclear translocation by ERK and JNK. ERK and JNK phosphorylation of Nrf2 induces the association of prolyl cis/trans isomerase Pin1, which specifically recognizes phosphorylated serine or threonine immediately preceding a proline residue. Pin1-induced structural changes allow importin-α5 to associate with Nrf2. Pin1 is a co-chaperone of Hsp90α and mediates the association of the Nrf2-Pin1-Hsp90α complex with the dynein motor complex, which is involved in transporting the signaling complex to the nucleus along microtubules. In addition to ERK and JNK, cyclin-dependent kinase 5 could phosphorylate Nrf2 and mediate the transport of Nrf2 to the nucleus via the Pin1-Hsp90α system. Some other ERK target proteins, such as pyruvate kinase M2 and hypoxia-inducible transcription factor-1, are also transported to the nucleus via the Pin1-Hsp90α system to modulate gene expression and energy metabolism. Notably, as malignant tumors often express enhanced Pin1-Hsp90α signaling pathways, this provides a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence:
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Giovanni E. Mann
- King’s British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
2
|
Mansouri A, Reiner Ž, Ruscica M, Tedeschi-Reiner E, Radbakhsh S, Bagheri Ekta M, Sahebkar A. Antioxidant Effects of Statins by Modulating Nrf2 and Nrf2/HO-1 Signaling in Different Diseases. J Clin Med 2022; 11:1313. [PMID: 35268403 PMCID: PMC8911353 DOI: 10.3390/jcm11051313] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Statins are competitive inhibitors of hydroxymethylglutaryl-CoA (HMG-CoA) reductase and have been used to treat elevated low-density lipoprotein cholesterol (LDL-C) for almost four decades. Antioxidant and anti-inflammatory properties which are independent of the lipid-lowering effects of statins, i.e., their pleiotropic effects, might be beneficial in the prevention or treatment of many diseases. This review discusses the antioxidant effects of statins achieved by modulating the nuclear factor erythroid 2 related factor 2/ heme oxygenase-1 (Nrf2/HO-1) pathway in different organs and diseases. Nrf2 and other proteins involved in the Nrf2/HO-1 signaling pathway have a crucial role in cellular responses to oxidative stress, which is a risk factor for ASCVD. Statins can significantly increase the DNA-binding activity of Nrf2 and induce the expression of its target genes, such as HO-1 and glutathione peroxidase) GPx, (thus protecting the cells against oxidative stress. Antioxidant and anti-inflammatory properties of statins, which are independent of their lipid-lowering effects, could be partly explained by the modulation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Center Zagreb, University of Zagreb, 10000 Zagreb, Croatia;
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20100 Milan, Italy;
| | - Eugenia Tedeschi-Reiner
- University Hospital Center Sestre Milosrdnice, University of Osijek, Vinogradska Cesta 29, 10000 Zagreb, Croatia;
| | - Shabnam Radbakhsh
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran;
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Mariam Bagheri Ekta
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, A.P. Avtsyn Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
3
|
Komatsu T, Ayaori M, Uto-Kondo H, Hayashi K, Tamura K, Sato H, Sasaki M, Nishida T, Takiguchi S, Yakushiji E, Nakaya K, Ikewaki K. Atorvastatin Reduces Circulating S100A12 Levels in Patients with Carotid Atherosclerotic Plaques - A Link with Plaque Inflammation. J Atheroscler Thromb 2021; 29:775-784. [PMID: 33952812 PMCID: PMC9135643 DOI: 10.5551/jat.61630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims: Inflammation is involved in various processes of atherosclerosis development. Serum C-reactive protein (CRP) levels, a predictor for cardiovascular risk, are reportedly reduced by statins. However, several studies have demonstrated that CRP is a bystander during atherogenesis. While S100A12 has been focused on as an inflammatory molecule, it remains unclear whether statins affect circulating S100A12 levels. Here, we investigated whether atorvastatin treatment affected S100A12 and which biomarkers were correlated with changes in arterial inflammation.
Methods: We performed a prospective, randomized open-labeled trial on whether atorvastatin affected arterial (carotid and thoracic aorta) inflammation using18fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) and inflammatory markers. Thirty-one statin-naïve patients with carotid atherosclerotic plaques were randomized to either a group receiving dietary management (n=15) or one receiving atorvastatin (10mg/day,n=16) for 12weeks.18F-FDG-PET/CT and flow-mediated vasodilation (FMD) were performed, the latter to evaluate endothelial function.
Results: Atorvastatin, but not the diet-only treatment, significantly reduced LDL-cholesterol (LDL-C, -43%), serum CRP (-37%) and S100A12 levels (-28%) and improved FMD (+38%).18F-FDG-PET/CT demonstrated that atorvastatin, but not the diet-only treatment, significantly reduced accumulation of18F-FDG in the carotid artery and thoracic aorta. A multivariate analysis revealed that reduction in CRP, S100A12, LDL-C, oxidized-LDL, and increase in FMD were significantly associated with reduced arterial inflammation in the thoracic aorta, but not in the carotid artery.
Conclusions: Atorvastatin treatment reduced S100A12/CRP levels, and the changes in these circulating markers mirrored the improvement in arterial inflammation. Our observations suggest that S100A12 may be an emerging therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Tomohiro Komatsu
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Makoto Ayaori
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College.,Tokorozawa Heart Center
| | - Harumi Uto-Kondo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | | | | | - Hiroki Sato
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | - Makoto Sasaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Takafumi Nishida
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Shunichi Takiguchi
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Emi Yakushiji
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Kazuhiro Nakaya
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College
| |
Collapse
|
4
|
Ayoub AJ, Hariss L, El-Hachem N, El-Achkar GA, Ghayad SE, Dagher OK, Borghol N, Grée R, Badran B, Hachem A, Hamade E, Habib A. gem-Difluorobisarylic derivatives: design, synthesis and anti-inflammatory effect. BMC Chem 2019; 13:124. [PMID: 31696161 PMCID: PMC6824041 DOI: 10.1186/s13065-019-0640-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/03/2019] [Indexed: 11/10/2022] Open
Abstract
Introduction New fluorinated diaryl ethers and bisarylic ketones were designed and evaluated for their anti-inflammatory effects in primary macrophages. Methods The synthesis of the designed molecules started from easily accessible and versatile gem-difluoro propargylic derivatives. The desired aromatic systems were obtained using Diels-Alder/aromatization sequences and this was followed by Pd-catalyzed coupling reactions and, when required, final functionalization steps. Both direct inhibitory effects on cyclooxygenase-1 or -2 activities, protein expression of cyclooxygenase-2 and nitric oxide synthase-II and the production of prostaglandin E2, the pro-inflammatory nitric oxide and interleukin-6 were evaluated in primary murine bone marrow-derived macrophages in response to lipopolysaccharide. Docking of the designed molecules in cyclooxygenase-1 or -2 was performed. Results Only fluorinated compounds exerted anti-inflammatory activities by lowering the secretion of interleukin-6, nitric oxide, and prostaglandin E2, and decreasing the protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in mouse primary macrophages exposed to lipopolysaccharide, as well as cyclooxygenase activity for some inhibitors with different efficiencies depending on the R-groups. Docking observation suggested an inhibitory role of cyclooxygenase-1 or -2 for compounds A3, A4 and A5 in addition to their capacity to inhibit nitrite, interleukin-6, and nitric oxide synthase-II and cyclooxygenase-2 expression. Conclusion The new fluorinated diaryl ethers and bisarylic ketones have anti-inflammatory effects in macrophages. These fluorinated compounds have improved potential anti-inflammatory properties due to the fluorine residues in the bioactive molecules.
Collapse
Affiliation(s)
- Abeer J Ayoub
- 1Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,2Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Layal Hariss
- 3Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences I and PRASE-EDST Lebanese University, Beirut, Lebanon
| | - Nehme El-Hachem
- 4Integrative Systems Biology, Institut de Recherches Cliniques de Montréal, Montreal, QC Canada.,8Present Address: Department of Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon
| | - Ghewa A El-Achkar
- 1Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sandra E Ghayad
- 5Department of Biology, Faculty of Sciences II, EDST, Lebanese University, Fanar, Lebanon
| | - Oula K Dagher
- 1Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Borghol
- 2Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - René Grée
- 6Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, 35000 Rennes, France
| | - Bassam Badran
- 2Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Ali Hachem
- 3Laboratory for Medicinal Chemistry and Natural Products, Faculty of Sciences I and PRASE-EDST Lebanese University, Beirut, Lebanon
| | - Eva Hamade
- 2Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Aida Habib
- 1Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Université de Paris, Centre de Recherche sur l'Inflammation (CRI), INSERM, UMR1149, CNRS, ERL 8252, 75018 Paris, France
| |
Collapse
|
5
|
Atorvastatin and Conditioned Media from Atorvastatin-Treated Human Hematopoietic Stem/Progenitor-Derived Cells Show Proangiogenic Activity In Vitro but Not In Vivo. Mediators Inflamm 2019; 2019:1868170. [PMID: 31396016 PMCID: PMC6664685 DOI: 10.1155/2019/1868170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/22/2019] [Accepted: 02/14/2019] [Indexed: 01/16/2023] Open
Abstract
Myeloid angiogenic cells (MAC) derive from hematopoietic stem/progenitor cells (HSPCs) that are mobilized from the bone marrow. They home to sites of neovascularization and contribute to angiogenesis by production of paracrine factors. The number and function of proangiogenic cells are impaired in patients with diabetes or cardiovascular diseases. Both conditions can be accompanied by decreased levels of heme oxygenase-1 (HMOX1), cytoprotective, heme-degrading enzyme. Our study is aimed at investigating whether precursors of myeloid angiogenic cells (PACs) treated with known pharmaceuticals would produce media with better proangiogenic activity in vitro and if such media can be used to stimulate blood vessel growth in vivo. We used G-CSF-mobilized CD34+ HSPCs, FACS-sorted from healthy donor peripheral blood mononuclear cells (PBMCs). Sorted cells were predominantly CD133+. CD34+ cells after six days in culture were stimulated with atorvastatin (AT), acetylsalicylic acid (ASA), sulforaphane (SR), resveratrol (RV), or metformin (Met) for 48 h. Conditioned media from such cells were then used to stimulate human aortic endothelial cells (HAoECs) to enhance tube-like structure formation in a Matrigel assay. The only stimulant that enhanced PAC paracrine angiogenic activity was atorvastatin, which also had ability to stabilize endothelial tubes in vitro. On the other hand, the only one that induced heme oxygenase-1 expression was sulforaphane, a known activator of a HMOX1 inducer—NRF2. None of the stimulants changed significantly the levels of 30 cytokines and growth factors tested with the multiplex test. Then, we used atorvastatin-stimulated cells or conditioned media from them in the Matrigel plug in vivo angiogenic assay. Neither AT alone in control media nor conditioned media nor AT-stimulated cells affected numbers of endothelial cells in the plug or plug's vascularization. Concluding, high concentrations of atorvastatin stabilize tubes and enhance the paracrine angiogenic activity of human PAC cells in vitro. However, the effect was not observed in vivo. Therefore, the use of conditioned media from atorvastatin-treated PAC is not a promising therapeutic strategy to enhance angiogenesis.
Collapse
|
6
|
El-Achkar GA, Mrad MF, Mouawad CA, Badran B, Jaffa AA, Motterlini R, Hamade E, Habib A. Heme oxygenase-1-Dependent anti-inflammatory effects of atorvastatin in zymosan-injected subcutaneous air pouch in mice. PLoS One 2019; 14:e0216405. [PMID: 31071151 PMCID: PMC6508873 DOI: 10.1371/journal.pone.0216405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/19/2019] [Indexed: 01/15/2023] Open
Abstract
Statins exert pleiotropic and beneficial anti-inflammatory and antioxidant effects. We have previously reported that macrophages treated with statins increased the expression of heme oxygenase-1 (HO-1), an inducible anti-inflammatory and cytoprotective stress protein, responsible for the degradation of heme. In the present study, we investigated the effects of atorvastatin on inflammation in mice and analyzed its mechanism of action in vivo. Air pouches were established in 8 week-old female C57BL/6J mice. Atorvastatin (5 mg/kg, i.p.) and/or tin protoporphyrin IX (SnPPIX), a heme oxygenase inhibitor (12 mg/kg, i.p.), were administered for 10 days. Zymosan, a cell wall component of Saccharomyces cerevisiae, was injected in the air pouch to trigger inflammation. Cell number and levels of inflammatory markers were determined in exudates collected from the pouch 24 hours post zymosan injection by flow cytometry, ELISA and quantitative PCR. Analysis of the mice treated with atorvastatin alone displayed increased expression of HO-1, arginase-1, C-type lectin domain containing 7A, and mannose receptor C-type 1 in the cells of the exudate of the air pouch. Flow cytometry analysis revealed an increase in monocyte/macrophage cells expressing HO-1 and in leukocytes expressing MRC-1 in response to atorvastatin. Mice treated with atorvastatin showed a significant reduction in cell influx in response to zymosan, and in the expression of proinflammatory cytokines and chemokines such as interleukin-1α, monocyte chemoattractant protein-1 and prostaglandin E2. Co-treatment of mice with atorvastatin and tin protoporphyrin IX (SnPPIX), an inhibitor of heme oxygenase, reversed the inhibitory effect of statin on cell influx and proinflammatory markers, suggesting a protective role of HO-1. Flow cytometry analysis of air pouch cell contents revealed prevalence of neutrophils and to a lesser extent of monocytes/macrophages with no significant effect of atorvastatin treatment on the modification of their relative proportion. These findings identify HO-1 as a target for the therapeutic actions of atorvastatin and highlight its potential role as an in vivo anti-inflammatory agent.
Collapse
Affiliation(s)
- Ghewa A. El-Achkar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
- INSERM U955, Equipe 12, University Paris-Est, Faculty of Medicine, Créteil, France
| | - May F. Mrad
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Charbel A. Mouawad
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
| | - Ayad A. Jaffa
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Roberto Motterlini
- INSERM U955, Equipe 12, University Paris-Est, Faculty of Medicine, Créteil, France
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Beirut, Lebanon
- * E-mail: (AH); (EH)
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l’Inflammation, Sorbonne Paris Cité, Laboratoire d’Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université de Paris, Paris, France
- * E-mail: (AH); (EH)
| |
Collapse
|
7
|
Barnett M, Hall S, Dixit M, Arany I. Simvastatin attenuates oleic acid-induced oxidative stress through CREB-dependent induction of heme oxygenase-1 in renal proximal tubule cells. Pediatr Res 2016; 79:243-50. [PMID: 26492285 DOI: 10.1038/pr.2015.210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Statins elicit antioxidant effects independently of their lipid-lowering properties. Heme oxygenase-1 (HO-1) induction may be a part of these pleiotropic effects, which are insufficiently described in the kidney. We hypothesize that simvastatin (SIM) transcriptionally activates HO-1 that protects renal proximal tubule cells from lipotoxic injury. METHODS Impact of SIM on 100 μmol/l oleic acid (OA)-mediated reactive oxygen species (ROS) production and consequent oxidative stress (4-hydroxynonenal (HNE) content) as well as cell injury/apoptosis (lactate dehydrogenase (LDH) release, caspase-3 activation) were determined in cultured renal proximal tubule (NRK52E) cells. Effect of SIM on the HO-1 promoter and its enhancer elements (antioxidant response element (ARE), CCAAT, AP1, and cAMP response element (CRE)) was also determined in reporter luciferase assays. Dominant-negative (dnMEK, M1CREB) and pharmacologic (H89) approaches were used to inhibit activation of extracellular signal regulated kinase (ERK), CREB, and protein kinase A (PKA), respectively. RESULTS SIM dose-dependently activated the HO-1 promoter that was essential for protection against OA-dependent ROS production/oxidative stress and LDH release/caspase-3 activation. We found that the HO-1 promoter was induced through ERK and PKA-dependent activation of the CRE by SIM. CONCLUSION SIM may protect the kidney from adverse effects of circulating fatty acids by upregulating the antioxidant HO-1, aside from its well-described lipid-lowering effects.
Collapse
Affiliation(s)
- Meaghan Barnett
- Department of Pediatrics, Division of Critical Care, University of Mississippi Medical Center, Jackson, Mississippi
| | - Samuel Hall
- Department of Pediatrics, Division of Pediatric Nephrology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Mehul Dixit
- Department of Pediatrics, Division of Pediatric Nephrology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Istvan Arany
- Department of Pediatrics, Division of Pediatric Nephrology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
8
|
Recent publications by ochsner authors. Ochsner J 2013; 13:573-8. [PMID: 24358012 PMCID: PMC3865738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
|