1
|
Borg RE, Ozbakir HF, Xu B, Li E, Fang X, Peng H, Chen IA, Mukherjee A. Genetically engineered filamentous phage for bacterial detection using magnetic resonance imaging. SENSORS & DIAGNOSTICS 2023; 2:948-955. [PMID: 38405385 PMCID: PMC10888512 DOI: 10.1039/d3sd00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Detecting bacterial cells with high specificity in deep tissues is challenging. Optical probes provide specificity, but are limited by the scattering and absorption of light in biological tissues. Conversely, magnetic resonance imaging (MRI) allows unfettered access to deep tissues, but lacks contrast agents for detecting specific bacterial strains. Here, we introduce a biomolecular platform that combines both capabilities by exploiting the modularity of M13 phage to target bacteria with tunable specificity and allow deep-tissue imaging using T1-weighted MRI. We engineered two types of phage probes: one for detecting the phage's natural host, viz., F-pilus expressing E. coli; and the other for detecting a different (F-negative) bacterial target, V. cholerae. We show that these phage sensors generate 3-9-fold stronger T1 relaxation upon recognizing target cells relative to non-target bacteria. We further establish a preliminary proof-of-concept for in vivo applications, by demonstrating that phage-labeled bacteria can be detected in mice using MRI. The framework developed in this study may have potential utility in a broad range of applications, from basic biomedical research to in situ diagnostics, which require methods to detect and track specific bacteria in the context of intact living systems.
Collapse
Affiliation(s)
- Raymond E Borg
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
| | - Harun F Ozbakir
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Binzhi Xu
- Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Eugene Li
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Xiwen Fang
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | - Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Arnab Mukherjee
- Department of Chemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Biological Engineering, University of California, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Herneisey M, Janjic JM. Multiple Linear Regression Predictive Modeling of Colloidal and Fluorescence Stability of Theranostic Perfluorocarbon Nanoemulsions. Pharmaceutics 2023; 15:1103. [PMID: 37111589 PMCID: PMC10146561 DOI: 10.3390/pharmaceutics15041103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Perfluorocarbon nanoemulsions (PFC-NEs) are widely used as theranostic nanoformulations with fluorescent dyes commonly incorporated for tracking PFC-NEs in tissues and in cells. Here, we demonstrate that PFC-NE fluorescence can be fully stabilized by controlling their composition and colloidal properties. A quality-by-design (QbD) approach was implemented to evaluate the impact of nanoemulsion composition on colloidal and fluorescence stability. A full factorial, 12-run design of experiments was used to study the impact of hydrocarbon concentration and perfluorocarbon type on nanoemulsion colloidal and fluorescence stability. PFC-NEs were produced with four unique PFCs: perfluorooctyl bromide (PFOB), perfluorodecalin (PFD), perfluoro(polyethylene glycol dimethyl ether) oxide (PFPE), and perfluoro-15-crown-5-ether (PCE). Multiple linear regression modeling (MLR) was used to predict nanoemulsion percent diameter change, polydispersity index (PDI), and percent fluorescence signal loss as a function of PFC type and hydrocarbon content. The optimized PFC-NE was loaded with curcumin, a known natural product with wide therapeutic potential. Through MLR-supported optimization, we identified a fluorescent PFC-NE with stable fluorescence that is unaffected by curcumin, which is known to interfere with fluorescent dyes. The presented work demonstrates the utility of MLR in the development and optimization of fluorescent and theranostic PFC nanoemulsions.
Collapse
Affiliation(s)
| | - Jelena M. Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| |
Collapse
|
3
|
Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Di Martino P. Nanotechnology as a Versatile Tool for 19F-MRI Agent's Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics 2022; 14:382. [PMID: 35214114 PMCID: PMC8874484 DOI: 10.3390/pharmaceutics14020382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simultaneously being a non-radiative and non-invasive technique makes magnetic resonance imaging (MRI) one of the highly sought imaging techniques for the early diagnosis and treatment of diseases. Despite more than four decades of research on finding a suitable imaging agent from fluorine for clinical applications, it still lingers as a challenge to get the regulatory approval compared to its hydrogen counterpart. The pertinent hurdle is the simultaneous intrinsic hydrophobicity and lipophobicity of fluorine and its derivatives that make them insoluble in any liquids, strongly limiting their application in areas such as targeted delivery. A blossoming technique to circumvent the unfavorable physicochemical characteristics of perfluorocarbon compounds (PFCs) and guarantee a high local concentration of fluorine in the desired body part is to encapsulate them in nanosystems. In this review, we will be emphasizing different types of nanocarrier systems studied to encapsulate various PFCs and fluorinated compounds, headway to be applied as a contrast agent (CA) in fluorine-19 MRI (19F MRI). We would also scrutinize, especially from studies over the last decade, the different types of PFCs and their specific applications and limitations concerning the nanoparticle (NP) system used to encapsulate them. A critical evaluation for future opportunities would be speculated.
Collapse
Affiliation(s)
- Joice Maria Joseph
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | | | | | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, 66100 Chieti, Italy
| |
Collapse
|
4
|
Herneisey M, Salcedo PF, Domenech T, Bagia C, George SS, Tunney R, Velankar S, Hitchens TK, Janjic JM. Design of Thermoresponsive Polyamine Cross-Linked Perfluoropolyether Hydrogels for Imaging and Delivery Applications. ACS Med Chem Lett 2020; 11:2032-2040. [PMID: 33062189 DOI: 10.1021/acsmedchemlett.0c00198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022] Open
Abstract
Perfluorocarbons are versatile compounds with applications in 19F magnetic resonance imaging (MRI) and chemical conjugation to drugs and pH sensors. We present a novel thermoresponsive perfluorocarbon emulsion hydrogel that can be detected by 19F MRI. The developed hydrogel contains perfluoro(polyethylene glycol dimethyl ether) (PFPE) emulsion droplets that are stabilized through ionic cross-linking with polyethylenimine (PEI). Specifically, PFPE ester undergoes hydrolysis upon contact with aqueous PEI solution, resulting in an ionic bond between the PFPE acid and charged PEI amino groups. Due to the ionic nature of the PFPE/PEI bond, potassium buffer is required to preserve the hydrogel's pH and rheological and emulsion droplet stability. The presence of the surface cross-linked PFPE droplets does not affect the hydrogel's rheological behavior, drug loading, or drug release, and the hydrogel is nontoxic. We propose that the presented hydrogel can be adapted to a broad range of biomedical imaging and delivery applications.
Collapse
Affiliation(s)
- Michele Herneisey
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Paula Flórez Salcedo
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Trystan Domenech
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Christina Bagia
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Simon S George
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Robert Tunney
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Sachin Velankar
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - T Kevin Hitchens
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
5
|
Miller RJ, Crosby HA, Schilcher K, Wang Y, Ortines RV, Mazhar M, Dikeman DA, Pinsker BL, Brown ID, Joyce DP, Zhang J, Archer NK, Liu H, Alphonse MP, Czupryna J, Anderson WR, Bernthal NM, Fortuno-Miranda L, Bulte JWM, Francis KP, Horswill AR, Miller LS. Development of a Staphylococcus aureus reporter strain with click beetle red luciferase for enhanced in vivo imaging of experimental bacteremia and mixed infections. Sci Rep 2019; 9:16663. [PMID: 31723175 PMCID: PMC6853927 DOI: 10.1038/s41598-019-52982-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/26/2019] [Indexed: 02/03/2023] Open
Abstract
In vivo bioluminescence imaging has been used to monitor Staphylococcus aureus infections in preclinical models by employing bacterial reporter strains possessing a modified lux operon from Photorhabdus luminescens. However, the relatively short emission wavelength of lux (peak 490 nm) has limited tissue penetration. To overcome this limitation, the gene for the click beetle (Pyrophorus plagiophtalamus) red luciferase (luc) (with a longer >600 emission wavelength), was introduced singly and in combination with the lux operon into a methicillin-resistant S. aureus strain. After administration of the substrate D-luciferin, the luc bioluminescent signal was substantially greater than the lux signal in vitro. The luc signal had enhanced tissue penetration and improved anatomical co-registration with infected internal organs compared with the lux signal in a mouse model of S. aureus bacteremia with a sensitivity of approximately 3 × 104 CFU from the kidneys. Finally, in an in vivo mixed bacterial wound infection mouse model, S. aureus luc signals could be spectrally unmixed from Pseudomonas aeruginosa lux signals to noninvasively monitor the bacterial burden of both strains. Therefore, the S. aureus luc reporter may provide a technological advance for monitoring invasive organ dissemination during S. aureus bacteremia and for studying bacterial dynamics during mixed infections.
Collapse
Affiliation(s)
- Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heidi A Crosby
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Katrin Schilcher
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Momina Mazhar
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dustin A Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bret L Pinsker
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isabelle D Brown
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P Joyce
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey Zhang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Lea Fortuno-Miranda
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Chemical & Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Kevin P Francis
- PerkinElmer, Hopkinton, Massachusetts, USA.,Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Santa Monica, California, USA
| | - Alexander R Horswill
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA.,Denver VA Healthcare System, Denver, Colorado, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. .,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA. .,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
| |
Collapse
|
6
|
Saini S, Poelmans J, Korf H, Dooley JL, Liang S, Manshian BB, Verbeke R, Soenen SJ, Vande Velde G, Lentacker I, Lagrou K, Liston A, Gysemans C, De Smedt SC, Himmelreich U. Longitudinal In Vivo Assessment of Host-Microbe Interactions in a Murine Model of Pulmonary Aspergillosis. iScience 2019; 20:184-194. [PMID: 31581067 PMCID: PMC6817634 DOI: 10.1016/j.isci.2019.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/24/2019] [Accepted: 09/13/2019] [Indexed: 01/01/2023] Open
Abstract
The fungus Aspergillus fumigatus is ubiquitous in nature and the most common cause of invasive pulmonary aspergillosis (IPA) in patients with a compromised immune system. The development of IPA in patients under immunosuppressive treatment or in patients with primary immunodeficiency demonstrates the importance of the host immune response in controlling aspergillosis. However, study of the host-microbe interaction has been hampered by the lack of tools for their non-invasive assessment. We developed a methodology to study the response of the host's immune system against IPA longitudinally in vivo by using fluorine-19 magnetic resonance imaging (19F MRI). We showed the advantage of a perfluorocarbon-based contrast agent for the in vivo labeling of macrophages and dendritic cells, permitting quantification of pulmonary inflammation in different murine IPA models. Our findings reveal the potential of 19F MRI for the assessment of rapid kinetics of innate immune response against IPA and the permissive niche generated through immunosuppression.
Collapse
Affiliation(s)
- Shweta Saini
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Jennifer Poelmans
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | - James L Dooley
- Laboratory of Genetics of Autoimmunity (VIB-KU Leuven Center for Brain & Disease Research), Leuven, Belgium
| | - Sayuan Liang
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium; Philips Research China, Shanghai, China
| | - Bella B Manshian
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Ghent University, Belgium
| | - Stefaan J Soenen
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Ghent University, Belgium
| | - Katrien Lagrou
- Clinical Bacteriology and Mycology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Laboratory of Genetics of Autoimmunity (VIB-KU Leuven Center for Brain & Disease Research), Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | - Uwe Himmelreich
- Biomedical MRI/Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
A dual 1H/19F birdcage coil for small animals at 7 T MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:79-87. [DOI: 10.1007/s10334-018-00733-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
|
8
|
Improved compressed sensing reconstruction for
$$^{19}$$
19
F magnetic resonance imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:63-77. [DOI: 10.1007/s10334-018-0729-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/06/2018] [Accepted: 12/09/2018] [Indexed: 12/18/2022]
|
9
|
Ohlsen K, Hertlein T. Towards clinical application of non-invasive imaging to detect bacterial infections. Virulence 2018; 9:943-945. [PMID: 29417876 PMCID: PMC7000191 DOI: 10.1080/21505594.2018.1425072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In vivo imaging technologies offer a great potential for the diagnosis of difficult-to-treat bacterial infections. A major limitation of conventional imaging modalities is the lack of specificity to distinguish the site of bacterial infection from sterile inflammation. Targeted approaches like antibiotics linked to imaging tracers for detection of various bacterial pathogens or species-specific antibodies combined with anatomical imaging modalities are currently being evaluated to overcome this problem. Considering the recent progress in optical and targeted imaging that may accelerate preclinical development programs, clinical implementation of in vivo imaging modalities to detect bacterial infection foci becomes realistic in the future.
Collapse
Affiliation(s)
- Knut Ohlsen
- a University of Würzburg, Institute for Molecular Infection Biology , Josef-Schneider-Straße 2 D15, Würzburg
| | - Tobias Hertlein
- a University of Würzburg, Institute for Molecular Infection Biology , Josef-Schneider-Straße 2 D15, Würzburg
| |
Collapse
|
10
|
A Multimodal Imaging Approach Enables In Vivo Assessment of Antifungal Treatment in a Mouse Model of Invasive Pulmonary Aspergillosis. Antimicrob Agents Chemother 2018; 62:AAC.00240-18. [PMID: 29760132 DOI: 10.1128/aac.00240-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/06/2018] [Indexed: 12/16/2022] Open
Abstract
Aspergillus fumigatus causes life-threatening lung infections in immunocompromised patients. Mouse models are extensively used in research to assess the in vivo efficacies of antifungals. In recent years, there has been an increasing interest in the use of noninvasive imaging techniques to evaluate experimental infections. However, single imaging modalities have limitations concerning the type of information they can provide. In this study, magnetic resonance imaging and bioluminescence imaging were combined to obtain longitudinal information on the extent of developing lesions and fungal load in a leukopenic mouse model of invasive pulmonary aspergillosis (IPA). This multimodal imaging approach was used to assess changes occurring within lungs of infected mice receiving voriconazole treatment starting at different time points after infection. The results showed that IPA development depends on the inoculum size used to infect animals and that disease can be successfully prevented or treated by initiating intervention during early stages of infection. Furthermore, we demonstrated that a reduction in fungal load is not necessarily associated with the disappearance of lesions on anatomical lung images, especially when antifungal treatment coincides with immune recovery. In conclusion, multimodal imaging allows an investigation of different aspects of disease progression or recovery by providing complementary information on dynamic processes, which are highly useful for assessing the efficacy of (novel) therapeutic compounds in a time- and labor-efficient manner.
Collapse
|
11
|
Nakayama T, Kawahara R, Kumeda Y, Yamamoto Y. Extended-spectrum β-lactamase-producing Escherichia coli contributes to the survival of cefotaxime-susceptible E. coli under high concentrations of cefotaxime by acquisition of increased AmpC expression. FEMS Microbiol Lett 2018; 365:4816729. [PMID: 29361027 DOI: 10.1093/femsle/fny009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Extended-spectrum β-lactamase-producing Escherichia coli (ESBL-E) are becoming increasingly widespread in Vietnam. Antibiotics are detected in many Vietnamese foods; however, the effect of ESBL-E and antibiotic consumption on intestinal bacteria has not been studied sufficiently. Here, we investigated the effect of oral administration of ESBL-E (TB19) and cefotaxime on luminescence-emitting cefotaxime-sensitive E. coli (X14). Mice were given water containing TB19 and then received three injections of 1.0 × 108 CFU of X14 harboring a luciferase gene. The mice were administered 100 μg of cefotaxime and luminescent bacteria were monitored over 24 h, following which luminescent bacteria were isolated from mouse feces. Luminescence continued to be detected in mice administered TB19 24 h after cefotaxime ingestion. Fecal analysis revealed two types of luminescent colonies: cefoxitin-resistant E. coli (X14-R) and Pseudomonas aeruginosa. Pulse-field gel electrophoresis confirmed that X14-R was a clonal strain of X14, suggesting that X14 survived using ESBLs originating from TB19 and acquired cefoxitin resistance due to cefotaxime consumption. Moreover, in vitro analysis of X14 indicated that expression of the ampC gene was upregulated by cefotaxime. Overall, ESBL-E and cefotaxime promoted the expansion of cefoxitin-resistant E. coli in the absence of plasmid-mediated gene transfer.
Collapse
Affiliation(s)
- Tatsuya Nakayama
- Division of Biomedical Food Research, National Institute of Health Science, Tokyo 158-8501, Japan.,Center for Global Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryuji Kawahara
- Department of Bacteriology, Osaka Institute of Public Health, Higashinari, Osaka 537-0025, Japan
| | - Yuko Kumeda
- Research Center for Microbial Control, Osaka Prefecture University, Osaka 565-8531, Japan
| | - Yoshimasa Yamamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
13
|
Suff N, Waddington SN. The power of bioluminescence imaging in understanding host-pathogen interactions. Methods 2017; 127:69-78. [PMID: 28694065 DOI: 10.1016/j.ymeth.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023] Open
Abstract
Infectious diseases are one of the leading causes of death worldwide. Modelling and understanding human infection is imperative to developing treatments to reduce the global burden of infectious disease. Bioluminescence imaging is a highly sensitive, non-invasive technique based on the detection of light, produced by luciferase-catalysed reactions. In the study of infectious disease, bioluminescence imaging is a well-established technique; it can be used to detect, localize and quantify specific immune cells, pathogens or immunological processes. This enables longitudinal studies in which the spectrum of the disease process and its response to therapies can be monitored. Light producing transgenic rodents are emerging as key tools in the study of host response to infection. Here, we review the strategies for identifying biological processes in vivo, including the technology of bioluminescence imaging and illustrate how this technique is shedding light on the host-pathogen relationship.
Collapse
Affiliation(s)
- Natalie Suff
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| |
Collapse
|
14
|
Development and characterization of resveratrol nanoemulsions carrying dual-imaging agents. Ther Deliv 2016; 7:795-808. [PMID: 27834615 DOI: 10.4155/tde-2016-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM Delivery of the natural anti-inflammatory compound resveratrol with nanoemulsions can dramatically improve its tissue targeting, bioavailability and efficacy. Current assessment of resveratrol delivery efficacy is limited to indirect pharmacological measures. Molecular imaging solves this problem. Results/methodology: Nanoemulsions containing two complementary imaging agents, near-infrared dye and perfluoropolyether (PFPE), were developed and evaluated. Nanoemulsion effects on macrophage uptake, toxicity and NO production were also evaluated. The presence of PFPE did not affect nanoemulsion size, zeta potential, colloidal stability, drug loading or drug release. CONCLUSION PFPE nanoemulsions can be used in future studies to evaluate nanoemulsion biodistribution without interfering with resveratrol delivery and pharmacological outcomes. Developed nanoemulsions show promise as a versatile treatment strategy for cancer and other inflammatory diseases. [Formula: see text].
Collapse
|
15
|
Fox MS, Gaudet JM, Foster PJ. Fluorine-19 MRI Contrast Agents for Cell Tracking and Lung Imaging. MAGNETIC RESONANCE INSIGHTS 2016; 8:53-67. [PMID: 27042089 PMCID: PMC4807887 DOI: 10.4137/mri.s23559] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/24/2016] [Accepted: 01/31/2016] [Indexed: 02/06/2023]
Abstract
Fluorine-19 (19F)-based contrast agents for magnetic resonance imaging stand to revolutionize imaging-based research and clinical trials in several fields of medical intervention. First, their use in characterizing in vivo cell behavior may help bring cellular therapy closer to clinical acceptance. Second, their use in lung imaging provides novel noninvasive interrogation of the ventilated airspaces without the need for complicated, hard-to-distribute hardware. This article reviews the current state of 19F-based cell tracking and lung imaging using magnetic resonance imaging and describes the link between the methods across these fields and how they may mutually benefit from solutions to mutual problems encountered when imaging 19F-containing compounds, as well as hardware and software advancements.
Collapse
Affiliation(s)
- Matthew S Fox
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Jeffrey M Gaudet
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Paula J Foster
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.; Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| |
Collapse
|
16
|
Bocan TM, Panchal RG, Bavari S. Applications of in vivo imaging in the evaluation of the pathophysiology of viral and bacterial infections and in development of countermeasures to BSL3/4 pathogens. Mol Imaging Biol 2015; 17:4-17. [PMID: 25008802 PMCID: PMC4544652 DOI: 10.1007/s11307-014-0759-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While preclinical and clinical imaging have been applied to drug discovery/development and characterization of disease pathology, few examples exist where imaging has been used to evaluate infectious agents or countermeasures to biosafety level (BSL)3/4 threat agents. Viruses engineered with reporter constructs, i.e., enzymes and receptors, which are amenable to detection by positron emission tomography (PET), single photon emission tomography (SPECT), or magnetic resonance imaging (MRI) have been used to evaluate the biodistribution of viruses containing specific therapeutic or gene transfer payloads. Bioluminescence and nuclear approaches involving engineered reporters, direct labeling of bacteria with radiotracers, or tracking bacteria through their constitutively expressed thymidine kinase have been utilized to characterize viral and bacterial pathogens post-infection. Most PET, SPECT, CT, or MRI approaches have focused on evaluating host responses to the pathogens such as inflammation, brain neurochemistry, and structural changes and on assessing the biodistribution of radiolabeled drugs. Imaging has the potential when applied preclinically to the development of countermeasures against BSL3/4 threat agents to address the following: (1) presence, biodistribution, and time course of infection in the presence or absence of drug; (2) binding of the therapeutic to the target; and (3) expression of a pharmacologic effect either related to drug mechanism, efficacy, or safety. Preclinical imaging could potentially provide real-time dynamic tools to characterize the pathogen and animal model and for developing countermeasures under the U.S. FDA Animal Rule provision with high confidence of success and clinical benefit.
Collapse
Affiliation(s)
- Thomas M Bocan
- Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Ft. Detrick, MD, 21702, USA,
| | | | | |
Collapse
|
17
|
Ring J, Hoerr V, Tuchscherr L, Kuhlmann MT, Löffler B, Faber C. MRI visualization of Staphyloccocus aureus-induced infective endocarditis in mice. PLoS One 2014; 9:e107179. [PMID: 25229324 PMCID: PMC4167704 DOI: 10.1371/journal.pone.0107179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
Infective endocarditis (IE) is a severe and often fatal disease, lacking a fast and reliable diagnostic procedure. The purpose of this study was to establish a mouse model of Staphylococcus aureus-induced IE and to develop a MRI technology to characterize and diagnose IE. To establish the mouse model of hematogenous IE, aortic valve damage was induced by placing a permanent catheter into right carotid artery. 24 h after surgery, mice were injected intravenously with either iron particle-labeled or unlabeled S. aureus (strain 6850). To distinguish the effect of IE from mere tissue injury or recruited macrophages, subgroups of mice received sham surgery prior to infection (n = 17), received surgery without infection (n = 8), or obtained additionally injection of free iron particles to label macrophages (n = 17). Cardiac MRI was performed 48 h after surgery using a self-gated ultra-short echo time (UTE) sequence (TR/TE, 5/0.31 ms; in-plane/slice, 0.125/1 mm; duration, 12∶08 min) to obtain high-resolution, artifact-free cinematographic images of the valves. After MRI, valves were either homogenized and plated on blood agar plates for determination of bacterial titers, or sectioned and stained for histology. In the animal model, both severity of the disease and mortality increased with bacterial numbers. Infection with 105 S. aureus bacteria reliably caused endocarditis with vegetations on the valves. Cinematographic UTE MRI visualised the aortic valve over the cardiac cycle and allowed for detection of bacterial vegetations, while mere tissue trauma or labeled macrophages were not detected. Iron labeling of S. aureus was not required for detection. MRI results were consistent with histology and microbial assessment. These data showed that S. aureus-induced IE in mice can be detected by MRI. The established mouse model allows for investigation of the pathophysiology of IE, testing of novel drugs and may serve for the development of a clinical diagnostic strategy.
Collapse
Affiliation(s)
- Janine Ring
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Verena Hoerr
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lorena Tuchscherr
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Michael T. Kuhlmann
- European Institute for Molecular Imaging, Westfalian Wilhelms-University, Münster, Germany
| | - Bettina Löffler
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
18
|
Ribot EJ, Gaudet JM, Chen Y, Gilbert KM, Foster PJ. In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence. Int J Nanomedicine 2014; 9:1731-9. [PMID: 24748787 PMCID: PMC3986292 DOI: 10.2147/ijn.s59127] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mesenchymal stem cells (MSC) are used to restore deteriorated cell environments. There is a need to specifically track these cells following transplantation in order to evaluate different methods of implantation, to follow their migration within the body, and to quantify their accumulation at the target. Cellular magnetic resonance imaging (MRI) using fluorine-based nanoemulsions is a great means to detect these transplanted cells in vivo because of the high specificity for fluorine detection and the capability for precise quantification. This technique, however, has low sensitivity, necessitating improvement in MR sequences. To counteract this issue, the balanced steady-state free precession (bSSFP) imaging sequence can be of great interest due to the high signal-to-noise ratio (SNR). Furthermore, it can be applied to obtain 3D images within short acquisition times. In this paper, bSSFP provided accurate quantification of samples of the perfluorocarbon Cell Sense-labeled cells in vitro. Cell Sense was internalized by human MSC (hMSC) without adverse alterations in cell viability or differentiation into adipocytes/osteocytes. The bSSFP sequence was applied in vivo to track and quantify the signals from both Cell Sense-labeled and iron-labeled hMSC after intramuscular implantation. The fluorine signal was observed to decrease faster and more significantly than the volume of iron-associated voids, which points to the advantage of quantifying the fluorine signal and the complexity of quantifying signal loss due to iron.
Collapse
Affiliation(s)
- Emeline J Ribot
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Jeffrey M Gaudet
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Yuhua Chen
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Kyle M Gilbert
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
| | - Paula J Foster
- Imaging Research Laboratories, Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
19
|
Bioluminescence and 19F magnetic resonance imaging visualize the efficacy of lysostaphin alone and in combination with oxacillin against Staphylococcus aureus in murine thigh and catheter-associated infection models. Antimicrob Agents Chemother 2013; 58:1630-8. [PMID: 24366730 DOI: 10.1128/aac.01422-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Staphylococci are the leading cause of hospital-acquired infections worldwide. Increasingly, they resist antibiotic treatment owing to the development of multiple antibiotic resistance mechanisms in most strains. Therefore, the activity and efficacy of recombinant lysostaphin as a drug against this pathogen have been evaluated. Lysostaphin exerts high levels of activity against antibiotic-resistant strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA). The therapeutic value of lysostaphin has been analyzed in two different clinically relevant in vivo models, a catheter-associated infection model and a thigh infection model. We infected mice with luciferase-expressing S. aureus Xen 29, and the efficacies of lysostaphin, vancomycin, oxacillin, and combined lysostaphin-oxacillin were investigated by determining numbers of CFU, detecting bioluminescent signals, and measuring the accumulation of perfluorocarbon emulsion at the site of infection by (19)F magnetic resonance imaging. Lysostaphin treatment significantly reduced the bacterial burden in infected thigh muscles and, after systemic spreading from the catheter, in inner organs. The efficiency of lysostaphin treatment was even more pronounced in combinatorial therapy with oxacillin. These results suggest that recombinant lysostaphin may have potential as an anti-S. aureus drug worthy of further clinical development. In addition, both imaging technologies demonstrated efficacy patterns similar to that of CFU determination, although they proved to be less sensitive. Nonetheless, they served as powerful tools to provide additional information about the course and gravity of infection in a noninvasive manner, possibly allowing a reduction in the number of animals needed for research evaluation of new antibiotics in future studies.
Collapse
|
20
|
Hoerr V, Faber C. Magnetic resonance imaging characterization of microbial infections. J Pharm Biomed Anal 2013; 93:136-46. [PMID: 24257444 DOI: 10.1016/j.jpba.2013.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 12/18/2022]
Abstract
The investigation of microbial infections relies to a large part on animal models of infection, if host pathogen interactions or the host response are considered. Especially for the assessment of novel therapeutic agents, animal models are required. Non-invasive imaging methods to study such models have gained increasing importance over the recent years. In particular, magnetic resonance imaging (MRI) affords a variety of diagnostic options, and can be used for longitudinal studies. In this review, we introduce the most important MRI modalities that show how MRI has been used for the investigation of animal models of infection previously and how it may be applied in the future.
Collapse
Affiliation(s)
- Verena Hoerr
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany.
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital of Muenster, 48149 Muenster, Germany
| |
Collapse
|